Bull. Korean Math. Soc. **59** (2022), No. 3, pp. 725–743 https://doi.org/10.4134/BKMS.b210427 pISSN: 1015-8634 / eISSN: 2234-3016

A GENERALIZATION OF *w*-LINKED EXTENSIONS

XIAOYING WU

ABSTRACT. In this paper, the concepts of w-linked homomorphisms, the w_{ϕ} -operation, and DW_{\phi} rings are introduced. Also the relationships between w_{ϕ} -ideals and w-ideals over a w-linked homomorphism $\phi: R \to T$ are discussed. More precisely, it is shown that every w_{ϕ} -ideal of T is a w-ideal of T. Besides, it is shown that if T is not a DW_{\phi} ring, then T must have an infinite number of maximal w_{ϕ} -ideals. Finally we give an application of Cohen's Theorem over w-factor rings, namely it is shown that an integral domain R is an SM-domain with w-dim $(R) \leq 1$, if and only if for any nonzero w-ideal I of R, $(R/I)_w$ is an Artinian ring, if and only if for any nonzero element $a \in R$, R satisfies the descending chain condition on w-ideals of R containing a.

1. Introduction

Throughout this paper, R denotes a commutative ring with identity. Let R be an integral domain with quotient field K.

As is well known, an integral domain R is a Prüfer domain if and only if every overring of R is integrally closed. In order to give a Prüfer-like characterization of PVMDs (Prüfer v-multiplication domains), the concept of t-linked extensions was introduced in [3]. Namely, let $R \subseteq T \subseteq K$ be an extension. If $J^{-1} = R$ for a finitely generated (abbreviated to f.g.) nonzero ideal J of R implies that $(JT)^{-1} = T$, then T is called a t-linked extension of R. By virtue of the concept of t-linked extensions, Dobbs *et al.* proved that R is a PVMD if and only if every t-linked overring of R is integrally closed. More generally, by the concept of t-linked extensions in [2], the authors tried to learn the relationships between the t-operation of R and t-operation of T in an extension $R \subseteq T$ of rings. In [2], the concept of t-linkative domains is introduced. An integral domain R is said to be t-linkative if it satisfies that every extension ring of R is a t-linked extension. In [12], a f.g. nonzero ideal J such that $J^{-1} = R$ is called a GV-ideal (Glaz-Vasconcelos ideal) by Wang *et al.*, denoted by $J \in GV(R)$, where GV(R)is the set of all GV-ideals of R. Clearly, GV(R) is a multiplicative set of ideals

©2022 Korean Mathematical Society

Received June 1, 2021; Revised August 28, 2021; Accepted September 2, 2021.

²⁰¹⁰ Mathematics Subject Classification. 13B02, 13E05.

Key words and phrases. w-linked homomorphism, w_{ϕ} -operation, DW_{ϕ} ring, w-factor ring.

of R. Let M be an R-module. Define

$$\operatorname{tor}_{\mathrm{GV}}(M) = \{ x \in M \mid Jx = 0 \text{ for some } J \in \mathrm{GV}(R) \}.$$

Therefore, $\operatorname{tor}_{\mathrm{GV}}(M)$ is a submodule of M. And an R-module M is called a GV-torsion-free module if whenever Jx = 0 for some $J \in \operatorname{GV}(R)$ and $x \in M$, one has x = 0. A GV-torsion-free module M is called a w-module if $\operatorname{Ext}^1_R(R/J, M) = 0$ for any $J \in \operatorname{GV}(R)$, and the w-envelope of M is the set given by

 $M_w = \{ x \in E(M) \mid Jx \in M \text{ for some } J \in \mathrm{GV}(R) \},\$

where E(M) is the injective hull of M. Therefore, M is a w-module if and only if $M_w = M$. For w-modules, readers are referred to [11]. Besides, in an extension $R \subseteq T$ (T not necessary in the quotient field K) of domains, if T as an R-module is a w-module, then T is called a w-domain over R in [4]. In [10], it is shown that T is a t-linked extension of R if and only if T is a w-domain over R for any extension $R \subseteq T$ (T not necessary in the quotient field K) of domains. In [10], it is pointed out that R is a t-linkative domain if and only if every ideal is a w-ideal, subsequently, Mimouni called it a DW domain in [9]. Also in [7], Kim studied it module-theoretically.

