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A GENERALIZATION OF w-LINKED EXTENSIONS

Xiaoying Wu

Abstract. In this paper, the concepts of w-linked homomorphisms, the

wφ-operation, and DWφ rings are introduced. Also the relationships

between wφ-ideals and w-ideals over a w-linked homomorphism φ : R→
T are discussed. More precisely, it is shown that every wφ-ideal of T is

a w-ideal of T . Besides, it is shown that if T is not a DWφ ring, then T
must have an infinite number of maximal wφ-ideals. Finally we give an

application of Cohen’s Theorem over w-factor rings, namely it is shown

that an integral domain R is an SM-domain with w-dim(R) ≤ 1, if and
only if for any nonzero w-ideal I of R, (R/I)w is an Artinian ring, if and

only if for any nonzero element a ∈ R, (R/(a))w is an Artinian ring, if

and only if for any nonzero element a ∈ R, R satisfies the descending
chain condition on w-ideals of R containing a.

1. Introduction

Throughout this paper, R denotes a commutative ring with identity. Let R
be an integral domain with quotient field K.

As is well known, an integral domain R is a Prüfer domain if and only if every
overring of R is integrally closed. In order to give a Prüfer-like characterization
of PVMDs (Prüfer v-multiplication domains), the concept of t-linked extensions
was introduced in [3]. Namely, let R ⊆ T ⊆ K be an extension. If J−1 = R
for a finitely generated (abbreviated to f.g.) nonzero ideal J of R implies that
(JT )−1 = T , then T is called a t-linked extension of R. By virtue of the concept
of t-linked extensions, Dobbs et al. proved that R is a PVMD if and only if
every t-linked overring of R is integrally closed. More generally, by the concept
of t-linked extensions in [2], the authors tried to learn the relationships between
the t-operation of R and t-operation of T in an extension R ⊆ T of rings. In
[2], the concept of t-linkative domains is introduced. An integral domain R is
said to be t-linkative if it satisfies that every extension ring of R is a t-linked
extension. In [12], a f.g. nonzero ideal J such that J−1 = R is called a GV-ideal
(Glaz-Vasconcelos ideal) by Wang et al., denoted by J ∈ GV(R), where GV(R)
is the set of all GV-ideals of R. Clearly, GV(R) is a multiplicative set of ideals
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of R. Let M be an R-module. Define

torGV(M) = {x ∈M | Jx = 0 for some J ∈ GV(R)}.
Therefore, torGV(M) is a submodule of M . And an R-module M is called a
GV-torsion-free module if whenever Jx = 0 for some J ∈ GV(R) and x ∈
M , one has x = 0. A GV-torsion-free module M is called a w-module if
Ext1R(R/J,M) = 0 for any J ∈ GV(R), and the w-envelope of M is the set
given by

Mw = {x ∈ E(M) | Jx ∈M for some J ∈ GV(R)},
where E(M) is the injective hull of M . Therefore, M is a w-module if and
only if Mw = M . For w-modules, readers are referred to [11]. Besides, in an
extension R ⊆ T (T not necessary in the quotient field K) of domains, if T as
an R-module is a w-module, then T is called a w-domain over R in [4]. In [10],
it is shown that T is a t-linked extension of R if and only if T is a w-domain
over R for any extension R ⊆ T (T not necessary in the quotient field K) of
domains. In [10], it is pointed out that R is a t-linkative domain if and only if
every ideal is a w-ideal, subsequently, Mimouni called it a DW domain in [9].
Also in [7], Kim studied it module-theoretically.

The Krull-Akizuki Theorem states that if R is a Noetherian domain with
dim(R) = 1, then every overring T of R is a Noetherian domain with dim(R) ≤
1. In 1976, this theorem was generalized to reduced Noetherian rings by Mati-
jevic. Namely, let R be a reduced Noetherian ring. Then every extension ring T
of R contained in the global transform is a Noetherian ring. In 1999, Wang and
McCsland in [4] generalized Krull-Akizuki Theorem to strong Mori domains.
That is, let R be an SM domain with w-dim(R) ≤ 1. Then they showed that
every t-linked overring T of R is an SM domain with w-dim(T ) ≤ 1. Park
proved a w-version of Krull-Akizuki Theorem over domain in 2002, that is, if R
is an SM domain, then the w-global transform of R is a w-overring, and every
w-overring of R contained in the w-global transform is also an SM domain. As
a corollary, she obtained the result of Wang and McCsland again. Yin et al. ob-
served that the w-operation has good torsion-theoretic properties. They in [15]
generalized the w-operation to commutative rings and introduced the concept
of w-Noetherian rings. In 2011, in order to gave a w-version of Krull-Akizuki
Theorem over commutative rings, Xie et al. in [14] unified t-linked extensions
over integral domains and w-domains into w-linked extensions. Let R ⊆ T
be an extension of rings. If T as an R-module is a w-module, then the ring
extension is called a w-linked extension. In [14], it is proved that: If R is a
reduced w-Noetherian ring, then every w-linked extension ring of R contained
in the w-global transform is a w-Noetherian ring. More properties of w-linked
extension, we can refer to [14].

Let R be a commutative ring and I be a w-ideal of R. Although the use of
“w-linked” can learn many properties of ring extensions, the experience of this
approach is rarely used for the natural ring homomorphism R→ R/I. Besides,
the discussion of factor rings in the star-operation theory is mostly avoided by
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researchers. The main reason is that there is not enough connection between
a star operation on R and the same star operation on the factor ring R/I.
Let R be an integral domain and let u ∈ R be a nonzero element. The a-
operation and the b-operation over a factor ring R/(u) are introduced by Costa
et al. in [1]. Let I = A/(u) be an ideal of R/(u). Define Ia := Ann(Ann(I))
and Ib :=

⋃
{Ja | where J runs over all the f.g. ideals of I}. So Ia = Av/(u)

and Ib = At/(u). Although the a-operation and the b-operation over R/(u)
correlate well with the v-operation and the t-operation over R respectively,
they are different from the v-operation and the t-operation of commutative
rings with zero divisor, which Kang et al. discussed in [5, 6].

