A GENERALIZATION OF w-LINKED EXTENSIONS

Xiaoying Wu

Abstract

In this paper, the concepts of w-linked homomorphisms, the w_{ϕ}-operation, and DW_{ϕ} rings are introduced. Also the relationships between w_{ϕ}-ideals and w-ideals over a w-linked homomorphism $\phi: R \rightarrow$ T are discussed. More precisely, it is shown that every w_{ϕ}-ideal of T is a w-ideal of T. Besides, it is shown that if T is not a DW_{ϕ} ring, then T must have an infinite number of maximal w_{ϕ}-ideals. Finally we give an application of Cohen's Theorem over w-factor rings, namely it is shown that an integral domain R is an SM -domain with $w-\operatorname{dim}(R) \leq 1$, if and only if for any nonzero w-ideal I of $R,(R / I)_{w}$ is an Artinian ring, if and only if for any nonzero element $a \in R,(R /(a))_{w}$ is an Artinian ring, if and only if for any nonzero element $a \in R, R$ satisfies the descending chain condition on w-ideals of R containing a.

1. Introduction

Throughout this paper, R denotes a commutative ring with identity. Let R be an integral domain with quotient field K.

As is well known, an integral domain R is a Prüfer domain if and only if every overring of R is integrally closed. In order to give a Prüfer-like characterization of PVMDs (Prüfer v-multiplication domains), the concept of t-linked extensions was introduced in [3]. Namely, let $R \subseteq T \subseteq K$ be an extension. If $J^{-1}=R$ for a finitely generated (abbreviated to f.g.) nonzero ideal J of R implies that $(J T)^{-1}=T$, then T is called a t-linked extension of R. By virtue of the concept of t-linked extensions, Dobbs et al. proved that R is a PVMD if and only if every t-linked overring of R is integrally closed. More generally, by the concept of t-linked extensions in [2], the authors tried to learn the relationships between the t-operation of R and t-operation of T in an extension $R \subseteq T$ of rings. In [2], the concept of t-linkative domains is introduced. An integral domain R is said to be t-linkative if it satisfies that every extension ring of R is a t-linked extension. In [12], a f.g. nonzero ideal J such that $J^{-1}=R$ is called a GV-ideal (Glaz-Vasconcelos ideal) by Wang et al., denoted by $J \in \operatorname{GV}(R)$, where $\operatorname{GV}(R)$ is the set of all GV-ideals of R. Clearly, $\operatorname{GV}(R)$ is a multiplicative set of ideals

Received June 1, 2021; Revised August 28, 2021; Accepted September 2, 2021.
2010 Mathematics Subject Classification. 13B02, 13E05.
Key words and phrases. w-linked homomorphism, w_{ϕ}-operation, DW_{ϕ} ring, w-factor ring.
of R. Let M be an R-module. Define

$$
\operatorname{tor}_{\mathrm{GV}}(M)=\{x \in M \mid J x=0 \text { for some } J \in \mathrm{GV}(R)\}
$$

Therefore, $\operatorname{tor}_{\mathrm{GV}}(M)$ is a submodule of M. And an R-module M is called a GV-torsion-free module if whenever $J x=0$ for some $J \in \mathrm{GV}(R)$ and $x \in$ M, one has $x=0$. A GV-torsion-free module M is called a w-module if $\operatorname{Ext}_{R}^{1}(R / J, M)=0$ for any $J \in \mathrm{GV}(R)$, and the w-envelope of M is the set given by

$$
M_{w}=\{x \in E(M) \mid J x \in M \text { for some } J \in \mathrm{GV}(R)\}
$$

where $E(M)$ is the injective hull of M. Therefore, M is a w-module if and only if $M_{w}=M$. For w-modules, readers are referred to [11]. Besides, in an extension $R \subseteq T$ (T not necessary in the quotient field K) of domains, if T as an R-module is a w-module, then T is called a w-domain over R in [4]. In [10], it is shown that T is a t-linked extension of R if and only if T is a w-domain over R for any extension $R \subseteq T$ (T not necessary in the quotient field K) of domains. In [10], it is pointed out that R is a t-linkative domain if and only if every ideal is a w-ideal, subsequently, Mimouni called it a DW domain in [9]. Also in [7], Kim studied it module-theoretically.

The Krull-Akizuki Theorem states that if R is a Noetherian domain with $\operatorname{dim}(R)=1$, then every overring T of R is a Noetherian domain with $\operatorname{dim}(R) \leq$ 1. In 1976, this theorem was generalized to reduced Noetherian rings by Matijevic. Namely, let R be a reduced Noetherian ring. Then every extension ring T of R contained in the global transform is a Noetherian ring. In 1999, Wang and McCsland in [4] generalized Krull-Akizuki Theorem to strong Mori domains. That is, let R be an SM domain with $w-\operatorname{dim}(R) \leq 1$. Then they showed that every t-linked overring T of R is an SM domain with w - $\operatorname{dim}(T) \leq 1$. Park proved a w-version of Krull-Akizuki Theorem over domain in 2002, that is, if R is an SM domain, then the w-global transform of R is a w-overring, and every w-overring of R contained in the w-global transform is also an SM domain. As a corollary, she obtained the result of Wang and McCsland again. Yin et al. observed that the w-operation has good torsion-theoretic properties. They in [15] generalized the w-operation to commutative rings and introduced the concept of w-Noetherian rings. In 2011, in order to gave a w-version of Krull-Akizuki Theorem over commutative rings, Xie et al. in [14] unified t-linked extensions over integral domains and w-domains into w-linked extensions. Let $R \subseteq T$ be an extension of rings. If T as an R-module is a w-module, then the ring extension is called a w-linked extension. In [14], it is proved that: If R is a reduced w-Noetherian ring, then every w-linked extension ring of R contained in the w-global transform is a w-Noetherian ring. More properties of w-linked extension, we can refer to [14].

Let R be a commutative ring and I be a w-ideal of R. Although the use of " w-linked" can learn many properties of ring extensions, the experience of this approach is rarely used for the natural ring homomorphism $R \rightarrow R / I$. Besides, the discussion of factor rings in the star-operation theory is mostly avoided by
researchers. The main reason is that there is not enough connection between a star operation on R and the same star operation on the factor ring R / I. Let R be an integral domain and let $u \in R$ be a nonzero element. The a operation and the b-operation over a factor ring $R /(u)$ are introduced by Costa et al. in [1]. Let $I=A /(u)$ be an ideal of $R /(u)$. Define $I_{a}:=\operatorname{Ann}(\operatorname{Ann}(I))$ and $I_{b}:=\bigcup\left\{J_{a} \mid\right.$ where J runs over all the f.g. ideals of $\left.I\right\}$. So $I_{a}=A_{v} /(u)$ and $I_{b}=A_{t} /(u)$. Although the a-operation and the b-operation over $R /(u)$ correlate well with the v-operation and the t-operation over R respectively, they are different from the v-operation and the t-operation of commutative rings with zero divisor, which Kang et al. discussed in [5, 6].

As is well known, the w-linked extension can well describe the relationship between the w-operators on R and T. In order for the " w-linked" idea to play a role in the discussion of the factor ring R / I, we introduce the concept of the w-linked homomorphism. Let $\phi: R \rightarrow T$ be a ring homomorphism. If T as an R-module is a w-module, then ϕ is called a w-linked homomorphism. Many classical theorems can have natural w-version representations with the help of the w-linked homomorphism. For example, let R be an integral domain, in 1950, Cohen proved that R is a Noetherian ring with $\operatorname{dim}(R) \leq 1$, if and only if R / I is an Artinian ring for every nonzero proper ideal I of R, if and only if $R /(a)$ is an Artinian ring for every nonzero and non-unit element a of R. In 1999, Wang et al. in [4] gave a w-version of Cohen's Theorem: An integral domain R is an SM domain with $w-\operatorname{dim}(R) \leq 1$, if and only if for any nonzero w-ideal I of R, every descending chain on w-ideals of R containing I stabilizes. In this paper, by virtue of the concept of w-linked homomorphisms, the " w linked" idea plays an important role in the discussion of the factor ring R / I. As is well known, a ring R is said to be local if R has only one maximal ideal. If every ideal of R is a w-ideal, then R is said to be a DW ring. However, the w-operation does not play a role over DW rings, so the naturally arising question if R isn't a DW ring, whether we can introduce a local w-ring, which has only one maximal w-ideal, but in this paper, according to Theorem 3.11 and Corollary 3.12 , we get that it can't come true. Namely, let $\phi: R \rightarrow T$ be a w-linked homomorphism. Let T be not a DW_{ϕ} ring. Then T must have an infinite number of maximal w_{ϕ}-ideals. And let R be not a DW ring. Then R must have an infinite number of maximal w-ideals. Moreover, let R be a ring, let I be a proper w-ideal of R, and let $R=R / I, \phi: R \rightarrow R_{w}$ is a natural w-linked homomorphism, where \bar{R}_{w} is a w-factor ring of R. By virtue of the concept of w-factor rings, we give an application of Cohen's Theorem over w factor rings, namely, we give a new characterization of an SM domain with $w-\operatorname{dim}(R) \leq 1$: Let R be an integral domain. Then R is an SM-domain with w - $\operatorname{dim}(R) \leq 1$, if and only if for any nonzero w-ideal I of R, \bar{R}_{w} is an Artinian ring, if and only if for any nonzero element $a \in R,(R /(a))_{w}$ is an Artinian ring, if and only if for any nonzero element $a \in R, R$ has the descending chain condition on w-ideals of R containing a.

Undefined terms and terminology are standard as in $[11,14]$.

