• Title/Summary/Keyword: Omega theorem

Search Result 66, Processing Time 0.026 seconds

Unique Continuation Property for C Functions

  • CHUNG, Young-Bok
    • Honam Mathematical Journal
    • /
    • v.25 no.1
    • /
    • pp.83-91
    • /
    • 2003
  • We prove a unique continuation theorem for $C^{\infty}$ functions in pseudoconvex domains in ${\mathbb{C}}^{n}$. More specifically, we show that if ${\Omega}$ is a pseudoconvex domain in ${\mathbb{C}}^n$, if f is in $C^{\infty}({\Omega})$ such that for all multi-indexes ${\alpha},{\beta}$ with ${\mid}{\beta}{\mid}{\geq}1$ and for any positive integer k, there exists a positive constant $C_{{\alpha},{\beta},{\kappa}}$ such that $$|{\frac{{\partial}^{{\mid}{\alpha}{\mid}+{\mid}{\beta}{\mid}}f}{{\partial}z^{\alpha}{\partial}{\bar{z}}^{\beta}}{\mid}{\leq}C_{{\alpha},{\beta},{\kappa}}{\mid}f{\mid}^{\kapp}}\;in\;{\Omega}$$, and if there exists $z_0{\in}{\Omega}$ such that f vanishes to infinite order at $z_0$, then f is identically zero. We also have a sharp result for the case of strongly pseudoconvex domains.

  • PDF

MULTIPLE SOLUTIONS OF A PERTURBED YAMABE-TYPE EQUATION ON GRAPH

  • Liu, Yang
    • Journal of the Korean Mathematical Society
    • /
    • v.59 no.5
    • /
    • pp.911-926
    • /
    • 2022
  • Let u be a function on a locally finite graph G = (V, E) and Ω be a bounded subset of V. Let 𝜀 > 0, p > 2 and 0 ≤ λ < λ1(Ω) be constants, where λ1(Ω) is the first eigenvalue of the discrete Laplacian, and h : V → ℝ be a function satisfying h ≥ 0 and $h{\not\equiv}0$. We consider a perturbed Yamabe equation, say $$\{\begin{array}{lll}-{\Delta}u-{\lambda}u={\mid}u{\mid}^{p-2}u+{\varepsilon}h,&&\text{ in }{\Omega},\\u=0,&&\text{ on }{\partial}{\Omega},\end{array}$$ where Ω and ∂Ω denote the interior and the boundary of Ω, respectively. Using variational methods, we prove that there exists some positive constant 𝜀0 > 0 such that for all 𝜀 ∈ (0, 𝜀0), the above equation has two distinct solutions. Moreover, we consider a more general nonlinear equation $$\{\begin{array}{lll}-{\Delta}u=f(u)+{\varepsilon}h,&&\text{ in }{\Omega},\\u=0,&&\text{ on }{\partial}{\Omega},\end{array}$$ and prove similar result for certain nonlinear term f(u).

ON SEMILOCAL CONVERGENCE OF A MULTIPOINT THIRD ORDER METHOD WITH R-ORDER (2 + p) UNDER A MILD DIFFERENTIABILITY CONDITION

  • Parida, P.K.;Gupta, D.K.;Parhi, S.K.
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.3_4
    • /
    • pp.399-416
    • /
    • 2013
  • The semilocal convergence of a third order iterative method used for solving nonlinear operator equations in Banach spaces is established by using recurrence relations under the assumption that the second Fr´echet derivative of the involved operator satisfies the ${\omega}$-continuity condition given by $||F^{\prime\prime}(x)-F^{\prime\prime}(y)||{\leq}{\omega}(||x-y||)$, $x,y{\in}{\Omega}$, where, ${\omega}(x)$ is a nondecreasing continuous real function for x > 0, such that ${\omega}(0){\geq}0$. This condition is milder than the usual Lipschitz/H$\ddot{o}$lder continuity condition on $F^{\prime\prime}$. A family of recurrence relations based on two constants depending on the involved operator is derived. An existence-uniqueness theorem is established to show that the R-order convergence of the method is (2+$p$), where $p{\in}(0,1]$. A priori error bounds for the method are also derived. Two numerical examples are worked out to demonstrate the efficacy of our approach and comparisons are elucidated with a known result.