The Krull-Akizuki Theorem states that if R is a Noetherian domain with $\dim(R) = 1$, then every overring T of R is a Noetherian domain with $\dim(R) \leq 1$ 1. In 1976, this theorem was generalized to reduced Noetherian rings by Matijevic. Namely, let R be a reduced Noetherian ring. Then every extension ring Tof R contained in the global transform is a Noetherian ring. In 1999, Wang and McCsland in [4] generalized Krull-Akizuki Theorem to strong Mori domains. That is, let R be an SM domain with w-dim $(R) \leq 1$. Then they showed that every t-linked overring T of R is an SM domain with w-dim $(T) \leq 1$. Park proved a w-version of Krull-Akizuki Theorem over domain in 2002, that is, if R is an SM domain, then the w-global transform of R is a w-overring, and every w-overring of R contained in the w-global transform is also an SM domain. As a corollary, she obtained the result of Wang and McCsland again. Yin et al. observed that the w-operation has good torsion-theoretic properties. They in [15]generalized the w-operation to commutative rings and introduced the concept of w-Noetherian rings. In 2011, in order to gave a w-version of Krull-Akizuki Theorem over commutative rings, Xie et al. in [14] unified t-linked extensions over integral domains and w-domains into w-linked extensions. Let $R \subseteq T$ be an extension of rings. If T as an R-module is a w-module, then the ring extension is called a w-linked extension. In [14], it is proved that: If R is a reduced w-Noetherian ring, then every w-linked extension ring of R contained in the w-global transform is a w-Noetherian ring. More properties of w-linked extension, we can refer to [14].

Let R be a commutative ring and I be a *w*-ideal of R. Although the use of "*w*-linked" can learn many properties of ring extensions, the experience of this approach is rarely used for the natural ring homomorphism $R \to R/I$. Besides, the discussion of factor rings in the star-operation theory is mostly avoided by

researchers. The main reason is that there is not enough connection between a star operation on R and the same star operation on the factor ring R/I. Let R be an integral domain and let $u \in R$ be a nonzero element. The *a*operation and the *b*-operation over a factor ring R/(u) are introduced by Costa *et al.* in [1]. Let I = A/(u) be an ideal of R/(u). Define $I_a := \text{Ann}(\text{Ann}(I))$ and $I_b := \bigcup \{J_a \mid \text{where } J \text{ runs over all the f.g. ideals of } I\}$. So $I_a = A_v/(u)$ and $I_b = A_t/(u)$. Although the *a*-operation and the *b*-operation over R/(u)correlate well with the *v*-operation and the *t*-operation of commutative rings with zero divisor, which Kang *et al.* discussed in [5,6].

As is well known, the *w*-linked extension can well describe the relationship between the w-operators on R and T. In order for the "w-linked" idea to play a role in the discussion of the factor ring R/I, we introduce the concept of the w-linked homomorphism. Let $\phi: R \to T$ be a ring homomorphism. If T as an *R*-module is a *w*-module, then ϕ is called a *w*-linked homomorphism. Many classical theorems can have natural w-version representations with the help of the w-linked homomorphism. For example, let R be an integral domain, in 1950, Cohen proved that R is a Noetherian ring with $\dim(R) \leq 1$, if and only if R/I is an Artinian ring for every nonzero proper ideal I of R, if and only if R/(a) is an Artinian ring for every nonzero and non-unit element a of R. In 1999, Wang et al. in [4] gave a w-version of Cohen's Theorem: An integral domain R is an SM domain with w-dim $(R) \leq 1$, if and only if for any nonzero w-ideal I of R, every descending chain on w-ideals of R containing I stabilizes. In this paper, by virtue of the concept of w-linked homomorphisms, the "wlinked" idea plays an important role in the discussion of the factor ring R/I. As is well known, a ring R is said to be local if R has only one maximal ideal. If every ideal of R is a w-ideal, then R is said to be a DW ring. However, the w-operation does not play a role over DW rings, so the naturally arising question if R isn't a DW ring, whether we can introduce a local w-ring, which has only one maximal w-ideal, but in this paper, according to Theorem 3.11 and Corollary 3.12, we get that it can't come true. Namely, let $\phi : R \to T$ be a w-linked homomorphism. Let T be not a DW_{ϕ} ring. Then T must have an infinite number of maximal w_{ϕ} -ideals. And let R be not a DW ring. Then R must have an infinite number of maximal w-ideals. Moreover, let R be a ring, let I be a proper w-ideal of R, and let $\overline{R} = R/I$, $\phi : R \to \overline{R}_w$ is a natural w-linked homomorphism, where \overline{R}_w is a w-factor ring of R. By virtue of the concept of w-factor rings, we give an application of Cohen's Theorem over wfactor rings, namely, we give a new characterization of an SM domain with w-dim $(R) \leq 1$: Let R be an integral domain. Then R is an SM-domain with w-dim $(R) \leq 1$, if and only if for any nonzero w-ideal I of R, \overline{R}_w is an Artinian ring, if and only if for any nonzero element $a \in R$, $(R/(a))_w$ is an Artinian ring, if and only if for any nonzero element $a \in R$, R has the descending chain condition on w-ideals of R containing a.