2. The ring of finite fractions

Let R be a ring and let x be an indeterminate. For $f(x)=\sum_{i=0}^{n} d_{i} x^{i} \in R[x]$, we denote $c(f):=\left(d_{0}, d_{1}, \ldots, d_{n}\right)$. Recall that an ideal A of R is called a semiregular ideal if $\operatorname{Ann}(I)=0$ for some f.g. subideal I of A. It is easy to see that the set of f.g. semiregular ideals of R is a multiplicative system of ideals of R.

Lemma 2.1. Let $f(x)=\sum_{i=0}^{n} d_{i} x^{i} \in R[x]$.
(1) Let M be an R-module. If $f(x)$ is a zero-divisor of $M[x]$, then $f(x) u=$ 0 for some $u \in M$ with $u \neq 0$.
(2) $f(x)$ is a non-zero-divisor of $R[x]$ if and only if $c(f)$ is a semiregular ideal.

Proof. (1) Suppose $f(x)$ is a zero-divisor of $M[x]$. Then we may choose $g(x) \in$ $M[x]$ with $g(x) \neq 0$ such that $f(x) g(x)=0$ and the degree of $g(x)$ is minimal. Write $g(x)=\sum_{j=0}^{m} b_{j} x^{j} \in M[x]$, where $b_{j} \in M, b_{m} \neq 0$. Then

$$
f(x) g(x)=b_{m} d_{n} x^{m+n}+\left(b_{m} d_{n-1}+b_{m-1} d_{n}\right) x^{m+n-1}+\cdots=0
$$

and thus $b_{m} d_{n}=0$. Hence $b_{m} f(x)=0$. If not and let d_{k} be the first coefficient of $f(x)$ such that $b_{m} d_{k} \neq 0$, then $b_{m} d_{n}=0, b_{m} d_{n-1}=0, \ldots, b_{m} d_{k+1}=0$. Since $\left(d_{i} g(x)\right) f(x)=0, \operatorname{deg}\left(d_{i} g(x)\right)<\operatorname{deg}(g(x))$, and the degree of $g(x)$ is minimal, we have $d_{i} g(x)=0, i=n, n-1, \ldots, k+1$. Write

$$
f(x)=\left(d_{n} x^{n}+\cdots+d_{k+1} x^{k+1}\right)+\left(d_{k} x^{k}+\cdots+d_{0}\right)=f_{1}(x)+f_{2}(x) .
$$

Since $g(x) f(x)=g(x) f_{1}(x)+g(x) f_{2}(x)=0$ and $g(x) f_{1}(x)=0$, we have $b_{m} d_{k}=0$, which is a contradiction. Therefore $b_{m} f(x)=0$. So let $u:=b_{m} \in M$. Then $f(x) u=0$ with $u \neq 0$.
(2) Suppose $f(x)$ is a zero-divisor of $R[x]$. If $a \in R$ with $a c(f)=0$, then $a f(x)=0$. Hence $a=0$. Therefore $c(f)$ is a semiregular ideal of R.

Conversely, suppose $c(f)$ is a semiregular ideal of R and $g(x) \in R[x]$ such that $g(x) f(x)=0$. If $g(x) \neq 0$, then according to [11, Theorem 1.7.7], there exists $a \in R$ with $a \neq 0$ such that $a f(x)=0$. Then $a c(f)=0$, and so $a=0$, a contradiction. Therefore $f(x)$ is a non-zero-divisor of $R[x]$.

Set
$Q_{0}(R):=\{\alpha \in T(R[x]) \mid I \alpha \subseteq R$ for some f.g. semiregular ideal I of $R\}$.
Then $Q_{0}(R)$ is an extension ring of R contained in $T(R[x])$. Hence $Q_{0}(R)$ is called a ring of finite fractions of R. By [8], the element α of $Q_{0}(R)$ can be written as $\alpha=\frac{\sum_{i=0}^{n} a_{i} x^{i}}{\sum_{i=0}^{n} b_{i} x^{i}}$, where $a_{i}, b_{i} \in R,\left(b_{0}, b_{1}, \ldots, b_{n}\right)$ is an semiregular ideal, and $a_{i} b_{j}=a_{j} b_{i}$ for any i, j. Clearly $T(R) \subseteq Q_{0}(R)$ and $Q_{0}(R)$ is the quotient field of R when R is an integral domain.

Let $f(x)=\sum_{i=0}^{n} a_{i} x^{i} \in R[x]$. If $c(f) \in \mathrm{GV}(R)$, then $f(x)$ is called a GV-polynomial. When R is a GCD domain, a GV-polynomial is a primitive polynomial. Now let

$$
S_{w}=\{f \in R[x] \mid f \text { is a GV-polynomial }\} .
$$

According to [11], S_{w} is a multiplicative closed set, that is, the product of two GV-polynomials is a GV-polynomial. Write $R\{x\}=R[x]_{S_{w}}$.

Let B be a nonempty subset of $Q_{0}(R)$. We define

$$
B^{-1}=\left\{y \in Q_{0}(R) \mid y B \subseteq R\right\} .
$$

Hence B^{-1} is an R-submodule of $Q_{0}(R)$. If (B) represents the submodule generated by B, then clearly $B^{-1}=(B)^{-1}$.
Lemma 2.2. (1) Let $\alpha=\frac{\sum_{i=0}^{n} a_{i} x^{i}}{\sum_{i=0}^{n} b_{i} x^{i}} \in Q_{0}(R)$. If some $b_{k}=0$, then we can get $a_{k}=0$.
(2) Let T^{\prime} be an extension ring of R contained in $Q_{0}(R)$. Then $Q_{0}\left(T^{\prime}\right)=$ $Q_{0}(R) . S p e c i a l l y, Q_{0}\left(Q_{0}(R)\right)=Q_{0}(R)$.
(3) Let J be a f.g. semiregular ideal of R. Then $J \in \operatorname{GV}(R)$ if and only if $J^{-1}=R$.
(4) $Q_{0}(R) \cap R\{x\}=R$.

Proof. (1) If $b_{k}=0$, then $b_{i} a_{k}=b_{k} a_{i}=0$ for any $i=0,1, \ldots, n$. Since $J:=\left(b_{0}, b_{1}, \ldots, b_{n}\right)$ is a semiregular ideal, we have $a_{k}=0$.
(2) Let A be a subring of $T(R[x])$ generated by T^{\prime} and x. If $\sum_{i=0}^{n} \alpha_{i} x^{i}=0$ in $T(R[x])$, where $\alpha_{i} \in T^{\prime}$, by [11, Theorem 6.6.7], we have $\alpha_{i}=0$ for any $i=0,1, \ldots, n$. Therefore x is an indeterminate over T^{\prime} and $A \cong T^{\prime}[x]$. Thus we can suppose $T\left(T^{\prime}[x]\right)=T(R[x])$.

Let I be a f.g. semiregular ideal of R. By Lemma 2.1(2), $I T^{\prime}$ is also a f.g. semiregular ideal of T^{\prime}, and thus $Q_{0}(R) \subseteq Q_{0}\left(T^{\prime}\right)$.

Let $\alpha \in Q_{0}\left(T^{\prime}\right)$. Then there exists a f.g. semiregular ideal A of T^{\prime} such that $A \alpha \subseteq T^{\prime}$. Denoted by $\left\{\beta_{1}, \ldots, \beta_{n}\right\}$ a generating set of A. Thus $\beta_{i} \alpha \in T^{\prime}$. Hence there exists a f.g. semiregular ideal I of R such that $I \beta_{i} \subseteq R$ and $I \beta_{i} \alpha \subseteq R$. Set $B=R \beta_{1}+\cdots+R \beta_{n}$. Then $I B$ is a semiregular ideal of R and $I B \alpha \subseteq R$. Hence $\alpha \in Q_{0}(R)$. Therefore $Q_{0}\left(T^{\prime}\right) \subseteq Q_{0}(R)$.
(3) This follows from [11, Proposition 6.6.8].
(4) Clearly $R \subseteq Q_{0}(R) \cap R\{x\}$. Let $\alpha=\frac{a(x)}{b(x)}=\frac{c(x)}{d(x)}$, where $a(x)=$ $\sum_{i=0}^{n} a_{i} x^{i}, b(x)=\sum_{i=0}^{n} b_{i} x^{i}, c(x)=\sum_{k=0}^{m} c_{k} x^{k}, d(x)=\sum_{l=0}^{s} d_{l} x^{l}$ are polynomials over R, and for any i, i^{\prime}, we have $a_{i} b_{i^{\prime}}=a_{i^{\prime}} b_{i},\left(b_{0}, b_{1}, \ldots, b_{n}\right)$ is a semiregular ideal, and $\left(d_{0}, d_{1}, \ldots, d_{s}\right) \in \operatorname{GV}(R)$. For $i=0,1, \ldots, n$, we have $b_{i} \alpha=a_{i}=b_{i} \frac{c(x)}{d(x)}$, and hence $d(x) a_{i}=b_{i} c(x)$. So we can suppose $s=m$ and $b_{i} c_{j}=d_{j} a_{i}$ for any j. Therefore we also have $d_{k} b_{i} c_{j}=d_{k} d_{j} a_{i}=d_{j} b_{i} c_{k}$ for any k. Hence we have $b_{i}\left(d_{k} c_{j}-d_{j} c_{k}\right)=0$ for any $i=0,1, \ldots, n$. So $d_{k} c_{j}=d_{j} c_{k}$ for any j, k, and thus $d_{k} \alpha=c_{k} \in R$ for any $k=0,1, \ldots, m$. Therefore $\alpha \in R$.

Lemma 2.3. Let $\phi: R \rightarrow T$ be a ring homomorphism, $f(x)=\sum_{i=0}^{n} d_{i} x^{i} \in$ $R[x]$ be a GV-polynomial and M be a T-module such that M as an R-module is a GV-torsion-free module. Then $\phi(f)$ is not a zero-divisor of $M[x], \phi(f)$ is satisfied that $\phi\left(d_{i}\right)=d_{i}, i=1, \ldots, n$.