As is well known, the w-linked extension can well describe the relationship
between the w-operators on R and T . In order for the “w-linked” idea to play
a role in the discussion of the factor ring R/I, we introduce the concept of the
w-linked homomorphism. Let φ : R→ T be a ring homomorphism. If T as an
R-module is a w-module, then φ is called a w-linked homomorphism. Many
classical theorems can have natural w-version representations with the help of
the w-linked homomorphism. For example, let R be an integral domain, in
1950, Cohen proved that R is a Noetherian ring with dim(R) ≤ 1, if and only
if R/I is an Artinian ring for every nonzero proper ideal I of R, if and only
if R/(a) is an Artinian ring for every nonzero and non-unit element a of R.
In 1999, Wang et al. in [4] gave a w-version of Cohen’s Theorem: An integral
domain R is an SM domain with w-dim(R) ≤ 1, if and only if for any nonzero
w-ideal I of R, every descending chain on w-ideals of R containing I stabilizes.
In this paper, by virtue of the concept of w-linked homomorphisms, the “w-
linked” idea plays an important role in the discussion of the factor ring R/I.
As is well known, a ring R is said to be local if R has only one maximal ideal.
If every ideal of R is a w-ideal, then R is said to be a DW ring. However,
the w-operation does not play a role over DW rings, so the naturally arising
question if R isn’t a DW ring, whether we can introduce a local w-ring, which
has only one maximal w-ideal, but in this paper, according to Theorem 3.11
and Corollary 3.12, we get that it can’t come true. Namely, let φ : R → T be
a w-linked homomorphism. Let T be not a DWφ ring. Then T must have an
infinite number of maximal wφ-ideals. And let R be not a DW ring. Then R
must have an infinite number of maximal w-ideals. Moreover, let R be a ring,
let I be a proper w-ideal of R, and let R = R/I, φ : R → Rw is a natural
w-linked homomorphism, where Rw is a w-factor ring of R. By virtue of the
concept of w-factor rings, we give an application of Cohen’s Theorem over w-
factor rings, namely, we give a new characterization of an SM domain with
w-dim(R) ≤ 1: Let R be an integral domain. Then R is an SM-domain with
w-dim(R) ≤ 1, if and only if for any nonzero w-ideal I of R, Rw is an Artinian
ring, if and only if for any nonzero element a ∈ R, (R/(a))w is an Artinian
ring, if and only if for any nonzero element a ∈ R, R has the descending chain
condition on w-ideals of R containing a.
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Undefined terms and terminology are standard as in [11,14].

2. The ring of finite fractions

Let R be a ring and let x be an indeterminate. For f(x) =
∑n
i=0 dix

i ∈ R[x],
we denote c(f) := (d0, d1, . . . , dn). Recall that an ideal A of R is called a
semiregular ideal if Ann(I) = 0 for some f.g. subideal I of A. It is easy to see
that the set of f.g. semiregular ideals of R is a multiplicative system of ideals
of R.

Lemma 2.1. Let f(x) =
∑n
i=0 dix

i ∈ R[x].

(1) Let M be an R-module. If f(x) is a zero-divisor of M [x], then f(x)u =
0 for some u ∈M with u 6= 0.

(2) f(x) is a non-zero-divisor of R[x] if and only if c(f) is a semiregular
ideal.

Proof. (1) Suppose f(x) is a zero-divisor of M [x]. Then we may choose g(x) ∈
M [x] with g(x) 6= 0 such that f(x)g(x) = 0 and the degree of g(x) is minimal.
Write g(x) =

∑m
j=0 bjx

j ∈M [x], where bj ∈M , bm 6= 0. Then

f(x)g(x) = bmdnx
m+n + (bmdn−1 + bm−1dn)xm+n−1 + · · · = 0,

and thus bmdn = 0. Hence bmf(x) = 0. If not and let dk be the first coefficient
of f(x) such that bmdk 6= 0, then bmdn = 0, bmdn−1 = 0, . . . , bmdk+1 = 0.
Since (dig(x))f(x) = 0, deg(dig(x)) < deg(g(x)), and the degree of g(x) is
minimal, we have dig(x) = 0, i = n, n− 1, . . . , k + 1. Write

f(x) = (dnx
n + · · ·+ dk+1x

k+1) + (dkx
k + · · ·+ d0) = f1(x) + f2(x).

Since g(x)f(x) = g(x)f1(x) + g(x)f2(x) = 0 and g(x)f1(x) = 0, we have
bmdk = 0, which is a contradiction. Therefore bmf(x) = 0. So let u := bm ∈M .
Then f(x)u = 0 with u 6= 0.

(2) Suppose f(x) is a zero-divisor of R[x]. If a ∈ R with ac(f) = 0, then
af(x) = 0. Hence a = 0. Therefore c(f) is a semiregular ideal of R.

Conversely, suppose c(f) is a semiregular ideal of R and g(x) ∈ R[x] such
that g(x)f(x) = 0. If g(x) 6= 0, then according to [11, Theorem 1.7.7], there
exists a ∈ R with a 6= 0 such that af(x) = 0. Then ac(f) = 0, and so a = 0, a
contradiction. Therefore f(x) is a non-zero-divisor of R[x]. �

Set

Q0(R) := {α ∈ T (R[x]) | Iα ⊆ R for some f.g. semiregular ideal I of R}.

Then Q0(R) is an extension ring of R contained in T (R[x]). Hence Q0(R) is
called a ring of finite fractions of R. By [8], the element α of Q0(R) can be

written as α =
∑n
i=0 aix

i∑n
i=0 bix

i , where ai, bi ∈ R, (b0, b1, . . . , bn) is an semiregular

ideal, and aibj = ajbi for any i, j. Clearly T (R) ⊆ Q0(R) and Q0(R) is the
quotient field of R when R is an integral domain.
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Let f(x) =
∑n
i=0 aix

i ∈ R[x]. If c(f) ∈ GV(R), then f(x) is called a
GV-polynomial. When R is a GCD domain, a GV-polynomial is a primitive
polynomial. Now let

Sw = {f ∈ R[x] | f is a GV-polynomial}.

According to [11], Sw is a multiplicative closed set, that is, the product of two
GV-polynomials is a GV-polynomial. Write R{x} = R[x]Sw .

Let B be a nonempty subset of Q0(R). We define

B−1 = {y ∈ Q0(R) | yB ⊆ R}.

Hence B−1 is an R-submodule of Q0(R). If (B) represents the submodule
generated by B, then clearly B−1 = (B)−1.

Lemma 2.2. (1) Let α =
∑n
i=0 aix

i∑n
i=0 bix

i ∈ Q0(R). If some bk = 0, then we can

get ak = 0.
(2) Let T ′ be an extension ring of R contained in Q0(R). Then Q0(T ′) =

Q0(R). Specially, Q0(Q0(R)) = Q0(R).
(3) Let J be a f.g. semiregular ideal of R. Then J ∈ GV(R) if and only if

J−1 = R.
(4) Q0(R) ∩R{x} = R.

Proof. (1) If bk = 0, then biak = bkai = 0 for any i = 0, 1, . . . , n. Since
J := (b0, b1, . . . , bn) is a semiregular ideal, we have ak = 0.

(2) Let A be a subring of T (R[x]) generated by T ′ and x. If
∑n
i=0 αix

i = 0
in T (R[x]), where αi ∈ T ′, by [11, Theorem 6.6.7], we have αi = 0 for any
i = 0, 1, . . . , n. Therefore x is an indeterminate over T ′ and A ∼= T ′[x]. Thus
we can suppose T (T ′[x]) = T (R[x]).