Undefined terms and terminology are standard as in [11, 14].

2. The ring of finite fractions

Let R be a ring and let x be an indeterminate. For $f(x) = \sum_{i=0}^{n} d_i x^i \in R[x]$, we denote $c(f) := (d_0, d_1, \ldots, d_n)$. Recall that an ideal A of R is called a semiregular ideal if $\operatorname{Ann}(I) = 0$ for some f.g. subideal I of A. It is easy to see that the set of f.g. semiregular ideals of R is a multiplicative system of ideals of R.

Lemma 2.1. Let $f(x) = \sum_{i=0}^{n} d_i x^i \in R[x]$.

- (1) Let M be an R-module. If f(x) is a zero-divisor of M[x], then f(x)u = 0 for some $u \in M$ with $u \neq 0$.
- (2) f(x) is a non-zero-divisor of R[x] if and only if c(f) is a semiregular ideal.

Proof. (1) Suppose f(x) is a zero-divisor of M[x]. Then we may choose $g(x) \in M[x]$ with $g(x) \neq 0$ such that f(x)g(x) = 0 and the degree of g(x) is minimal. Write $g(x) = \sum_{j=0}^{m} b_j x^j \in M[x]$, where $b_j \in M$, $b_m \neq 0$. Then

$$f(x)g(x) = b_m d_n x^{m+n} + (b_m d_{n-1} + b_{m-1} d_n) x^{m+n-1} + \dots = 0,$$

and thus $b_m d_n = 0$. Hence $b_m f(x) = 0$. If not and let d_k be the first coefficient of f(x) such that $b_m d_k \neq 0$, then $b_m d_n = 0, b_m d_{n-1} = 0, \ldots, b_m d_{k+1} = 0$. Since $(d_i g(x))f(x) = 0$, $\deg(d_i g(x)) < \deg(g(x))$, and the degree of g(x) is minimal, we have $d_i g(x) = 0$, $i = n, n - 1, \ldots, k + 1$. Write

$$f(x) = (d_n x^n + \dots + d_{k+1} x^{k+1}) + (d_k x^k + \dots + d_0) = f_1(x) + f_2(x).$$

Since $g(x)f(x) = g(x)f_1(x) + g(x)f_2(x) = 0$ and $g(x)f_1(x) = 0$, we have $b_m d_k = 0$, which is a contradiction. Therefore $b_m f(x) = 0$. So let $u := b_m \in M$. Then f(x)u = 0 with $u \neq 0$.

(2) Suppose f(x) is a zero-divisor of R[x]. If $a \in R$ with ac(f) = 0, then af(x) = 0. Hence a = 0. Therefore c(f) is a semiregular ideal of R.

Conversely, suppose c(f) is a semiregular ideal of R and $g(x) \in R[x]$ such that g(x)f(x) = 0. If $g(x) \neq 0$, then according to [11, Theorem 1.7.7], there exists $a \in R$ with $a \neq 0$ such that af(x) = 0. Then ac(f) = 0, and so a = 0, a contradiction. Therefore f(x) is a non-zero-divisor of R[x].

 Set

 $Q_0(R) := \{ \alpha \in T(R[x]) \mid I\alpha \subseteq R \text{ for some f.g. semiregular ideal } I \text{ of } R \}.$

Then $Q_0(R)$ is an extension ring of R contained in T(R[x]). Hence $Q_0(R)$ is called a ring of finite fractions of R. By [8], the element α of $Q_0(R)$ can be written as $\alpha = \frac{\sum_{i=0}^{n} a_i x^i}{\sum_{i=0}^{n} b_i x^i}$, where $a_i, b_i \in R$, (b_0, b_1, \ldots, b_n) is an semiregular ideal, and $a_i b_j = a_j b_i$ for any i, j. Clearly $T(R) \subseteq Q_0(R)$ and $Q_0(R)$ is the quotient field of R when R is an integral domain.

Let $f(x) = \sum_{i=0}^{n} a_i x^i \in R[x]$. If $c(f) \in \text{GV}(R)$, then f(x) is called a GV-polynomial. When R is a GCD domain, a GV-polynomial is a primitive polynomial. Now let

$$S_w = \{ f \in R[x] \mid f \text{ is a GV-polynomial} \}.$$

According to [11], S_w is a multiplicative closed set, that is, the product of two GV-polynomials is a GV-polynomial. Write $R\{x\} = R[x]_{S_w}$.