FLOER MINI-MAX THEORY, THE CERF DIAGRAM, AND THE SPECTRAL INVARIANTS

  • Oh, Yong-Geun
    • Journal of the Korean Mathematical Society
    • /
    • v.46 no.2
    • /
    • pp.363-447
    • /
    • 2009
  • The author previously defined the spectral invariants, denoted by $\rho(H;\;a)$, of a Hamiltonian function H as the mini-max value of the action functional ${\cal{A}}_H$ over the Novikov Floer cycles in the Floer homology class dual to the quantum cohomology class a. The spectrality axiom of the invariant $\rho(H;\;a)$ states that the mini-max value is a critical value of the action functional ${\cal{A}}_H$. The main purpose of the present paper is to prove this axiom for nondegenerate Hamiltonian functions in irrational symplectic manifolds (M, $\omega$). We also prove that the spectral invariant function ${\rho}_a$ : $H\;{\mapsto}\;\rho(H;\;a)$ can be pushed down to a continuous function defined on the universal (${\acute{e}}tale$) covering space $\widetilde{HAM}$(M, $\omega$) of the group Ham((M, $\omega$) of Hamiltonian diffeomorphisms on general (M, $\omega$). For a certain generic homotopy, which we call a Cerf homotopy ${\cal{H}}\;=\;\{H^s\}_{0{\leq}s{\leq}1}$ of Hamiltonians, the function ${\rho}_a\;{\circ}\;{\cal{H}}$ : $s\;{\mapsto}\;{\rho}(H^s;\;a)$ is piecewise smooth away from a countable subset of [0, 1] for each non-zero quantum cohomology class a. The proof of this nondegenerate spectrality relies on several new ingredients in the chain level Floer theory, which have their own independent interest: a structure theorem on the Cerf bifurcation diagram of the critical values of the action functionals associated to a generic one-parameter family of Hamiltonian functions, a general structure theorem and the handle sliding lemma of Novikov Floer cycles over such a family and a family version of new transversality statements involving the Floer chain map, and many others. We call this chain level Floer theory as a whole the Floer mini-max theory.

Spectral Properties of k-quasi-class A(s, t) Operators

  • Mecheri, Salah;Braha, Naim Latif
    • Kyungpook Mathematical Journal
    • /
    • v.59 no.3
    • /
    • pp.415-431
    • /
    • 2019
  • In this paper we introduce a new class of operators which will be called the class of k-quasi-class A(s, t) operators. An operator $T{\in}B(H)$ is said to be k-quasi-class A(s, t) if $$T^{*k}(({\mid}T^*{\mid}^t{\mid}T{\mid}^{2s}{\mid}T^*{\mid}^t)^{\frac{1}{t+s}}-{\mid}T^*{\mid}^{2t})T^k{\geq}0$$, where s > 0, t > 0 and k is a natural number. We show that an algebraically k-quasi-class A(s, t) operator T is polaroid, has Bishop's property ${\beta}$ and we prove that Weyl type theorems for k-quasi-class A(s, t) operators. In particular, we prove that if $T^*$ is algebraically k-quasi-class A(s, t), then the generalized a-Weyl's theorem holds for T. Using these results we show that $T^*$ satisfies generalized the Weyl's theorem if and only if T satisfies the generalized Weyl's theorem if and only if T satisfies Weyl's theorem. We also examine the hyperinvariant subspace problem for k-quasi-class A(s, t) operators.

MULTIPLE SOLUTIONS FOR EQUATIONS OF p(x)-LAPLACE TYPE WITH NONLINEAR NEUMANN BOUNDARY CONDITION

  • Ki, Yun-Ho;Park, Kisoeb
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.6
    • /
    • pp.1805-1821
    • /
    • 2016
  • In this paper, we are concerned with the nonlinear elliptic equations of the p(x)-Laplace type $$\{\begin{array}{lll}-div(a(x,{\nabla}u))+{\mid}u{\mid}^{p(x)-2}u={\lambda}f(x,u) && in\;{\Omega}\\(a(x,{\nabla}u)\frac{{\partial}u}{{\partial}n}={\lambda}{\theta}g(x,u) && on\;{\partial}{\Omega},\end{array}$$ which is subject to nonlinear Neumann boundary condition. Here the function a(x, v) is of type${\mid}v{\mid}^{p(x)-2}v$ with continuous function $p:{\bar{\Omega}}{\rightarrow}(1,{\infty})$ and the functions f, g satisfy a $Carath{\acute{e}}odory$ condition. The main purpose of this paper is to establish the existence of at least three solutions for the above problem by applying three critical points theory due to Ricceri. Furthermore, we localize three critical points interval for the given problem as applications of the theorem introduced by Arcoya and Carmona.