Let I be a f.g. semiregular ideal of R. By Lemma 2.1(2), IT ′ is also a
f.g. semiregular ideal of T ′, and thus Q0(R) ⊆ Q0(T ′).

Let α ∈ Q0(T ′). Then there exists a f.g. semiregular ideal A of T ′ such that
Aα ⊆ T ′. Denoted by {β1, . . . , βn} a generating set of A. Thus βiα ∈ T ′. Hence
there exists a f.g. semiregular ideal I of R such that Iβi ⊆ R and Iβiα ⊆ R.
Set B = Rβ1 + · · ·+Rβn. Then IB is a semiregular ideal of R and IBα ⊆ R.
Hence α ∈ Q0(R). Therefore Q0(T ′) ⊆ Q0(R).

(3) This follows from [11, Proposition 6.6.8].

(4) Clearly R ⊆ Q0(R) ∩ R{x}. Let α = a(x)
b(x) = c(x)

d(x) , where a(x) =∑n
i=0 aix

i, b(x) =
∑n
i=0 bix

i, c(x) =
∑m
k=0 ckx

k, d(x) =
∑s
l=0 dlx

l are poly-
nomials over R, and for any i, i′, we have aibi′ = ai′bi, (b0, b1, . . . , bn) is a
semiregular ideal, and (d0, d1, . . . , ds) ∈ GV(R). For i = 0, 1, . . . , n, we have

biα = ai = bi
c(x)
d(x) , and hence d(x)ai = bic(x). So we can suppose s = m and

bicj = djai for any j. Therefore we also have dkbicj = dkdjai = djbick for any
k. Hence we have bi(dkcj−djck) = 0 for any i = 0, 1, . . . , n. So dkcj = djck for
any j, k, and thus dkα = ck ∈ R for any k = 0, 1, . . . ,m. Therefore α ∈ R. �
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Lemma 2.3. Let φ : R → T be a ring homomorphism, f(x) =
∑n
i=0 dix

i ∈
R[x] be a GV-polynomial and M be a T -module such that M as an R-module
is a GV-torsion-free module. Then φ(f) is not a zero-divisor of M [x], φ(f) is
satisfied that φ(di) = di, i = 1, . . . , n.

Proof. If there exists α ∈ M [x] with α 6= 0 such that φ(f)α = 0, then by
Lemma 2.1, we can assume that α ∈ M . Thus diα = φ(di)α = 0 for any
i = 0, 1, . . . , n. Since M is a GV-torsion-free R-module, we have α = 0, which
is a contradiction. Therefore φ(f) is not a zero-divisor of M [x]. �

Let φ : R→ T be a ring homomorphism. Let

Sφ = {φ(f) ∈ T [x] | f ∈ R[x] is a GV-polynomial}.
Obviously the induced map Sw → Sφ by φ is a surjection.

Lemma 2.4. Let φ : R → T be a ring homomorphism. Then Sφ is a multi-
plicatively closed set of T [x].

Proof. This follows from the facts that Sw is a multiplicatively closed set of
R[x] and φ : Sw → Sφ is a surjection. �

In [16], Zhou, Kim and Hu provided an element-wise characterization of
w-modules [16, Lemma 3.1 and Theorem 3.3] and proved that (R/I)w as the
natural w-version of the factor ring R/I is also a ring, where I is a w-ideal of R
[16, Remark 3.4]. Next we will obtain more general results and properties than
theirs by considering ring homomorphisms. Although the proof is essentially
the same as in [16], we give a proof for completeness.

Proposition 2.5. Let φ : R → T be a ring homomorphism, where T as an
R-module is a GV-torsion-free module. Let M be a T -module and let M as an
R-module be a GV-torsion-free module. Then the following statements hold.

(1) Mw =

{ ∑n
i=0 uix

i∑n
i=0 φ(di)x

i ∈ M [x]Sφ |
∑n
i=0 dix

i is a GV-polynomial and

φ(di)uj = φ(dj)ui for any i, j

}
.

(2) T [x]Sφ ⊆ Q0(T ) and Tw is a subring of T [x]Sφ containing T .
(3) Mw is a Tw-module. Therefore M is a Tw-module when M is a w-

module.
(4) Let A be a T -submodule of M . Then Aw is a Tw-submodule of Mw.

Especially, if A is an ideal of T , then Aw is an ideal of Tw.
(5) Q0(Tw) = Q0(T ) and Q0(T ) as an R-module is a w-module.
(6) Let T be an integral domain. Then Tw ⊆ qf(T ), and

Tw = {z ∈ qf(T ) | Jz ⊆ T for some J ∈ GV(R)}
=
⋂
{Tm | m ∈ w-Max(R) and ker(φ) ⊆ m}.

Proof. (1) Let H be the righthand side of (1). Let y ∈ H with y 6= 0. Write

y =
∑n
i=0 uix

i∑n
i=0 φ(di)x

i , where ui ∈ M , di ∈ R, i = 0, 1, . . . , n, f(x) =
∑n
i=0 dix

i
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is a GV-polynomial. Then dky =
∑n
i=0 φ(dk)uix

i∑n
i=0 φ(di)x

i = uk ∈ M . Since M is a

GV-torsion-free R-module, we have (d0, d1, . . . , dn)y 6= 0. Therefore H is an
essential extension of M , and so H ⊆ E(M). By the same process as above,
H ⊆Mw is also obtained.

On the other hand, when y ∈Mw, there exists J = (d0, d1, . . . , dn) ∈ GV(R)
such that Jy ⊆ M . Write dky = uk and let f(x) =

∑n
i=0 dix

i. Then f(x)y =∑n
i=0 uix

i ∈M [X]. Therefore y =
∑n
i=0 uix

i∑n
i=0 φ(di)x

i ∈M [X]Sφ . Since dky = uk, we

have dkui = dkdiy = didky = diuk for any i and k, that is φ(dk)ui = φ(di)uk.
Therefore Mw ⊆ H. So we get H = Mw.

(2) Let y, z ∈ Tw. Then there exist J1, J2 ∈ GV(R) such that J1y, J2z ⊆ T .
Thus J1J2yz ∈ T , and so yz ∈ Tw. Thus Tw is a multiplicatively closed set of
T [x]Sφ . Therefore Tw is a subring of T [x]Sφ .

(3) Let h =
∑n
i=0 bix

i∑n
i=0 φ(di)x

i ∈ Tw, y =
∑m
j=0 ujx

j∑m
j=0 φ(cj)x

j ∈ Mw, where bi ∈ T ,

uj ∈ M , J1 := (d0, d1, . . . , dn) and J2 := (c0, c1, . . . , cm) are GV-ideals of R.
Since dibj = djbi for any i, j, and csut = ctus for any s, t, it is easy to see that

hy =

n+m∑
k=0

(
∑

i+j=k

biuj)x
k

n+m∑
k=0

(
∑

i+j=k

φ(dicj))xk
∈Mw.