Proof. If there exists $\alpha \in M[x]$ with $\alpha \neq 0$ such that $\phi(f) \alpha=0$, then by Lemma 2.1, we can assume that $\alpha \in M$. Thus $d_{i} \alpha=\phi\left(d_{i}\right) \alpha=0$ for any $i=0,1, \ldots, n$. Since M is a GV-torsion-free R-module, we have $\alpha=0$, which is a contradiction. Therefore $\phi(f)$ is not a zero-divisor of $M[x]$.

Let $\phi: R \rightarrow T$ be a ring homomorphism. Let

$$
S_{\phi}=\{\phi(f) \in T[x] \mid f \in R[x] \text { is a GV-polynomial }\} .
$$

Obviously the induced map $S_{w} \rightarrow S_{\phi}$ by ϕ is a surjection.
Lemma 2.4. Let $\phi: R \rightarrow T$ be a ring homomorphism. Then S_{ϕ} is a multiplicatively closed set of $T[x]$.
Proof. This follows from the facts that S_{w} is a multiplicatively closed set of $R[x]$ and $\phi: S_{w} \rightarrow S_{\phi}$ is a surjection.

In [16], Zhou, Kim and Hu provided an element-wise characterization of w-modules [16, Lemma 3.1 and Theorem 3.3] and proved that $(R / I)_{w}$ as the natural w-version of the factor ring R / I is also a ring, where I is a w-ideal of R [16, Remark 3.4]. Next we will obtain more general results and properties than theirs by considering ring homomorphisms. Although the proof is essentially the same as in [16], we give a proof for completeness.

Proposition 2.5. Let $\phi: R \rightarrow T$ be a ring homomorphism, where T as an R-module is a $G V$-torsion-free module. Let M be a T-module and let M as an R-module be a $G V$-torsion-free module. Then the following statements hold.
(1) $M_{w}=\left\{\left.\frac{\sum_{i=0}^{n} u_{i} x^{i}}{\sum_{i=0}^{n} \phi\left(d_{i}\right) x^{i}} \in M[x]_{S_{\phi}} \right\rvert\, \sum_{i=0}^{n} d_{i} x^{i}\right.$ is a $G V$-polynomial and $\phi\left(d_{i}\right) u_{j}=\phi\left(d_{j}\right) u_{i}$ for any $\left.i, j\right\}$.
(2) $T[x]_{S_{\phi}} \subseteq Q_{0}(T)$ and T_{w} is a subring of $T[x]_{S_{\phi}}$ containing T.
(3) M_{w} is a T_{w}-module. Therefore M is a T_{w}-module when M is a w module.
(4) Let A be a T-submodule of M. Then A_{w} is a T_{w}-submodule of M_{w}. Especially, if A is an ideal of T, then A_{w} is an ideal of T_{w}.
(5) $Q_{0}\left(T_{w}\right)=Q_{0}(T)$ and $Q_{0}(T)$ as an R-module is a w-module.
(6) Let T be an integral domain. Then $T_{w} \subseteq q f(T)$, and

$$
\begin{aligned}
T_{w} & =\{z \in q f(T) \mid J z \subseteq T \text { for some } J \in \operatorname{GV}(R)\} \\
& =\bigcap\left\{T_{\mathfrak{m}} \mid \mathfrak{m} \in w-\operatorname{Max}(R) \text { and } \operatorname{ker}(\phi) \subseteq \mathfrak{m}\right\}
\end{aligned}
$$

Proof. (1) Let H be the righthand side of (1). Let $y \in H$ with $y \neq 0$. Write $y=\frac{\sum_{i=0}^{n} u_{i} x^{i}}{\sum_{i=0}^{n} \phi\left(d_{i}\right) x^{i}}$, where $u_{i} \in M, d_{i} \in R, i=0,1, \ldots, n, f(x)=\sum_{i=0}^{n} d_{i} x^{i}$
is a GV-polynomial. Then $d_{k} y=\frac{\sum_{i=0}^{n} \phi\left(d_{k}\right) u_{i} x^{i}}{\sum_{i=0}^{n} \phi\left(d_{i}\right) x^{i}}=u_{k} \in M$. Since M is a GV-torsion-free R-module, we have $\left(d_{0}, d_{1}, \ldots, d_{n}\right) y \neq 0$. Therefore H is an essential extension of M, and so $H \subseteq E(M)$. By the same process as above, $H \subseteq M_{w}$ is also obtained.

On the other hand, when $y \in M_{w}$, there exists $J=\left(d_{0}, d_{1}, \ldots, d_{n}\right) \in \operatorname{GV}(R)$ such that $J y \subseteq M$. Write $d_{k} y=u_{k}$ and let $f(x)=\sum_{i=0}^{n} d_{i} x^{i}$. Then $f(x) y=$ $\sum_{i=0}^{n} u_{i} x^{i} \in M[X]$. Therefore $y=\frac{\sum_{i=0}^{n} u_{i} x^{i}}{\sum_{i=0}^{n} \phi\left(d_{i}\right) x^{i}} \in M[X]_{S_{\phi}}$. Since $d_{k} y=u_{k}$, we have $d_{k} u_{i}=d_{k} d_{i} y=d_{i} d_{k} y=d_{i} u_{k}$ for any i and k, that is $\phi\left(d_{k}\right) u_{i}=\phi\left(d_{i}\right) u_{k}$. Therefore $M_{w} \subseteq H$. So we get $H=M_{w}$.
(2) Let $y, z \in T_{w}$. Then there exist $J_{1}, J_{2} \in \operatorname{GV}(R)$ such that $J_{1} y, J_{2} z \subseteq T$. Thus $J_{1} J_{2} y z \in T$, and so $y z \in T_{w}$. Thus T_{w} is a multiplicatively closed set of $T[x]_{S_{\phi}}$. Therefore T_{w} is a subring of $T[x]_{S_{\phi}}$.
(3) Let $h=\frac{\sum_{i=0}^{n} b_{i} x^{i}}{\sum_{i=0}^{n} \phi\left(d_{i}\right) x^{i}} \in T_{w}, y=\frac{\sum_{j=0}^{m} u_{j} x^{j}}{\sum_{j=0}^{m} \phi\left(c_{j}\right) x^{j}} \in M_{w}$, where $b_{i} \in T$, $u_{j} \in M, J_{1}:=\left(d_{0}, d_{1}, \ldots, d_{n}\right)$ and $J_{2}:=\left(c_{0}, c_{1}, \ldots, c_{m}\right)$ are GV-ideals of R. Since $d_{i} b_{j}=d_{j} b_{i}$ for any i, j, and $c_{s} u_{t}=c_{t} u_{s}$ for any s, t, it is easy to see that

$$
h y=\frac{\sum_{k=0}^{n+m}\left(\sum_{i+j=k} b_{i} u_{j}\right) x^{k}}{\sum_{k=0}^{n+m}\left(\sum_{i+j=k} \phi\left(d_{i} c_{j}\right)\right) x^{k}} \in M_{w} \text {. }
$$

Therefore M_{w} is a T_{w}-module.
(4) This is obtained directly from (3).
(5) By Lemma 2.2(2), we can get $Q_{0}\left(T_{w}\right)=Q_{0}(T)$. To prove that $Q_{0}(T)$ is a w - R-module, let T as an R-module be a w-module. According to [11, Theorem 6.6.6](3), $Q_{0}(T)$ is a w - T-module. By Theorem 3.3, $Q_{0}(T)$ is a w - R-module.
(6) Let $y=\frac{\sum_{i=0}^{n} a_{i} x^{i}}{\sum_{a_{i}=0}^{n} \phi\left(d_{i}\right) x^{i}} \in T_{w}$, where $a_{i} \in T$. Then $\phi\left(d_{k}\right) \neq 0$ for some k, and so $\lambda_{k}:=\frac{a_{k}=0}{\phi\left(d_{k}\right)} \in q f(T)$. Since $a_{i}=d_{i} \frac{a_{k}}{\phi\left(d_{k}\right)}$ for $i=0,1, \ldots, n$, it follows that $y=\lambda_{k} \in q f(T)$.

Write $H_{1}=\{z \in q f(T) \mid J z \subseteq T$ for some $J \in \operatorname{GV}(R)\}$. Since T is an integral domain, we have $Q_{0}(T)=q f(T)$. By Proposition 2.5(5), $q f(T)$ is a $w-R$-module. Thus $T_{w}=H_{1}$.

Write $H=\bigcap\left\{T_{\mathfrak{m}} \mid \mathfrak{m} \in w-\operatorname{Max}(R)\right.$ and $\left.\operatorname{ker}(\phi) \subseteq \mathfrak{m}\right\}$. Since T is an integral domain, it follows that $T \subseteq T_{\mathfrak{m}} \subseteq q f(T)$ for a maximal ideal \mathfrak{m} of R. Therefore $T \subseteq H$. Since every $T_{\mathfrak{m}}$ is a w - R-module, H is a w - R-module. Therefore $T_{w} \subseteq H$.

Conversely, suppose $z \in H$. Let $I=\left\{r \in R \mid r z \in T_{w}\right\}$. Then I is a w-ideal of R containing $\operatorname{ker}(\phi)$. Since $z \in T_{\mathfrak{m}}$ for any maximal w-ideal \mathfrak{m} of R with $\operatorname{ker}(\phi) \subseteq \mathfrak{m}$, there exists $s \in R \backslash \mathfrak{m}$ such that $s z \in T$. Thus $s \in I$. Hence $I \nsubseteq \mathfrak{m}$. Thus $I=R$. So we get $z \in T_{w}$.