SOLUTION TO ${\bar{\partial}}$-PROBLEM WITH SUPPORT CONDITIONS IN WEAKLY q-CONVEX DOMAINS

  • Saber, Sayed
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.2
    • /
    • pp.409-421
    • /
    • 2018
  • Let X be a complex manifold of dimension n $n{\geqslant}2$ and let ${\Omega}{\Subset}X$ be a weakly q-convex domain with smooth boundary. Assume that E is a holomorphic line bundle over X and $E^{{\otimes}m}$ is the m-times tensor product of E for positive integer m. If there exists a strongly plurisubharmonic function on a neighborhood of $b{\Omega}$, then we solve the ${\bar{\partial}}$-problem with support condition in ${\Omega}$ for forms of type (r, s), $s{\geqslant}q$ with values in $E^{{\otimes}m}$. Moreover, the solvability of the ${\bar{\partial}}_b$-problem on boundaries of weakly q-convex domains with smooth boundary in $K{\ddot{a}}hler$ manifolds are given. Furthermore, we shall establish an extension theorem for the ${\bar{\partial}}_b$-closed forms.

Ω-RESULT ON COEFFICIENTS OF AUTOMORPHIC L-FUNCTIONS OVER SPARSE SEQUENCES

  • LAO, HUIXUE;WEI, HONGBIN
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.5
    • /
    • pp.945-954
    • /
    • 2015
  • Let ${\lambda}_f(n)$ denote the n-th normalized Fourier coefficient of a primitive holomorphic form f for the full modular group ${\Gamma}=SL_2({\mathbb{Z}})$. In this paper, we are concerned with ${\Omega}$-result on the summatory function ${\sum}_{n{\leqslant}x}{\lambda}^2_f(n^2)$, and establish the following result ${\sum}_{\leqslant}{\lambda}^2_f(n^2)=c_1x+{\Omega}(x^{\frac{4}{9}})$, where $c_1$ is a suitable constant.

ON WEIGHTED WEYL SPECTRUM, II

  • Arora Subhash Chander;Dharmarha Preeti
    • Bulletin of the Korean Mathematical Society
    • /
    • v.43 no.4
    • /
    • pp.715-722
    • /
    • 2006
  • In this paper, we show that if T is a hyponormal operator on a non-separable Hilbert space H, then $Re\;{\omega}^0_{\alpha}(T)\;{\subset}\;{\omega}^0_{\alpha}(Re\;T)$, where ${\omega}^0_{\alpha}(T)$ is the weighted Weyl spectrum of weight a with ${\alpha}\;with\;{\aleph}_0{\leq}{\alpha}{\leq}h:=dim\;H$. We also give some conditions under which the product of two ${\alpha}-Weyl$ operators is ${\alpha}-Weyl$ and its converse implication holds, too. Finally, we show that the weighted Weyl spectrum of a hyponormal operator satisfies the spectral mapping theorem for analytic functions under certain conditions.

A GENERALIZATION OF ω-LINKED EXTENSIONS

  • Wu, Xiaoying
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.3
    • /
    • pp.725-743
    • /
    • 2022
  • In this paper, the concepts of ω-linked homomorphisms, the ω𝜙-operation, and DW𝜙 rings are introduced. Also the relationships between ω𝜙-ideals and ω-ideals over a ω-linked homomorphism 𝜙 : R → T are discussed. More precisely, it is shown that every ω𝜙-ideal of T is a ω-ideal of T. Besides, it is shown that if T is not a DW𝜙 ring, then T must have an infinite number of maximal ω𝜙-ideals. Finally we give an application of Cohen's Theorem over ω-factor rings, namely it is shown that an integral domain R is an SM-domain with ω-dim(R) ≤ 1, if and only if for any nonzero ω-ideal I of R, (R/I)ω is an Artinian ring, if and only if for any nonzero element α ∈ R, (R/(a))ω is an Artinian ring, if and only if for any nonzero element α ∈ R, R satisfies the descending chain condition on ω-ideals of R containing a.