Therefore Mw is a Tw-module.
(4) This is obtained directly from (3).
(5) By Lemma 2.2(2), we can get Q0(Tw) = Q0(T ). To prove that Q0(T ) is a

w-R-module, let T as an R-module be a w-module. According to [11, Theorem
6.6.6](3), Q0(T ) is a w-T -module. By Theorem 3.3, Q0(T ) is a w-R-module.

(6) Let y =
∑n
i=0 aix

i∑n
i=0 φ(di)x

i ∈ Tw, where ai ∈ T . Then φ(dk) 6= 0 for some k,

and so λk := ak
φ(dk)

∈ qf(T ). Since ai = di
ak

φ(dk)
for i = 0, 1, . . . , n, it follows

that y = λk ∈ qf(T ).
Write H1 = {z ∈ qf(T ) | Jz ⊆ T for some J ∈ GV(R)}. Since T is an

integral domain, we have Q0(T ) = qf(T ). By Proposition 2.5(5), qf(T ) is a
w-R-module. Thus Tw = H1.

Write H =
⋂
{Tm | m ∈ w-Max(R) and ker(φ) ⊆ m}. Since T is an integral

domain, it follows that T ⊆ Tm ⊆ qf(T ) for a maximal ideal m of R. Therefore
T ⊆ H. Since every Tm is a w-R-module, H is a w-R-module. Therefore
Tw ⊆ H.

Conversely, suppose z ∈ H. Let I = {r ∈ R | rz ∈ Tw}. Then I is a w-ideal
of R containing ker(φ). Since z ∈ Tm for any maximal w-ideal m of R with
ker(φ) ⊆ m, there exists s ∈ R\m such that sz ∈ T . Thus s ∈ I. Hence I 6⊆ m.
Thus I = R. So we get z ∈ Tw. �
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Proposition 2.6. Let φ : R → T be a ring homomorphism, where T is a
GV-torsion-free R-module. Let P be a prime ideal of T . Then the following
statements hold.

(1) If φ−1(P ) is a w-ideal of T , then Pw 6= Tw.
(2) If Pw 6= Tw, then Pw is a prime ideal of Tw and Pw ∩ T = P .
(3) If Pw 6= Tw and P1 is a prime ideal of Tw such that P1 ⊆ Pw and

P1 ∩ T = P , then P1 = Pw.

Proof. (1) If Pw 6= Tw, then J ⊆ P for some J ∈ GV(R). Thus J ⊆ P ∩ R, a
contradiction.

(2) Suppose x ∈ Pw ∩ T . Then Jx ⊆ P for some J ∈ GV(R). Since J * P ,
we have that Pw ∩ T = P .

(3) Suppose x, y ∈ Tw, xy ∈ Pw. Then J1x ⊆ T , J2y ⊆ T for J1, J2 ∈
GV(R). Hence Jxy ⊆ P for some J = J1J2 ∈ GV(R), and Jx ⊆ P or Jy ⊆ P ,
therefore x ∈ Pw or y ∈ Pw. �

3. w-linked homomorphisms and the wφ-operation

We begin this section by introducing the concept of w-linked homomor-
phisms.

Definition 3.1. Let φ : R→ T be a ring homomorphism. If T as an R-module
is a w-module, then φ is called a w-linked homomorphism.

Clearly the identity homomorphism 1 : R→ R is a w-linked homomorphism.
Recall that a ring extension R ⊆ T is said to be w-linked if T as an R-module
is a w-module. In this case, the inclusion map λ : R → T is a w-linked
homomorphism.

For a ring homomorphism φ : R → T , there are w-operations on R and T ,
respectively. For a T -module N , we denote by Nw the w-envelope of N as an
R-module and by NW the w-envelope of N as a T -module.

Lemma 3.2. Let φ : R → T be a ring homomorphism, J ∈ GV(R), L be a
T -module, and let L as an R-module be a GV-torsion-free module. Then the
following statements hold.

(1) HomT (JT, L) ∼= HomT (T ⊗R J, L).
(2) Ext1T (T/JT, L) ∼= Ext1R(R/J,L).

Proof. (1) Let 0 → A → J ⊗R T
f→ JT be an exact sequence of R-modules,

where A = ker(f). Then we have the following exact sequence:

0→ Am → (J ⊗R T )m
fm→ (JT )m,

where m is a maximal w-ideal of R. Since (J ⊗R T )m = Jm⊗Rm
Tm = Rm⊗Rm

Tm = Tm, we have (JT )m = JmTm = Tm. Then fm is an isomorphism, and thus
Am = 0. Therefore A is a GV-torsion module. Since L is a GV-torsion-free
R-module and HomT (A,L) = 0, we have the following exact sequence:

0→ HomT (JT, L)→ HomT (J ⊗R T, L)→ HomT (A,L) = 0.
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Therefore HomT (JT, L) ∼= HomT (J ⊗R T, L).
(2) Let 0 → J → R → R/J → 0 and 0 → JT → T → T/JT → 0 be short

exact sequences. Consider the following commutative diagram with exact rows:

HomR(T, L)

g
��

// HomR(JT, L)

h
��

// Ext1R(T/JT , L)

��

// 0

HomT (R,L) // HomT (J, L) // Ext1T (R/J,L) // 0

By Lemma 3.2(1), we can get:

HomT (JT, L) ∼= HomT (J ⊗R T, L) ∼= HomR(J,HomT (T, L)) = HomR(J, L),

i.e., h is an isomorphism. It is easy to see that g is also an isomorphism. So in
the above commutative diagram, by Five Lemma we can get Ext1T (T/JT, L) ∼=
Ext1R(R/J,L). �

Theorem 3.3. Let φ : R → T be a ring homomorphism, where T as an R-
module is a GV-torsion-free module. Then the following statements are equiv-
alent.

(1) φ(I)w ⊆ (IT )W for any ideal I of R.
(2) (IwT )W = (IT )W for any ideal I of R.
(3) φ−1((IT )W ) is a w-ideal of R for any ideal I of R.
(4) φ−1(A) is a w-ideal of R for any w-ideal A of T .
(5) φ−1(P ) is a w-ideal of R for any prime w-ideal P of T .
(6) If J ∈ GV(R), then JT = φ(J)T ∈ GV(T ).
(7) φ is a w-linked homomorphism.
(8) Let L be a T -module. If L as a T -module is a w-module, then L as an

R-module is a w-module.
(9) Let L be a T -module. If L as a T -module is a GV-torsion-free module,

then L as an R-module is a GV-torsion-free module.
(10) Let L be a T -module. If L as an R-module is a GV-torsion-free module,

then L is a GV-torsion T -module.

Proof. (1)⇒(2) Since φ(I)w ⊆ (IT )W , it follows that

(IwT )W ⊆ (φ(I)wT )W ⊆ ((IT )WTW )W = (IT )W .

(2)⇒(6) Let J ∈ GV(R). Then Jw = R, and so T = (JwT )W = (JT )W .
Therefore JT ∈ GV(T ).