Proposition 2.6. Let $\phi: R \rightarrow T$ be a ring homomorphism, where T is a $G V$-torsion-free R-module. Let P be a prime ideal of T. Then the following statements hold.
(1) If $\phi^{-1}(P)$ is a w-ideal of T, then $P_{w} \neq T_{w}$.
(2) If $P_{w} \neq T_{w}$, then P_{w} is a prime ideal of T_{w} and $P_{w} \cap T=P$.
(3) If $P_{w} \neq T_{w}$ and P_{1} is a prime ideal of T_{w} such that $P_{1} \subseteq P_{w}$ and $P_{1} \cap T=P$, then $P_{1}=P_{w}$.

Proof. (1) If $P_{w} \neq T_{w}$, then $J \subseteq P$ for some $J \in \operatorname{GV}(R)$. Thus $J \subseteq P \cap R$, a contradiction.
(2) Suppose $x \in P_{w} \cap T$. Then $J x \subseteq P$ for some $J \in \operatorname{GV}(R)$. Since $J \nsubseteq P$, we have that $P_{w} \cap T=P$.
(3) Suppose $x, y \in T_{w}, x y \in P_{w}$. Then $J_{1} x \subseteq T, J_{2} y \subseteq T$ for $J_{1}, J_{2} \in$ $\mathrm{GV}(R)$. Hence $J x y \subseteq P$ for some $J=J_{1} J_{2} \in \mathrm{GV}(R)$, and $J x \subseteq P$ or $J y \subseteq P$, therefore $x \in P_{w}$ or $y \in P_{w}$.

3. w-linked homomorphisms and the \boldsymbol{w}_{ϕ}-operation

We begin this section by introducing the concept of w-linked homomorphisms.

Definition 3.1. Let $\phi: R \rightarrow T$ be a ring homomorphism. If T as an R-module is a w-module, then ϕ is called a w-linked homomorphism.

Clearly the identity homomorphism $1: R \rightarrow R$ is a w-linked homomorphism. Recall that a ring extension $R \subseteq T$ is said to be w-linked if T as an R-module is a w-module. In this case, the inclusion map $\lambda: R \rightarrow T$ is a w-linked homomorphism.

For a ring homomorphism $\phi: R \rightarrow T$, there are w-operations on R and T, respectively. For a T-module N, we denote by N_{w} the w-envelope of N as an R-module and by N_{W} the w-envelope of N as a T-module.
Lemma 3.2. Let $\phi: R \rightarrow T$ be a ring homomorphism, $J \in \mathrm{GV}(R)$, L be a T-module, and let L as an R-module be a $G V$-torsion-free module. Then the following statements hold.
(1) $\operatorname{Hom}_{T}(J T, L) \cong \operatorname{Hom}_{T}\left(T \otimes_{R} J, L\right)$.
(2) $\operatorname{Ext}_{T}^{1}(T / J T, L) \cong \operatorname{Ext}_{R}^{1}(R / J, L)$.

Proof. (1) Let $0 \rightarrow A \rightarrow J \otimes_{R} T \xrightarrow{f} J T$ be an exact sequence of R-modules, where $A=\operatorname{ker}(f)$. Then we have the following exact sequence:

$$
0 \rightarrow A_{\mathfrak{m}} \rightarrow\left(J \otimes_{R} T\right)_{\mathfrak{m}} \xrightarrow{f_{\mathfrak{m}}}(J T)_{\mathfrak{m}},
$$

where \mathfrak{m} is a maximal w-ideal of R. Since $\left(J \otimes_{R} T\right)_{\mathfrak{m}}=J_{\mathfrak{m}} \otimes_{R_{\mathfrak{m}}} T_{\mathfrak{m}}=R_{\mathfrak{m}} \otimes_{R_{\mathfrak{m}}}$ $T_{\mathfrak{m}}=T_{\mathfrak{m}}$, we have $(J T)_{\mathfrak{m}}=J_{\mathfrak{m}} T_{\mathfrak{m}}=T_{\mathfrak{m}}$. Then $f_{\mathfrak{m}}$ is an isomorphism, and thus $A_{\mathfrak{m}}=0$. Therefore A is a GV-torsion module. Since L is a GV-torsion-free R-module and $\operatorname{Hom}_{T}(A, L)=0$, we have the following exact sequence:

$$
0 \rightarrow \operatorname{Hom}_{T}(J T, L) \rightarrow \operatorname{Hom}_{T}\left(J \otimes_{R} T, L\right) \rightarrow \operatorname{Hom}_{T}(A, L)=0
$$

Therefore $\operatorname{Hom}_{T}(J T, L) \cong \operatorname{Hom}_{T}\left(J \otimes_{R} T, L\right)$.
(2) Let $0 \rightarrow J \rightarrow R \rightarrow R / J \rightarrow 0$ and $0 \rightarrow J T \rightarrow T \rightarrow T / J T \rightarrow 0$ be short exact sequences. Consider the following commutative diagram with exact rows:

By Lemma 3.2(1), we can get:

$$
\operatorname{Hom}_{T}(J T, L) \cong \operatorname{Hom}_{T}\left(J \otimes_{R} T, L\right) \cong \operatorname{Hom}_{R}\left(J, \operatorname{Hom}_{T}(T, L)\right)=\operatorname{Hom}_{R}(J, L),
$$

i.e., h is an isomorphism. It is easy to see that g is also an isomorphism. So in the above commutative diagram, by Five Lemma we can $\operatorname{get}_{\operatorname{Ext}}^{T}{ }^{1}(T / J T, L) \cong$ $\operatorname{Ext}_{R}^{1}(R / J, L)$.

Theorem 3.3. Let $\phi: R \rightarrow T$ be a ring homomorphism, where T as an R module is a GV-torsion-free module. Then the following statements are equivalent.
(1) $\phi(I)_{w} \subseteq(I T)_{W}$ for any ideal I of R.
(2) $\left(I_{w} T\right)_{W}=(I T)_{W}$ for any ideal I of R.
(3) $\phi^{-1}\left((I T)_{W}\right)$ is a w-ideal of R for any ideal I of R.
(4) $\phi^{-1}(A)$ is a w-ideal of R for any w-ideal A of T.
(5) $\phi^{-1}(P)$ is a w-ideal of R for any prime w-ideal P of T.
(6) If $J \in \mathrm{GV}(R)$, then $J T=\phi(J) T \in \mathrm{GV}(T)$.
(7) ϕ is a w-linked homomorphism.
(8) Let L be a T-module. If L as a T-module is a w-module, then L as an R-module is a w-module.
(9) Let L be a T-module. If L as a T-module is a GV-torsion-free module, then L as an R-module is a $G V$-torsion-free module.
(10) Let L be a T-module. If L as an R-module is a $G V$-torsion-free module, then L is a GV-torsion T-module.

Proof. (1) $\Rightarrow(2)$ Since $\phi(I)_{w} \subseteq(I T)_{W}$, it follows that

$$
\left(I_{w} T\right)_{W} \subseteq\left(\phi(I)_{w} T\right)_{W} \subseteq\left((I T)_{W} T_{W}\right)_{W}=(I T)_{W}
$$

$(2) \Rightarrow(6)$ Let $J \in \operatorname{GV}(R)$. Then $J_{w}=R$, and so $T=\left(J_{w} T\right)_{W}=(J T)_{W}$. Therefore $J T \in \operatorname{GV}(T)$.
$(6) \Rightarrow(1)$ Let $z \in T$ and $z \in \phi(I)_{w}$. Then there exists $J \in \operatorname{GV}(R)$ such that $J z \subseteq \phi(I)$. Since $J T z \subseteq I T$, by the hypothesis $J T \in \operatorname{GV}(T)$, and so $z \in(I T)_{W}$. Hence $\phi(I)_{w} \subseteq(I T)_{W}$.
$(6) \Rightarrow(8)$ By the hypothesis, L is a GV-torsion-free R-module. Let $J \in$ $\mathrm{GV}(R)$. Then by Lemma 3.2, we can get $\operatorname{Ext}_{R}^{1}(R / J, L) \cong \operatorname{Ext}_{T}^{1}(T / J T, L)=0$. Therefore L as an R-module is a w-module.
$(8) \Rightarrow(7)$ Take $L:=T$. Then T as an R-module is a w-module, i.e., ϕ is a w-linked homomorphism.
$(7) \Rightarrow(6)$ Let $J \in \mathrm{GV}(R)$. By Lemma 3.2, there exists an isomorphism

$$
\operatorname{Ext}_{T}^{1}(T / J T, T) \cong \operatorname{Ext}_{R}^{1}(R / J, T)=0
$$

and hence $J T \in \operatorname{GV}(T)$.
$(8) \Rightarrow(4)$ Write $I:=\phi^{-1}(A)$. Since $\phi\left(I_{w}\right) \subseteq \phi(I)_{w} \subseteq A_{w}=A$, we have $I_{w} \subseteq \phi^{-1}(A)=I$, and hence I is a w-ideal of R.
$(4) \Rightarrow(3)$ By letting $A:=(I T)_{W}$, we can get the conclusion.
$(3) \Rightarrow(6)$ Let $J \in \operatorname{GV}(R)$. Then $J_{w}=R$. Hence $R \subseteq \phi^{-1}\left((J T)_{W}\right)$ by assumption. Since $1=\phi(1) \in(J T)_{W}$, we have $(J T)_{W}=T$, namely $J T \in$ $\mathrm{GV}(T)$.
$(4) \Rightarrow(5)$ This is clear.
$(5) \Rightarrow(6)$ Let $J \in \mathrm{GV}(R)$ and suppose that $J T \notin \mathrm{GV}(T)$. Then $(J T)_{W} \neq T$, and so there exists a w-prime ideal P of T such that $(J T)_{W} \subseteq P$. Hence $J \subseteq \phi^{-1}(P)$, since $\phi^{-1}(P)$ is a w-prime ideal of R, a contradiction.
$(8) \Rightarrow(9)$ By the hypothesis, L_{W} is a w-module over R. Therefore L is a GV-torsion-free R-module.
$(9) \Rightarrow(10)$ Set $A=\{z \in L \mid J z=0$ for some $J \in \operatorname{GV}(T)\}$. Then L / A is a GV-torsion-free T-module. By the hypothesis, L / A is a GV-torsion R-module. Then $L / A=0$, namely, $L=A$. Therefore L is a GV-torsion T-module.
$(10) \Rightarrow(6)$ Let $J \in \mathrm{GV}(R)$. Then R / J is a GV-torsion R-module. From the natural isomorphism $T \otimes_{R}(R / J) \cong T / J T$, it follows that $T / J T$ is a GV-torsion R-module. By the hypothesis, $T / J T$ is a GV-torsion T-module. Therefore $J T \in \operatorname{GV}(T)$.

Let $\phi: R \rightarrow T$ be a w-linked homomorphism. Let A be a T-module. It is easy to see that $\operatorname{tor}_{\mathrm{GV}}(A)$ is a T-submodule of A. When A is an ideal of T, the mapping $w_{\phi}: A \mapsto A_{w}$ gives a w-liked operation over T, which is called the w_{ϕ}-operation. If an ideal A of T satisfies $A_{w}=A$, then we call A a w_{ϕ}-ideal. By Theorem 3.3, $\operatorname{GV}(\phi):=\{J T \mid J \in \operatorname{GV}(R)\} \subseteq \mathrm{GV}(T)$. Thus there exists the relationship of operations $w_{\phi} \leqslant w$ over T.

Accordingly let N be a T-module and let N as an R-module be a w-module. Then we also call N a $w_{\phi}-T$-module.

Proposition 3.4. Let $\phi: R \rightarrow T$ be a w-linked homomorphism. Then the following statements hold.
(1) Let P be a prime ideal of T. Then P is a w_{ϕ}-ideal of T if and only if $P_{w} \neq T$.
(2) Let A be a w_{ϕ}-ideal of T. Then $A=\cup B_{w}$, where B runs over all the f.g. subideals of A.
(3) Let A be a w_{ϕ}-ideal of T. Then there exists a maximal w_{ϕ}-ideal M of T such that $A \subseteq M$.
(4) Every maximal w_{ϕ}-ideal of T is prime.
(5) $\mathrm{Ann}_{T}(y)$ is a w_{ϕ}-ideal of T for any $y \in T$.
(6) Let M be a T-module. Then M as an R-module is a $G V$-torsion module if and only if $M_{\mathfrak{m}}=0$ for any maximal w_{ϕ}-ideal \mathfrak{m} of T.

Proof. The proof is similar to the w-module case in [11].
Theorem 3.5. Let $\phi: R \rightarrow T$ be a w-linked homomorphism. Then the following statements are equivalent.
(1) Every w_{ϕ}-ideal of T is also a w-ideal of T, in other words, $w_{\phi}=w$ over T.
(2) Every maximal w_{ϕ}-ideal of T is also a maximal w-ideal of T.
(3) Let $J \in \operatorname{GV}(T)$. Then there exists $I \in \operatorname{GV}(R)$ such that $\phi(I) \subseteq J$.
(4) Let M be a T-module. If M as an R-module is a $G V$-torsion-free module, then M is a $G V$-torsion-free T-module.
(5) Let M be a T-module. If M as an R-module is a w-module, then M is a w-T-module.
(6) Let M be a T-module. If M as a T-module is a $G V$-torsion module, then M is also a $G V$-torsion R-module.
(7) Let N be a T-module that is a $G V$-torsion-free R-module. Then $\operatorname{Hom}_{R}(T, N)$ is a $G V$-torsion-free T-module.
(8) Let N be a T-module that is a w-module over R. Then $\operatorname{Hom}_{R}(T, N)$ is a w-module over T.

Proof. (1) $\Rightarrow(2)$ This is clear.
$(2) \Rightarrow(3)$ Suppose that $J_{w} \neq T$. Then there exists a maximal w_{ϕ}-ideal P of T such that $J \subseteq P$. By the hypothesis, P is also a maximal w-ideal of T. Thus $J_{W} \neq T$, a contradiction to the fact that $J \in \mathrm{GV}(T)$.

Now since $J_{w}=T$, we have $1 \in J_{w}$. Hence there is $I \in \operatorname{GV}(R)$ such that $\phi(I)=I 1 \subseteq J$.
$(3) \Rightarrow(4)$ Let $J \in \operatorname{GV}(T), z \in M, J z=0$. Let $I \in \operatorname{GV}(R)$ such that $\phi(I) \subseteq J$. Then $I z=0$. Since M is a GV-torsion-free R-module, we have that $z=0$. Therefore M is a GV-torsion-free T-module.
$(4) \Rightarrow(5)$ Let E be the injective hull of M, where M is a T-module. Since M is a w - R-module, by the hypothesis, M is a GV-torsion-free T-module. Hence E is a $w-T$-module. By Theorem 3.3, we can get E is also a w - R-module.

Consider the exact sequence $0 \rightarrow M \rightarrow E \rightarrow E / M \rightarrow 0$. Since M is a w - R-module, according to [11, Theorem 6.1.17], E / M is a GV-torsion-free R-module. By the hypothesis, E / M is a GV-torsion-free T-module. By [11, Theorem 6.1.17], M is a w - T-module.
$(5) \Rightarrow(1)$ This is easy.
$(3) \Rightarrow(6)$ Let $z \in M$. Since M is a GV-torsion T-module, there exits $J \in$ $\operatorname{GV}(T)$ such that $J z=0$. By the hypothesis, there exists $I \in \mathrm{GV}(R)$ such that $I \subseteq J$. Thus we can get $I z=0$. Therefore M is also a GV-torsion R-module.
$(6) \Rightarrow(2)$ Let P be a maximal w_{ϕ}-ideal of T. Then T / P as an R-module is a GV-torsion-free module. If P is not a maximal w-ideal of T, then T / P is a GV-torsion T-module, which is a contradiction.
$(4) \Rightarrow(7)$ By [11, Proposition 6.1.10], $\operatorname{Hom}_{R}(T, N)$ is a GV-torsion-free R module. By the hypothesis, $\operatorname{Hom}_{R}(T, N)$ is a GV-torsion-free T-module.
$(7) \Rightarrow(2)$ Let P be a maximal w_{ϕ}-ideal of T. Then T / P is a GV-torsion-free R-module. By the hypothesis, $\operatorname{Hom}_{R}(T, T / P)$ is a GV-torsion-free T-module. Consider the exact sequence $0 \rightarrow \operatorname{Hom}_{R}(T / P, T / P) \rightarrow \operatorname{Hom}_{R}(T, T / P)$. Then $\operatorname{Hom}_{R}(T / P, T / P)$ is also a GV-torsion-free T-module. If P is not a maximal w ideal of T, then there exists $J \in \mathrm{GV}(T)$ such that $J \subseteq P$. Use 1 to denote the identity mapping over T / P. Then in $\operatorname{Hom}_{R}(T / P, T / P)$, we have that $J \mathbf{1}=$ 0 . Hence T / P is not a GV-torsion-free T-module, which is a contradiction. Therefore P is a maximal w-ideal of T.
$(7) \Rightarrow(8)$ Let E be the injective hull of N. Let $C=E / N$. Then E is a w-module. By [11, Theorem 6.1.17], C is a GV-torsion-free module. Consider the following exact sequence:

$$
0 \longrightarrow \operatorname{Hom}_{R}(T, N) \longrightarrow \operatorname{Hom}_{R}(T, E) \longrightarrow \operatorname{Hom}_{R}(T, C)
$$

By the hypothesis, $\operatorname{Hom}_{R}(T, E)$ and $\operatorname{Hom}_{R}(T, C)$ are GV-torsion-free T-modules. Notice that $\operatorname{Hom}_{R}(T, E)$ is also an injective T-module. Hence $\operatorname{Hom}_{R}(T, N)$ is a w-module over T.
$(8) \Rightarrow(7)$ Let E be the injective hull of N. Then E is a w-module. By the hypothesis, $\operatorname{Hom}_{R}(T, E)$ is a w-module. Since $\operatorname{Hom}_{R}(T, N)$ is a submodule of $\operatorname{Hom}_{R}(T, E)$, it follows that $\operatorname{Hom}_{R}(T, N)$ is a GV-torsion-free T-module.

Recall that a ring R is said to be a $D W$ ring if every ideal of R is a w-ideal. Clearly if $\operatorname{dim}(R)=0$, then R is a DW ring. Accordingly we can define DW $_{\phi}$ rings.

Definition 3.6. Let $\phi: R \rightarrow T$ be a w-linked homomorphism. If every ideal of T is a w_{ϕ}-ideal, namely it as an R-module is a w-module, then T is called a $D W_{\phi}$ ring.

Lemma 3.7. Let M be a GV-torsion module. Then there exists a continuous ascending chain of submodules of M

$$
0=M_{0} \subseteq M_{1} \subseteq \cdots \subseteq M_{\alpha} \subseteq M_{\alpha+1} \subseteq \cdots \subseteq M_{\tau}=M
$$

such that $M_{\alpha+1} / M_{\alpha}$ is a cyclic $G V$-torsion module for each ordinal α.
Proof. Set $M_{0}:=0$. Considering an element $x \in M$ with $x \neq 0, M_{1}:=R x$ is a cyclic GV-torsion module. For a given ordinal α, by induction hypothesis, we may assume that M_{β} meets the conditions for all $\beta<\alpha$. If $M_{\beta}=M$, then the chain terminates. Otherwise, when α is not a limit ordinal number, consider an element $y \in M \backslash M_{\alpha-1}$ and set $M_{\alpha}:=M_{\alpha-1}+R y$. Then $M_{\alpha} / M_{\alpha-1}$ is a cyclic GV-torsion module. And when α is a limit ordinal number, set $M_{\alpha}:=\bigcup_{\beta<\alpha} M_{\beta}$. By transfinite induction, the assertion follows.