(6)⇒(1) Let z ∈ T and z ∈ φ(I)w. Then there exists J ∈ GV(R) such
that Jz ⊆ φ(I). Since JTz ⊆ IT , by the hypothesis JT ∈ GV(T ), and so
z ∈ (IT )W . Hence φ(I)w ⊆ (IT )W .

(6)⇒(8) By the hypothesis, L is a GV-torsion-free R-module. Let J ∈
GV(R). Then by Lemma 3.2, we can get Ext1R(R/J,L) ∼= Ext1T (T/JT, L) = 0.
Therefore L as an R-module is a w-module.

(8)⇒(7) Take L := T . Then T as an R-module is a w-module, i.e., φ is a
w-linked homomorphism.
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(7)⇒(6) Let J ∈ GV(R). By Lemma 3.2, there exists an isomorphism

Ext1T (T/JT, T ) ∼= Ext1R(R/J, T ) = 0,

and hence JT ∈ GV(T ).
(8)⇒(4) Write I := φ−1(A). Since φ(Iw) ⊆ φ(I)w ⊆ Aw = A, we have

Iw ⊆ φ−1(A) = I, and hence I is a w-ideal of R.
(4)⇒(3) By letting A := (IT )W , we can get the conclusion.
(3)⇒(6) Let J ∈ GV(R). Then Jw = R. Hence R ⊆ φ−1((JT )W ) by

assumption. Since 1 = φ(1) ∈ (JT )W , we have (JT )W = T , namely JT ∈
GV(T ).

(4)⇒(5) This is clear.
(5)⇒(6) Let J ∈ GV(R) and suppose that JT 6∈ GV(T ). Then (JT )W 6= T ,

and so there exists a w-prime ideal P of T such that (JT )W ⊆ P . Hence
J ⊆ φ−1(P ), since φ−1(P ) is a w-prime ideal of R, a contradiction.

(8)⇒(9) By the hypothesis, LW is a w-module over R. Therefore L is a
GV-torsion-free R-module.

(9)⇒(10) Set A = {z ∈ L | Jz = 0 for some J ∈ GV(T )}. Then L/A is a
GV-torsion-free T -module. By the hypothesis, L/A is a GV-torsion R-module.
Then L/A = 0, namely, L = A. Therefore L is a GV-torsion T -module.

(10)⇒(6) Let J ∈ GV(R). Then R/J is a GV-torsion R-module. From the
natural isomorphism T⊗R(R/J) ∼= T/JT , it follows that T/JT is a GV-torsion
R-module. By the hypothesis, T/JT is a GV-torsion T -module. Therefore
JT ∈ GV(T ). �

Let φ : R → T be a w-linked homomorphism. Let A be a T -module. It is
easy to see that torGV(A) is a T -submodule of A. When A is an ideal of T , the
mapping wφ : A 7→ Aw gives a w-liked operation over T , which is called the
wφ-operation. If an ideal A of T satisfies Aw = A, then we call A a wφ-ideal.
By Theorem 3.3, GV(φ) := {JT | J ∈ GV(R)} ⊆ GV(T ). Thus there exists
the relationship of operations wφ 6 w over T .

Accordingly let N be a T -module and let N as an R-module be a w-module.
Then we also call N a wφ-T -module.

Proposition 3.4. Let φ : R → T be a w-linked homomorphism. Then the
following statements hold.

(1) Let P be a prime ideal of T . Then P is a wφ-ideal of T if and only if
Pw 6= T .

(2) Let A be a wφ-ideal of T . Then A = ∪Bw, where B runs over all the
f.g. subideals of A.

(3) Let A be a wφ-ideal of T . Then there exists a maximal wφ-ideal M of
T such that A ⊆M .

(4) Every maximal wφ-ideal of T is prime.
(5) AnnT (y) is a wφ-ideal of T for any y ∈ T .
(6) Let M be a T -module. Then M as an R-module is a GV-torsion module

if and only if Mm = 0 for any maximal wφ-ideal m of T .
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Proof. The proof is similar to the w-module case in [11]. �

Theorem 3.5. Let φ : R→ T be a w-linked homomorphism. Then the follow-
ing statements are equivalent.

(1) Every wφ-ideal of T is also a w-ideal of T , in other words, wφ = w
over T .

(2) Every maximal wφ-ideal of T is also a maximal w-ideal of T .
(3) Let J ∈ GV(T ). Then there exists I ∈ GV(R) such that φ(I) ⊆ J .
(4) Let M be a T -module. If M as an R-module is a GV-torsion-free

module, then M is a GV-torsion-free T -module.
(5) Let M be a T -module. If M as an R-module is a w-module, then M is

a w-T -module.
(6) Let M be a T -module. If M as a T -module is a GV-torsion module,

then M is also a GV-torsion R-module.
(7) Let N be a T -module that is a GV-torsion-free R-module. Then

HomR(T,N) is a GV-torsion-free T -module.
(8) Let N be a T -module that is a w-module over R. Then HomR(T,N) is

a w-module over T .

Proof. (1)⇒(2) This is clear.
(2)⇒(3) Suppose that Jw 6= T . Then there exists a maximal wφ-ideal P of

T such that J ⊆ P . By the hypothesis, P is also a maximal w-ideal of T . Thus
JW 6= T , a contradiction to the fact that J ∈ GV(T ).

Now since Jw = T , we have 1 ∈ Jw. Hence there is I ∈ GV(R) such that
φ(I) = I1 ⊆ J .

(3)⇒(4) Let J ∈ GV(T ), z ∈ M , Jz = 0. Let I ∈ GV(R) such that
φ(I) ⊆ J . Then Iz = 0. Since M is a GV-torsion-free R-module, we have that
z = 0. Therefore M is a GV-torsion-free T -module.

(4)⇒(5) Let E be the injective hull of M , where M is a T -module. Since M
is a w-R-module, by the hypothesis, M is a GV-torsion-free T -module. Hence
E is a w-T -module. By Theorem 3.3, we can get E is also a w-R-module.

Consider the exact sequence 0 → M → E → E/M → 0. Since M is
a w-R-module, according to [11, Theorem 6.1.17], E/M is a GV-torsion-free
R-module. By the hypothesis, E/M is a GV-torsion-free T -module. By [11,
Theorem 6.1.17], M is a w-T -module.

(5)⇒(1) This is easy.
(3)⇒(6) Let z ∈ M . Since M is a GV-torsion T -module, there exits J ∈

GV(T ) such that Jz = 0. By the hypothesis, there exists I ∈ GV(R) such that
I ⊆ J . Thus we can get Iz = 0. Therefore M is also a GV-torsion R-module.

(6)⇒(2) Let P be a maximal wφ-ideal of T . Then T/P as an R-module is
a GV-torsion-free module. If P is not a maximal w-ideal of T , then T/P is a
GV-torsion T -module, which is a contradiction.