Recall that an R-module N is said to be a strong w-module if $\operatorname{Ext}_{R}^{k}(R / J, N)$ $=0$ for any $J \in \operatorname{GV}(R)$ and for any $k \geqslant 1$. For the discussion about strong w-modules, we can refer to [13].

Theorem 3.8. Let $\phi: R \rightarrow T$ be a w-linked homomorphism. Then the following statements are equivalent.
(1) T is a $D W_{\phi}$ ring.
(2) Every prime ideal of T as an R-module is a w-module.
(3) Every maximal ideal of T as an R-module is a w-module.
(4) $\operatorname{GV}(\phi)=\{T\}$, in other words, if $J \in \operatorname{GV}(R)$, then $J T=T$.
(5) Every f.g. ideal of T as an R-module is a w-module.
(6) Every T-module as an R-module is a $G V$-torsion-free module.
(7) Every cyclic T-module as an R-module is a GV-torsion-free module.
(8) Every T-module as an R-module is a w-module.
(9) Every cyclic T-module as an R-module is a w-module.
(10) Every T-module as an R-module is a strong w-module.
(11) $T \otimes_{R} R_{1}=0$ for any cyclic $G V$-torsion R-module R_{1}.
(12) $T \otimes_{R} R_{1}=0$ for any $G V$-torsion R-module R_{1}.
(13) Let $\xi: 0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ be a sequence of T-modules. If ξ is a w-exact sequence of R-modules, then ξ is already an exact sequence.

Proof. (1) $\Rightarrow(2) \Rightarrow(3) \Rightarrow(4)$ Trivial.
$(4) \Rightarrow(6)$ Let N be a T-module, $J \in \mathrm{GV}(R), z \in M, J z=0$. Then $T z=$ $J T z=0$. Thus $z=0$. Therefore N is a GV-torsion-free R-module.
$(6) \Rightarrow(10)$ Let $J \in \mathrm{GV}(R)$ and $k \geqslant 1$ an integer. Then $\operatorname{Ext}_{R}^{k}(R / J, N)$ is a GV-torsion R-module. By the condition that $\operatorname{Ext}_{R}^{k}(R / J, N)$ is also a GV-torsion-free R-module, we have $\operatorname{Ext}_{R}^{k}(R / J, N)=0$. Therefore N is a strong w - R-module.
$(10) \Rightarrow(9) \Rightarrow(8) \Rightarrow(7)$ Trivial.
$(7) \Rightarrow(5)$ Let $I=\left(a_{1}, \ldots, a_{n}\right)$ be an ideal of T. Use the method of induction on n. When $n=1$, this is the hypothesis. When $n>1$, let $I_{1}=\left(a_{1}, \ldots, a_{n-1}\right)$. Then according to the exact sequence $0 \rightarrow I_{1} \rightarrow I \rightarrow I / I_{1} \rightarrow 0$ and the fact that I_{1} and I / I_{1} are w-modules, we can get I is a w-module.
$(5) \Rightarrow(1)$ Let I be an ideal of T. Then $I=\bigcup I_{0}$, where I_{0} runs over all f.g. ideals of R. By the hypothesis, we can get I is also a w-module.
$(4) \Rightarrow(11)$ Let $R_{1}=R x$ be a cyclic GV-torsion module. Then $R x \cong R / I$ for some ideal I of R. Since $R x$ is a GV-torsion module, we have $I_{w}=R$. So there exists $J \in \mathrm{GV}(R)$ such that $J \subseteq I$. Thus $R / J \rightarrow T \rightarrow 0$ is an exact sequence. Therefore we can get $T \otimes_{R} R_{1}=0$ by tensoring with T.
$(11) \Rightarrow(12)$ According to transfinite induction and Lemma 3.7, we can finish the proof.
$(12) \Rightarrow(4)$ Let $R_{1}=R / J$ for any $J \in \mathrm{GV}(R)$. Then applying the known condition, we can get the conclusion.
$(8) \Rightarrow(13)$ By [11, Theorem 6.3.5], $0 \rightarrow A \rightarrow B \rightarrow C$ is an exact sequence. Let $g: B \rightarrow C$ be a given homomorphism. Since g is a w-epimorphism, we have $\operatorname{Im}(g)=\operatorname{Im}(g)_{w}=C$. Hence g is also an epimorphism, and so ξ is also an exact sequence.
$(13) \Rightarrow(6)$ Let N be a T-module and let $L=\operatorname{tor}_{G V}(N)$. Then T as an R module is a GV-torsion module. So $0 \rightarrow L \rightarrow 0$ is a w-exact sequence. It follows the assumption that $L=0$. Hence N is a GV-torsion-free R-module.

Corollary 3.9. Let $\phi: R \rightarrow T$ be a w-linked homomorphism.
(1) Let T be a $D W_{\phi}$ ring. Then $\operatorname{dim}(T)=w_{\phi}-\operatorname{dim}(T)$.
(2) Let T be a $D W$ ring. Then T is a $D W_{\phi}$ ring.

Proof. (1) This follows from Theorem 3.8(2).
(2) This follows from the fact that $\operatorname{GV}(\phi) \subseteq \operatorname{GV}(T)=\{T\}$.

Example 3.10. (1) Let R be a DW ring. Then any ring homomorphism $\phi: R \rightarrow T$ is a w-linked homomorphism and T is a DW_{ϕ} ring.
(2) Let \mathfrak{m} be a maximal w-ideal of R and let $\phi: R \rightarrow R_{\mathfrak{m}}$ be a natural homomorphism. Then by [11, Proposition 6.2.18], $R_{\mathfrak{m}}$ is a DW_{ϕ} ring.
(3) Let $R\{x\}$ be the Nagata ring of R and let $\phi: R \rightarrow R\{x\}$ be a natural homomorphism. By [11, Theorem 6.6.17], $R\{x\}$ is a DW ring, and so $R\{x\}$ is a DW_{ϕ} ring.
(4) Let R be an integral domain but not a field. Let K be the quotient field of R and let $\phi: R \rightarrow K$ be an including homomorphism. Then K is a DW_{ϕ} ring. So we can notice that even if T is a DW_{ϕ} ring, R is not necessary a DW ring.
(5) The converse of Corollary 3.9 is not necessarily true. For example, let R be a DW domain but not a field. Let $\phi: R \rightarrow R[x]$ be an inclusion homomorphism. By Corollary 3.9, the polynomial ring $R[x]$ is a DW_{ϕ} ring. Let $a \in R$ be a nonzero and nonunit. Then $J=(a, x) \in \operatorname{GV}(R[x])$. Therefore $R[x]$ is not a DW ring.
(6) Let $\phi: R \rightarrow R[x]$ be an inclusion homomorphism and let R be not a DW ring. Then there exists a maximal ideal A of R such that A isn't a w-ideal. So $A[x]$ as an R-module is not a w-module. Therefore a polynomial ring extension is not a DW_{ϕ} ring in general.

Recall that a ring R is said to be local if R has only one maximal ideal. However, the w-operation does not play a role over DW rings. So if R isn't a DW ring, we can introduce a local w-ring, which has the only one maximal w-ideal, but by the next theorem and corollary, we can see that it can't come true.

Theorem 3.11. Let $\phi: R \rightarrow T$ be a w-linked homomorphism. Let T be a non- $D W_{\phi}$ ring. Then T must have an infinite number of maximal w_{ϕ}-ideals.

Proof. Since T is not a DW_{ϕ} ring, by Theorem 3.8, there exists a maximal $w_{\phi^{-}}$ ideal M_{1} of T such that M_{1} is not a maximal ideal of T. Suppose on the contrary that T has only a finite number of maximal w_{ϕ}-ideals, say $M_{1}, M_{2}, \ldots, M_{n}$. Let P be a maximal ideal containing M_{1}. Then P is not a w_{ϕ}-ideal. According to Prime Avoidance Theorem, $P \nsubseteq \bigcup_{i=1}^{n} M_{i}$. Let $y \in P \backslash \bigcup_{i=1}^{n} M_{i}$.

If y is a non-zero-divisor of T, then $T y$ is a proper w_{ϕ}-ideal of T. If y is a zero-divisor of R, then $\operatorname{Ann}_{T}(y) \neq 0$, and so $T y \subseteq \operatorname{Ann}_{T}(\operatorname{Ann}(y)) \neq T$. By Proposition 3.4, $\operatorname{Ann}_{T}(\operatorname{Ann}(y))$ is a w_{ϕ}-ideal of T. By Proposition 3.4 again, there exists a maximal w_{ϕ}-ideal M of T such that $T x \subseteq M$. Clearly $M \neq M_{i}$, $i=1,2, \ldots, n$, which is a contradiction.

Corollary 3.12. Let R be a non- $D W$ ring. Then R must have an infinite number of maximal w-ideals.

Proof. The assertion follows immediately by letting $T:=R$ and ϕ be the identity homomorphism in Theorem 3.11.

4. Properties of a \boldsymbol{w}-factor ring $\overline{\boldsymbol{R}}_{\boldsymbol{w}}$

Let R be a ring, let I be a proper w-ideal of R, and let $\bar{R}=R / I$. Let $\pi: R \rightarrow \bar{R}$ be a natural homomorphism and let $\lambda: \bar{R} \rightarrow \bar{R}_{w}$ be the inclusion homomorphism. Then $\phi: R \rightarrow \bar{R}_{w}$ is a natural w-linked homomorphism. We also call \bar{R}_{w} a w-factor ring of R.