(4)⇒(7) By [11, Proposition 6.1.10], HomR(T,N) is a GV-torsion-free R-
module. By the hypothesis, HomR(T,N) is a GV-torsion-free T -module.
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(7)⇒(2) Let P be a maximal wφ-ideal of T . Then T/P is a GV-torsion-free
R-module. By the hypothesis, HomR(T, T/P ) is a GV-torsion-free T -module.
Consider the exact sequence 0 → HomR(T/P, T/P ) → HomR(T, T/P ). Then
HomR(T/P, T/P ) is also a GV-torsion-free T -module. If P is not a maximal w-
ideal of T , then there exists J ∈ GV(T ) such that J ⊆ P . Use 1 to denote the
identity mapping over T/P . Then in HomR(T/P, T/P ), we have that J1 =
0. Hence T/P is not a GV-torsion-free T -module, which is a contradiction.
Therefore P is a maximal w-ideal of T .

(7)⇒(8) Let E be the injective hull of N . Let C = E/N . Then E is a
w-module. By [11, Theorem 6.1.17], C is a GV-torsion-free module. Consider
the following exact sequence:

0 −→ HomR(T,N) −→ HomR(T,E) −→ HomR(T,C).

By the hypothesis, HomR(T,E) and HomR(T,C) are GV-torsion-free T -mod-
ules. Notice that HomR(T,E) is also an injective T -module. Hence HomR(T,N)
is a w-module over T .

(8)⇒(7) Let E be the injective hull of N . Then E is a w-module. By the
hypothesis, HomR(T,E) is a w-module. Since HomR(T,N) is a submodule of
HomR(T,E), it follows that HomR(T,N) is a GV-torsion-free T -module. �

Recall that a ring R is said to be a DW ring if every ideal of R is a w-ideal.
Clearly if dim(R) = 0, then R is a DW ring. Accordingly we can define DWφ

rings.

Definition 3.6. Let φ : R → T be a w-linked homomorphism. If every ideal
of T is a wφ-ideal, namely it as an R-module is a w-module, then T is called a
DWφ ring.

Lemma 3.7. Let M be a GV-torsion module. Then there exists a continuous
ascending chain of submodules of M

0 = M0 ⊆M1 ⊆ · · · ⊆Mα ⊆Mα+1 ⊆ · · · ⊆Mτ = M

such that Mα+1/Mα is a cyclic GV-torsion module for each ordinal α.

Proof. Set M0 := 0. Considering an element x ∈M with x 6= 0, M1 := Rx is a
cyclic GV-torsion module. For a given ordinal α, by induction hypothesis, we
may assume that Mβ meets the conditions for all β < α. If Mβ = M , then the
chain terminates. Otherwise, when α is not a limit ordinal number, consider
an element y ∈ M \ Mα−1 and set Mα := Mα−1 + Ry. Then Mα/Mα−1
is a cyclic GV-torsion module. And when α is a limit ordinal number, set
Mα :=

⋃
β<αMβ . By transfinite induction, the assertion follows. �

Recall that an R-module N is said to be a strong w-module if ExtkR(R/J,N)
= 0 for any J ∈ GV(R) and for any k > 1. For the discussion about strong
w-modules, we can refer to [13].
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Theorem 3.8. Let φ : R→ T be a w-linked homomorphism. Then the follow-
ing statements are equivalent.

(1) T is a DWφ ring.
(2) Every prime ideal of T as an R-module is a w-module.
(3) Every maximal ideal of T as an R-module is a w-module.
(4) GV(φ) = {T}, in other words, if J ∈ GV(R), then JT = T .
(5) Every f.g. ideal of T as an R-module is a w-module.
(6) Every T -module as an R-module is a GV-torsion-free module.
(7) Every cyclic T -module as an R-module is a GV-torsion-free module.
(8) Every T -module as an R-module is a w-module.
(9) Every cyclic T -module as an R-module is a w-module.

(10) Every T -module as an R-module is a strong w-module.
(11) T ⊗R R1 = 0 for any cyclic GV-torsion R-module R1.
(12) T ⊗R R1 = 0 for any GV-torsion R-module R1.
(13) Let ξ : 0 → A → B → C → 0 be a sequence of T -modules. If ξ is a

w-exact sequence of R-modules, then ξ is already an exact sequence.

Proof. (1)⇒(2)⇒(3)⇒(4) Trivial.
(4)⇒(6) Let N be a T -module, J ∈ GV(R), z ∈ M , Jz = 0. Then Tz =

JTz = 0. Thus z = 0. Therefore N is a GV-torsion-free R-module.
(6)⇒(10) Let J ∈ GV(R) and k > 1 an integer. Then ExtkR(R/J,N) is

a GV-torsion R-module. By the condition that ExtkR(R/J,N) is also a GV-

torsion-free R-module, we have ExtkR(R/J,N) = 0. Therefore N is a strong
w-R-module.

(10)⇒(9)⇒(8)⇒(7) Trivial.
(7)⇒(5) Let I = (a1, . . . , an) be an ideal of T . Use the method of induction

on n. When n = 1, this is the hypothesis. When n > 1, let I1 = (a1, . . . , an−1).
Then according to the exact sequence 0 → I1 → I → I/I1 → 0 and the fact
that I1 and I/I1 are w-modules, we can get I is a w-module.

(5)⇒(1) Let I be an ideal of T . Then I =
⋃
I0, where I0 runs over all

f.g. ideals of R. By the hypothesis, we can get I is also a w-module.
(4)⇒(11) Let R1 = Rx be a cyclic GV-torsion module. Then Rx ∼= R/I for

some ideal I of R. Since Rx is a GV-torsion module, we have Iw = R. So there
exists J ∈ GV(R) such that J ⊆ I. Thus R/J → T → 0 is an exact sequence.
Therefore we can get T ⊗R R1 = 0 by tensoring with T .

(11)⇒(12) According to transfinite induction and Lemma 3.7, we can finish
the proof.

(12)⇒(4) Let R1 = R/J for any J ∈ GV(R). Then applying the known
condition, we can get the conclusion.

(8)⇒(13) By [11, Theorem 6.3.5], 0 → A → B → C is an exact sequence.
Let g : B → C be a given homomorphism. Since g is a w-epimorphism, we
have Im(g) = Im(g)w = C. Hence g is also an epimorphism, and so ξ is also
an exact sequence.
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(13)⇒(6) Let N be a T -module and let L = torGV(N). Then T as an R-
module is a GV-torsion module. So 0→ L→ 0 is a w-exact sequence. It follows
the assumption that L = 0. Hence N is a GV-torsion-free R-module. �

Corollary 3.9. Let φ : R→ T be a w-linked homomorphism.

(1) Let T be a DWφ ring. Then dim(T ) = wφ- dim(T ).
(2) Let T be a DW ring. Then T is a DWφ ring.

Proof. (1) This follows from Theorem 3.8(2).
(2) This follows from the fact that GV(φ) ⊆ GV(T ) = {T}. �

Example 3.10. (1) Let R be a DW ring. Then any ring homomorphism
φ : R→ T is a w-linked homomorphism and T is a DWφ ring.

(2) Let m be a maximal w-ideal of R and let φ : R → Rm be a natural
homomorphism. Then by [11, Proposition 6.2.18], Rm is a DWφ ring.

(3) Let R{x} be the Nagata ring of R and let φ : R → R{x} be a natural
homomorphism. By [11, Theorem 6.6.17], R{x} is a DW ring, and so R{x} is
a DWφ ring.

(4) Let R be an integral domain but not a field. Let K be the quotient field
of R and let φ : R → K be an including homomorphism. Then K is a DWφ

ring. So we can notice that even if T is a DWφ ring, R is not necessary a DW
ring.

(5) The converse of Corollary 3.9 is not necessarily true. For example, let R
be a DW domain but not a field. Let φ : R→ R[x] be an inclusion homomor-
phism. By Corollary 3.9, the polynomial ring R[x] is a DWφ ring. Let a ∈ R
be a nonzero and nonunit. Then J = (a, x) ∈ GV(R[x]). Therefore R[x] is not
a DW ring.

(6) Let φ : R→ R[x] be an inclusion homomorphism and let R be not a DW
ring. Then there exists a maximal ideal A of R such that A isn’t a w-ideal. So
A[x] as an R-module is not a w-module. Therefore a polynomial ring extension
is not a DWφ ring in general.

Recall that a ring R is said to be local if R has only one maximal ideal.
However, the w-operation does not play a role over DW rings. So if R isn’t
a DW ring, we can introduce a local w-ring, which has the only one maximal
w-ideal, but by the next theorem and corollary, we can see that it can’t come
true.

Theorem 3.11. Let φ : R → T be a w-linked homomorphism. Let T be a
non-DWφ ring. Then T must have an infinite number of maximal wφ-ideals.

Proof. Since T is not a DWφ ring, by Theorem 3.8, there exists a maximal wφ-
idealM1 of T such thatM1 is not a maximal ideal of T . Suppose on the contrary
that T has only a finite number of maximal wφ-ideals, say M1,M2, . . . ,Mn. Let
P be a maximal ideal containing M1. Then P is not a wφ-ideal. According to
Prime Avoidance Theorem, P 6⊆

⋃n
i=1Mi. Let y ∈ P \

⋃n
i=1Mi.
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If y is a non-zero-divisor of T , then Ty is a proper wφ-ideal of T . If y is a
zero-divisor of R, then AnnT (y) 6= 0, and so Ty ⊆ AnnT (Ann(y)) 6= T . By
Proposition 3.4, AnnT (Ann(y)) is a wφ-ideal of T . By Proposition 3.4 again,
there exists a maximal wφ-ideal M of T such that Tx ⊆M . Clearly M 6= Mi,
i = 1, 2, . . . , n, which is a contradiction. �

Corollary 3.12. Let R be a non-DW ring. Then R must have an infinite
number of maximal w-ideals.

Proof. The assertion follows immediately by letting T := R and φ be the
identity homomorphism in Theorem 3.11. �

4. Properties of a w-factor ring Rw

Let R be a ring, let I be a proper w-ideal of R, and let R = R/I. Let
π : R → R be a natural homomorphism and let λ : R → Rw be the inclusion
homomorphism. Then φ : R → Rw is a natural w-linked homomorphism. We
also call Rw a w-factor ring of R.

Let I be an ideal of R. Write Q as the multiplicative system of f.g. semireg-
ular ideals of R. Recall that I is said to be a q-ideal, if z ∈ R and J ∈ Q with
Jz ⊆ I imply z ∈ I.

Remark 4.1. (1) Let α ∈ Rw. By Proposition 2.5, write α =
∑n
i=0 aix

i∑n
i=0 dix

i
, where

ai, di ∈ R,
∑n
i=0 dix

i is a GV-polynomial and di aj = dj ai for any i, j. So

we have
∑n
i=0 aix

i∑n
i=0 dix

i ∈ R{x}. In other words, there exists a u ∈ R{x} such that

φ(u) = α.

(2) Let I be a q-ideal of R. For α =
∑n
i=0 aix

i∑n
i=0 bix

i ∈ Q0(R), let π(α) =
∑n
i=0 aix

i∑n
i=0 bix

i
.

Then the ring homomorphism π : R → R can be extended to the map from
Q0(R) to Q0(R).

(3) Let M be a GV-torsion-free R-module. Considering the identity ho-

momorphism 1 : R → R, by Proposition 2.5, Mw =

{∑n
i=0 uix

i∑n
i=0 dix

i ∈ M [x]Sw |∑n
i=0 dix

i is a GV-ploynomial and diuj = djui for any i, j

}
.

(4) Let M be an R-module and let M as an R-module be a GV-torsion-free

module. Denote a ∈ R over R by a. Then Mw =

{∑n
i=0 uix

i∑n
i=0 dix

i
∈ M [x]Sw |∑n

i=0 dix
i is a GV-ploynomial and diuj = djui for any i, j

}
.

Proposition 4.2. Let B be an ideal of R containing I. Denote B = B/I.
Then:

(1) Bw = (Bw)w = (BRw)w.
(2) Bw = Rw if and only if Bw = R.
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(3) Let B be a prime w-ideal of R. Then Bw is a prime wφ-ideal of Rw
and Bw ∩R = B.

Proof. (1) By [11, Exercise 6.20(1)], Bw = (Bw)w. Notice that BR = B. Hence
(BRw)w = (BR)w = Bw.

(2) Let Bw = R. Then by (1), Bw = (Bw)w = Rw.
Conversely, let Bw = Rw. Then (B/I)m = Bm/Im = Rm/Im for any m ∈

w-Max(R), and so Bm = Rm. Thus Bw = R.
(3) Let y, z ∈ Rw, yz ∈ Bw. Then there exists J ∈ GV(R) such that

Jy, Jz ⊆ R and J2yz ⊆ B. Since B is a prime ideal of R, it follows that
Jy ⊆ B or Jz ⊆ B. Hence y ∈ Bw or z ∈ Bw. Therefore Bw is a prime
wφ-ideal of Rw.

Let r ∈ R, r =
∑n
i=0 bix

i∑n
i=0 dix

i
, where bi ∈ B, djbi = dibj , J := (d0, d1, . . . , dn) ∈

GV(R). Then dkr = bk, and so Jr ⊆ B. Since B is a prime w-ideal, we have
r ∈ B. Therefore Bw ∩R = B. �

Lemma 4.3. Let M,N be w-modules over R, f : M → N be a homomorphism,
and A be a w-submodule of N . Then B := f−1(A) is a w-submodule of M .