Let I be an ideal of R. Write \mathcal{Q} as the multiplicative system of f.g. semiregular ideals of R. Recall that I is said to be a q-ideal, if $z \in R$ and $J \in \mathcal{Q}$ with $J z \subseteq I$ imply $z \in I$.
Remark 4.1. (1) Let $\alpha \in \bar{R}_{w}$. By Proposition 2.5, write $\alpha=\frac{\sum_{i=0}^{n} \overline{\bar{i}} x^{i}}{\sum_{i=0}^{n} \overline{\bar{i}} x^{i}}$, where $a_{i}, d_{i} \in R, \sum_{i=0}^{n} d_{i} x^{i}$ is a GV-polynomial and $\overline{d_{i}} \overline{a_{j}}=\overline{d_{j}} \overline{a_{i}}$ for any i, j. So we have $\frac{\sum_{i=0}^{n} a_{i} x^{i}}{\sum_{i=0}^{n} d_{i} x^{i}} \in R\{x\}$. In other words, there exists a $u \in R\{x\}$ such that $\phi(u)=\alpha$.
(2) Let I be a q-ideal of R. For $\alpha=\frac{\sum_{i=0}^{n} a_{i} x^{i}}{\sum_{i=0}^{n} b_{i} x^{i}} \in Q_{0}(R)$, let $\pi(\alpha)=\frac{\sum_{i=0}^{n} \overline{a_{i}} x^{i}}{\sum_{i=0}^{n} \overline{b_{i}} x^{i}}$. Then the ring homomorphism $\pi: R \rightarrow \bar{R}$ can be extended to the map from $Q_{0}(R)$ to $Q_{0}(\bar{R})$.
(3) Let M be a GV-torsion-free R-module. Considering the identity homomorphism $1: R \rightarrow R$, by Proposition $2.5, M_{w}=\left\{\left.\begin{array}{l}\sum_{i=0}^{n} u_{i} x^{i} \\ \sum_{i=0}^{n} d_{i} x^{i}\end{array} M[x]_{S_{w}} \right\rvert\,\right.$ $\sum_{i=0}^{n} d_{i} x^{i}$ is a GV-ploynomial and $d_{i} u_{j}=d_{j} u_{i}$ for any $\left.i, j\right\}$.
(4) Let M be an \bar{R}-module and let M as an R-module be a GV-torsion-free module. Denote $a \in R$ over \bar{R} by \bar{a}. Then $M_{w}=\left\{\left.\begin{array}{l}\sum_{i=0}^{n} u_{i} x^{i} \\ \sum_{i=0}^{n} \overline{d_{i} x^{i}}\end{array} M[x]_{S_{w}} \right\rvert\,\right.$ $\sum_{i=0}^{n} d_{i} x^{i}$ is a GV-ploynomial and $\overline{d_{i}} u_{j}=\overline{d_{j}} u_{i}$ for any $\left.i, j\right\}$.

Proposition 4.2. Let B be an ideal of R containing I. Denote $\bar{B}=B / I$. Then:
(1) $\bar{B}_{w}=\left(\overline{B_{w}}\right)_{w}=\left(B \bar{R}_{w}\right)_{w}$.
(2) $\bar{B}_{w}=\bar{R}_{w}$ if and only if $B_{w}=R$.
(3) Let B be a prime w-ideal of R. Then \bar{B}_{w} is a prime w_{ϕ}-ideal of \bar{R}_{w} and $\bar{B}_{w} \cap \bar{R}=\bar{B}$.

Proof. (1) By [11, Exercise 6.20(1)], $\bar{B}_{w}=\left(\overline{B_{w}}\right)_{w}$. Notice that $B \bar{R}=\bar{B}$. Hence $\left(B \bar{R}_{w}\right)_{w}=(B \bar{R})_{w}=\bar{B}_{w}$.
(2) Let $B_{w}=R$. Then by (1), $\bar{B}_{w}=\left(\overline{B_{w}}\right)_{w}=\bar{R}_{w}$.

Conversely, let $\bar{B}_{w}=\bar{R}_{w}$. Then $(B / I)_{\mathfrak{m}}=B_{\mathfrak{m}} / I_{\mathfrak{m}}=R_{\mathfrak{m}} / I_{\mathfrak{m}}$ for any $\mathfrak{m} \in$ $w-\operatorname{Max}(R)$, and so $B_{\mathfrak{m}}=R_{\mathfrak{m}}$. Thus $B_{w}=R$.
(3) Let $y, z \in \bar{R}_{w}, y z \in \bar{B}_{w}$. Then there exists $J \in \operatorname{GV}(R)$ such that $J y, J z \subseteq \bar{R}$ and $J^{2} y z \subseteq \bar{B}$. Since \bar{B} is a prime ideal of \bar{R}, it follows that $J y \subseteq \bar{B}$ or $J z \subseteq \bar{B}$. Hence $y \in \bar{B}_{w}$ or $z \in \bar{B}_{w}$. Therefore \bar{B}_{w} is a prime w_{ϕ}-ideal of \bar{R}_{w}.

Let $r \in R, \bar{r}=\frac{\sum_{i=0}^{n} \overline{b_{i}} x^{i}}{\sum_{i=0}^{n} \overline{d_{i}} x^{i}}$, where $b_{i} \in B, \overline{d_{j} b_{i}}=\overline{d_{i} b_{j}}, J:=\left(d_{0}, d_{1}, \ldots, d_{n}\right) \in$ $\operatorname{GV}(R)$. Then $\overline{d_{k}} \bar{r}=\overline{b_{k}}$, and so $J r \subseteq B$. Since B is a prime w-ideal, we have $r \in B$. Therefore $\bar{B}_{w} \cap \bar{R}=\bar{B}$.

Lemma 4.3. Let M, N be w-modules over $R, f: M \rightarrow N$ be a homomorphism, and A be a w-submodule of N. Then $B:=f^{-1}(A)$ is a w-submodule of M.

Proof. Let $J \in \operatorname{GV}(R), x \in M, J x \subseteq B$. Then $J f(x)=f(J x) \subseteq f(B) \subseteq A$. Since A is a w-submodule of N, we have $f(x) \in A$. Thus $x \in B$. Therefore $B:=f^{-1}(A)$ is a w-submodule of M.

Proposition 4.4. Let $\phi: R \rightarrow \bar{R}_{w}$ be a natural w-linked homomorphism. Then:
(1) Let A be a w_{ϕ}-ideal of \bar{R}_{w}. Write $B=\phi^{-1}(A)$. Then $I \subseteq B$ and $A=(B / I)_{w}$.
(2) Let A_{i} be a w_{ϕ}-ideal of \bar{R}_{w} for $i=1,2$. Write $B_{i}=\phi^{-1}\left(A_{i}\right)$. Then $A_{1}=A_{2}$ if and only if $B_{1}=B_{2}$.
(3) There is a one-to-one correspondence between the set of w-ideals (resp., prime w-ideals, maximal w-ideals) of R containing I and the set of w_{ϕ} ideals (resp., prime w_{ϕ}-ideals, maximal w_{ϕ}-ideals) of \bar{R}_{w}.
(4) $(\sqrt{I} / I)_{w}=\operatorname{nil}\left(\bar{R}_{w}\right)$.

Proof. (1) By Lemma 4.3, B is a w-ideal of R. Clearly $I \subseteq B$. Since $\phi(x)=$ $\pi(x)=\bar{x} \in A$ for $x \in B$, we have $B / I \subseteq A$. Thus $(B / I)_{w} \subseteq A$.

Conversely, let $\alpha=\frac{\sum_{i=0}^{n} \overline{r_{i}} x^{i}}{\sum_{i=0}^{n} \overline{d_{i}} x^{i}} \in A$. Then $\bar{d}_{i} \alpha=\overline{r_{i}}$. So $r_{i} \in B$, and thus $\overline{r_{i}} \in B / I$. Hence $\alpha \in(B / I)_{w}$. So we can get $A=(B / I)_{w}$.
(2) Let $A_{1}=A_{2}$. Then it is easy to get $B_{1}=B_{2}$.

Conversely, let $B_{1}=B_{2}$. Then $A_{1}=\left(B_{1} / I\right)_{w}=\left(B_{2} / I\right)_{w}=A_{2}$.
(3) This follows from (2).
(4) Let $\alpha=\frac{\sum_{i=0}^{n} \overline{r_{i}} x^{i}}{\sum_{i=0}^{n} \overline{d_{i}} x^{i}} \in \operatorname{nil}\left(\bar{R}_{w}\right)$. Then there exists a positive integer m such that $\alpha^{m}=0$. So $\sum_{i=0}^{n} \overline{r_{i}} x^{i}$ is a nilpotent element. Hence every $\overline{r_{i}}$ is
a nilpotent element. Thus $\overline{r_{i}} \in \operatorname{nil}(\bar{R})=\sqrt{I} / I$. Hence $\alpha \in(\sqrt{I} / I)_{w}$. So $n i l\left(\bar{R}_{w}\right) \subseteq(\sqrt{I} / I)_{w}$.