Proof. Let J ∈ GV(R), x ∈ M , Jx ⊆ B. Then Jf(x) = f(Jx) ⊆ f(B) ⊆ A.
Since A is a w-submodule of N , we have f(x) ∈ A. Thus x ∈ B. Therefore
B := f−1(A) is a w-submodule of M . �

Proposition 4.4. Let φ : R → Rw be a natural w-linked homomorphism.
Then:

(1) Let A be a wφ-ideal of Rw. Write B = φ−1(A). Then I ⊆ B and
A = (B/I)w.

(2) Let Ai be a wφ-ideal of Rw for i = 1, 2. Write Bi = φ−1(Ai). Then
A1 = A2 if and only if B1 = B2.

(3) There is a one-to-one correspondence between the set of w-ideals (resp.,
prime w-ideals, maximal w-ideals) of R containing I and the set of wφ-

ideals (resp., prime wφ-ideals, maximal wφ-ideals) of Rw.

(4) (
√
I/I)w = nil(Rw).

Proof. (1) By Lemma 4.3, B is a w-ideal of R. Clearly I ⊆ B. Since φ(x) =
π(x) = x ∈ A for x ∈ B, we have B/I ⊆ A. Thus (B/I)w ⊆ A.

Conversely, let α =
∑n
i=0 rix

i∑n
i=0 dix

i
∈ A. Then d̄iα = ri. So ri ∈ B, and thus

ri ∈ B/I. Hence α ∈ (B/I)w. So we can get A = (B/I)w.
(2) Let A1 = A2. Then it is easy to get B1 = B2.
Conversely, let B1 = B2. Then A1 = (B1/I)w = (B2/I)w = A2.
(3) This follows from (2).

(4) Let α =
∑n
i=0 rix

i∑n
i=0 dix

i
∈ nil(Rw). Then there exists a positive integer m

such that αm = 0. So
∑n
i=0 rix

i is a nilpotent element. Hence every ri is



A GENERALIZATION OF w-LINKED EXTENSIONS 741

a nilpotent element. Thus ri ∈ nil(R) =
√
I/I. Hence α ∈ (

√
I/I)w. So

nil(Rw) ⊆ (
√
I/I)w.

Conversely, since
√
I/I ⊆ nil(Rw), we have that (

√
I/I)w ⊆ nil(Rw). �

Let I1, I2 be w-ideals of R such that I1 ⊆ I2. Then there exists the natural
homomorphism σ : R/I1 → R/I2 such that σ(r) = r. Notice that the bars in
the two locations have different meanings. So σ induces a ring homomorphism
σ : (R/I1)w → (R/I2)w such that

σ(

n∑
i=0

aix
i

n∑
i=0

bixi
) =

n∑
i=0

aix
i

n∑
i=0

bixi
.

Theorem 4.5. Let φ : R→ Rw be a natural w-linked homomorphism. Then:

(1) I is a prime w-ideal of R if and only if Rw is an integral domain.
(2) I is a maximal w-ideal of R if and only if Rw is a field.

Proof. (1) Let I be a prime w-ideal of R. Then R/I is an integral domain. By
Proposition 2.5(6), Rw is an integral domain.

Conversely, let Rw be an integral domain. Since R = R/I ⊆ Rw, it follows
that R is an integral domain. Therefore I is a prime ideal.

(2) Let I be a maximal w-ideal of R. By [11, Proposition 6.5.5], Rw = qf(R)
is a field.

Conversely, let P be a maximal w-ideal of R and I ⊆ P . Then there ex-
ists a natural homomorphism σ : Rw → (R/P )w. Since Rw is a field, σ is a
monomorphism. Thus the natural homomorphism R/I → R/P is a monomor-
phism. Therefore I = P is a maximal w-ideal of R. �

Theorem 4.6. The following statements are equivalent.

(1) Rw satisfies the descending chain condition on wφ-ideals of Rw.

(2) Rw satisfies the minimal condition on wφ-ideals of Rw.

(3) Rw is an Artinian ring.

Proof. (1)⇒(2) It is trivial.
(2)⇒(3) We should prove that Rw has only a finite number of maximal wφ-

ideals, and then by Theorem 3.11, Rw is a DWφ ring. Hence every ideal of Rw
is a wφ-ideal. Therefore Rw is an Artinian ring.

Set

S = {M1 ∩M2 ∩ · · · ∩Mk | k > 1,Mi is a maximal wφ-ideal of Rw}.

By the hypothesis, S has a minimal element M1∩M2∩· · ·∩Mn. Now we prove
that M1, M2, . . . , Mn are all the maximal wφ-ideals of R.

Let M be a maximal ideal of R. By the minimal property of M1 ∩M2 ∩
· · · ∩Mn, we have

M ∩M1 ∩M2 ∩ · · · ∩Mn = M1 ∩M2 ∩ · · · ∩Mn.
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Then M1M2 · · ·Mn ⊆M . So there exists i such that Mi ⊆M . Since Mi is the
maximal wφ-ideal, we have Mi = M .

(3)⇒(1) This is clear. �

Theorem 4.7. Let R be an integral domain. Then the following statements
are equivalent.

(1) R is an SM-domain with w-dim(R) ≤ 1.
(2) For any nonzero w-ideal I of R, (R/I)w is an Artinian ring.
(3) For any nonzero element a ∈ R, (R/(a))w is an Artinian ring.
(4) For any nonzero element a ∈ R, R has the descending chain condition

on w-ideals of R containing a.

Proof. (1)⇒(2) Let (ξ) : A1 ⊇ A2 ⊇ · · · ⊇ An ⊇ · · · be a descending chain
of wφ-ideals of (R/I)w. For every n, let Bn = φ−1(An). By Proposition 4.4,
(η) : B1 ⊇ B2 ⊇ · · · ⊇ Bn ⊇ · · · is a descending chain of w-ideals of R. By
[4, Theorem 3.2], the descending chain (η) is stationary. By Proposition 4.4,
the descending chain (ξ) is stationary. By Theorem 4.6, Rw is an Artinian ring.

(2)⇒(3) This is trivial.
(3)⇒(4) Let (ξ) : I1 ⊇ I2 ⊇ · · · ⊇ In ⊇ · · · be a descending chain of w-ideals

of R containing a. Then (η) : (I1/(a))w ⊇ (I2/(a))w ⊇ · · · ⊇ (In/(a))w ⊇ · · ·
is a descending chain of wφ-ideals of (R/(a))w. Since (R/(a))w is an Artinian
ring, the descending chain (η) is stationary. By Proposition 4.4, the descending
chain (ξ) is stationary.

(4)⇒(1) Let I be a nonzero w-ideal of R and let (ξ) : I1 ⊇ I2 ⊇ · · · ⊇ In ⊇
· · · be a descending chain of w-ideals of R containing I. For any a ∈ I with
a 6= 0, (ξ) is also a descending chain of w-ideals of R containing a. By the
hypothesis, (ξ) is stationary. By [4, Theorem 3.2] again, R is an SM domain
with w-dim(R) ≤ 1. �
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