Conversely, since $\sqrt{I} / I \subseteq \operatorname{nil}\left(\bar{R}_{w}\right)$, we have that $(\sqrt{I} / I)_{w} \subseteq \operatorname{nil}\left(\bar{R}_{w}\right)$.
Let I_{1}, I_{2} be w-ideals of R such that $I_{1} \subseteq I_{2}$. Then there exists the natural homomorphism $\sigma: R / I_{1} \rightarrow R / I_{2}$ such that $\sigma(\bar{r})=\bar{r}$. Notice that the bars in the two locations have different meanings. So σ induces a ring homomorphism $\sigma:\left(R / I_{1}\right)_{w} \rightarrow\left(R / I_{2}\right)_{w}$ such that

$$
\sigma\left(\frac{\sum_{i=0}^{n} \overline{a_{i}} x^{i}}{\sum_{i=0}^{n} \overline{b_{i}} x^{i}}\right)=\frac{\sum_{i=0}^{n} \overline{i_{i}} x^{i}}{\sum_{i=0}^{n} \overline{b_{i}} x^{i}} .
$$

Theorem 4.5. Let $\phi: R \rightarrow \bar{R}_{w}$ be a natural w-linked homomorphism. Then:
(1) I is a prime w-ideal of R if and only if \bar{R}_{w} is an integral domain.
(2) I is a maximal w-ideal of R if and only if \bar{R}_{w} is a field.

Proof. (1) Let I be a prime w-ideal of R. Then R / I is an integral domain. By Proposition 2.5(6), \bar{R}_{w} is an integral domain.

Conversely, let \bar{R}_{w} be an integral domain. Since $\bar{R}=R / I \subseteq \bar{R}_{w}$, it follows that \bar{R} is an integral domain. Therefore I is a prime ideal.
(2) Let I be a maximal w-ideal of R. By [11, Proposition 6.5.5], $\bar{R}_{w}=q f(\bar{R})$ is a field.

Conversely, let P be a maximal w-ideal of R and $I \subseteq P$. Then there exists a natural homomorphism $\sigma: \bar{R}_{w} \rightarrow(R / P)_{w}$. Since \bar{R}_{w} is a field, σ is a monomorphism. Thus the natural homomorphism $R / I \rightarrow R / P$ is a monomorphism. Therefore $I=P$ is a maximal w-ideal of R.

Theorem 4.6. The following statements are equivalent.
(1) \bar{R}_{w} satisfies the descending chain condition on w_{ϕ}-ideals of \bar{R}_{w}.
(2) \bar{R}_{w} satisfies the minimal condition on w_{ϕ}-ideals of \bar{R}_{w}.
(3) \bar{R}_{w} is an Artinian ring.

Proof. (1) $\Rightarrow(2)$ It is trivial.
$(2) \Rightarrow(3)$ We should prove that \bar{R}_{w} has only a finite number of maximal $w_{\phi^{-}}$ ideals, and then by Theorem 3.11, \bar{R}_{w} is a DW_{ϕ} ring. Hence every ideal of \bar{R}_{w} is a w_{ϕ}-ideal. Therefore \bar{R}_{w} is an Artinian ring.

Set
$S=\left\{M_{1} \cap M_{2} \cap \cdots \cap M_{k} \mid k \geqslant 1, M_{i}\right.$ is a maximal w_{ϕ}-ideal of $\left.\bar{R}_{w}\right\}$.
By the hypothesis, S has a minimal element $M_{1} \cap M_{2} \cap \cdots \cap M_{n}$. Now we prove that $M_{1}, M_{2}, \ldots, M_{n}$ are all the maximal w_{ϕ}-ideals of R.

Let M be a maximal ideal of R. By the minimal property of $M_{1} \cap M_{2} \cap$ $\cdots \cap M_{n}$, we have

$$
M \cap M_{1} \cap M_{2} \cap \cdots \cap M_{n}=M_{1} \cap M_{2} \cap \cdots \cap M_{n} .
$$

Then $M_{1} M_{2} \cdots M_{n} \subseteq M$. So there exists i such that $M_{i} \subseteq M$. Since M_{i} is the maximal w_{ϕ}-ideal, we have $M_{i}=M$.
$(3) \Rightarrow(1)$ This is clear.
Theorem 4.7. Let R be an integral domain. Then the following statements are equivalent.
(1) R is an $S M$-domain with $w-\operatorname{dim}(R) \leq 1$.
(2) For any nonzero w-ideal I of $R,(R / I)_{w}$ is an Artinian ring.
(3) For any nonzero element $a \in R,(R /(a))_{w}$ is an Artinian ring.
(4) For any nonzero element $a \in R, R$ has the descending chain condition on w-ideals of R containing a.

Proof. (1) $\Rightarrow(2)$ Let $(\xi): A_{1} \supseteq A_{2} \supseteq \cdots \supseteq A_{n} \supseteq \cdots$ be a descending chain of w_{ϕ}-ideals of $(R / I)_{w}$. For every n, let $B_{n}=\phi^{-1}\left(A_{n}\right)$. By Proposition 4.4, $(\eta): B_{1} \supseteq B_{2} \supseteq \cdots \supseteq B_{n} \supseteq \cdots$ is a descending chain of w-ideals of R. By [4, Theorem 3.2], the descending chain (η) is stationary. By Proposition 4.4, the descending chain (ξ) is stationary. By Theorem 4.6, \bar{R}_{w} is an Artinian ring.
$(2) \Rightarrow(3)$ This is trivial.
$(3) \Rightarrow(4)$ Let $(\xi): I_{1} \supseteq I_{2} \supseteq \cdots \supseteq I_{n} \supseteq \cdots$ be a descending chain of w-ideals of R containing a. Then $(\eta):\left(I_{1} /(a)\right)_{w} \supseteq\left(I_{2} /(a)\right)_{w} \supseteq \cdots \supseteq\left(I_{n} /(a)\right)_{w} \supseteq \cdots$ is a descending chain of w_{ϕ}-ideals of $(R /(a))_{w}$. Since $(R /(a))_{w}$ is an Artinian ring, the descending chain (η) is stationary. By Proposition 4.4, the descending chain (ξ) is stationary.
$(4) \Rightarrow(1)$ Let I be a nonzero w-ideal of R and let $(\xi): I_{1} \supseteq I_{2} \supseteq \cdots \supseteq I_{n} \supseteq$ \cdots be a descending chain of w-ideals of R containing I. For any $a \in I$ with $a \neq 0,(\xi)$ is also a descending chain of w-ideals of R containing a. By the hypothesis, (ξ) is stationary. By [4, Theorem 3.2] again, R is an SM domain with $w-\operatorname{dim}(R) \leq 1$.

References

[1] D. Costa and M. Roitman, A lifting approach to v - and t-ideals, Comm. Algebra 18 (1990), no. 11, 3725-3742. https://doi.org/10.1080/00927879008824105
[2] D. E. Dobbs, E. G. Houston, T. G. Lucas, M. Roitman, and M. Zafrullah, On t-linked overrings, Comm. Algebra 20 (1992), no. 5, 1463-1488. https://doi.org/10.1080/ 00927879208824414
[3] D. E. Dobbs, E. G. Houston, T. G. Lucas, and M. Zafrullah, t-linked overrings and Prüfer v-multiplication domains, Comm. Algebra 17 (1989), no. 11, 2835-2852. https: //doi.org/10.1080/00927878908823879
[4] W. Fanggui and R. L. McCasland, On strong Mori domains, J. Pure Appl. Algebra 135 (1999), no. 2, 155-165. https://doi.org/10.1016/S0022-4049(97)00150-3
[5] B. G. Kang, A characterization of Krull rings with zero divisors, J. Pure Appl. Algebra 72 (1991), no. 1, 33-38. https://doi.org/10.1016/0022-4049(91)90127-N
[6] B. G. Kang, Characterizations of Krull rings with zero divisors, J. Pure Appl. Algebra 146 (2000), no. 3, 283-290. https://doi.org/10.1016/S0022-4049(98)00100-5
[7] H. Kim, Module-theoretic characterizations of t-linkative domains, Comm. Algebra 36 (2008), no. 5, 1649-1670. https://doi.org/10.1080/00927870701872513
[8] T. G. Lucas, Krull rings, Prüfer v-multiplication rings and the ring of finite fractions, Rocky Mountain J. Math. 35 (2005), no. 4, 1251-1325. https://doi.org/10.1216/rmjm/ 1181069687
[9] A. Mimouni, Integral domains in which each ideal is a W-ideal, Comm. Algebra 33 (2005), no. 5, 1345-1355. https://doi.org/10.1081/AGB-200058369
[10] F. Wang, w-dimension of domains. II, Comm. Algebra 29 (2001), no. 6, 2419-2428. https://doi.org/10.1081/AGB-100002398
[11] F. Wang and H. Kim, Foundations of commutative rings and their modules, Algebra and Applications, 22, Springer, Singapore, 2016. https://doi.org/10.1007/978-981-10-3337-7
[12] F. Wang and R. L. McCasland, On w-modules over strong Mori domains, Comm. Algebra 25 (1997), no. 4, 1285-1306. https://doi.org/10.1080/00927879708825920
[13] F. Wang and L. Qiao, A homological characterization of Krull domains II, Comm. Algebra 47 (2019), no. 5, 1917-1929. https://doi.org/10.1080/00927872.2018.1524007
[14] L. Xie, F. G. Wang, and Y. Tian, On w-linked overrings, J. Math. Res. Exposition 31 (2011), no. 2, 337-346.
[15] H. Yin, F. Wang, X. Zhu, and Y. Chen, w-modules over commutative rings, J. Korean Math. Soc. 48 (2011), no. 1, 207-222. https://doi.org/10.4134/JKMS.2011.48.1.207
[16] D. Zhou, H. Kim, and K. Hu, A Cohen-type theorem for w-Artinian modules, J. Algebra Appl. 20 (2021), no. 6, Paper No. 2150106, 25 pp. https://doi.org/10.1142/ S0219498821501061

Xiaoying Wu
School of Mathematics Science
Sichuan Normal University
Chengdu, Sichuan 610066, P. R. China
Email address: mengwxy2017@163.com