Let B be a nonempty subset of $Q_0(R)$. We define

$$B^{-1} = \{ y \in Q_0(R) \mid yB \subseteq R \}.$$

Hence B^{-1} is an *R*-submodule of $Q_0(R)$. If (*B*) represents the submodule generated by *B*, then clearly $B^{-1} = (B)^{-1}$.

Lemma 2.2. (1) Let $\alpha = \sum_{\substack{i=0 \ n \in \mathbb{N}^{i} \\ \sum_{i=0}^{n} b_{i}x^{i}}}^{n} \in Q_{0}(R)$. If some $b_{k} = 0$, then we can get $a_{k} = 0$.

- (2) Let T' be an extension ring of R contained in $Q_0(R)$. Then $Q_0(T') = Q_0(R)$. Specially, $Q_0(Q_0(R)) = Q_0(R)$.
- (3) Let J be a f.g. semiregular ideal of R. Then $J \in GV(R)$ if and only if $J^{-1} = R$.
- (4) $Q_0(R) \cap R\{x\} = R.$

Proof. (1) If $b_k = 0$, then $b_i a_k = b_k a_i = 0$ for any i = 0, 1, ..., n. Since $J := (b_0, b_1, ..., b_n)$ is a semiregular ideal, we have $a_k = 0$.

(2) Let A be a subring of T(R[x]) generated by T' and x. If $\sum_{i=0}^{n} \alpha_i x^i = 0$ in T(R[x]), where $\alpha_i \in T'$, by [11, Theorem 6.6.7], we have $\alpha_i = 0$ for any $i = 0, 1, \ldots, n$. Therefore x is an indeterminate over T' and $A \cong T'[x]$. Thus we can suppose T(T'[x]) = T(R[x]).

Let I be a f.g. semiregular ideal of R. By Lemma 2.1(2), IT' is also a f.g. semiregular ideal of T', and thus $Q_0(R) \subseteq Q_0(T')$.

Let $\alpha \in Q_0(T')$. Then there exists a f.g. semiregular ideal A of T' such that $A\alpha \subseteq T'$. Denoted by $\{\beta_1, \ldots, \beta_n\}$ a generating set of A. Thus $\beta_i \alpha \in T'$. Hence there exists a f.g. semiregular ideal I of R such that $I\beta_i \subseteq R$ and $I\beta_i\alpha \subseteq R$. Set $B = R\beta_1 + \cdots + R\beta_n$. Then IB is a semiregular ideal of R and $IB\alpha \subseteq R$. Hence $\alpha \in Q_0(R)$. Therefore $Q_0(T') \subseteq Q_0(R)$.

(3) This follows from [11, Proposition 6.6.8].

(4) Clearly $R \subseteq Q_0(R) \cap R\{x\}$. Let $\alpha = \frac{a(x)}{b(x)} = \frac{c(x)}{d(x)}$, where $a(x) = \sum_{i=0}^{n} a_i x^i$, $b(x) = \sum_{i=0}^{n} b_i x^i$, $c(x) = \sum_{k=0}^{m} c_k x^k$, $d(x) = \sum_{l=0}^{s} d_l x^l$ are polynomials over R, and for any i, i', we have $a_i b_{i'} = a_{i'} b_i$, (b_0, b_1, \ldots, b_n) is a semiregular ideal, and $(d_0, d_1, \ldots, d_s) \in \text{GV}(R)$. For $i = 0, 1, \ldots, n$, we have $b_i \alpha = a_i = b_i \frac{c(x)}{d(x)}$, and hence $d(x)a_i = b_i c(x)$. So we can suppose s = m and $b_i c_j = d_j a_i$ for any j. Therefore we also have $d_k b_i c_j = d_k d_j a_i = d_j b_i c_k$ for any k. Hence we have $b_i (d_k c_j - d_j c_k) = 0$ for any $i = 0, 1, \ldots, n$. So $d_k c_j = d_j c_k$ for any j, k, and thus $d_k \alpha = c_k \in R$ for any $k = 0, 1, \ldots, m$. Therefore $\alpha \in R$. \Box

Lemma 2.3. Let $\phi : R \to T$ be a ring homomorphism, $f(x) = \sum_{i=0}^{n} d_i x^i \in$ R[x] be a GV-polynomial and M be a T-module such that M as an R-module is a GV-torsion-free module. Then $\phi(f)$ is not a zero-divisor of $M[x], \phi(f)$ is satisfied that $\phi(d_i) = d_i, i = 1, \dots, n$.

Proof. If there exists $\alpha \in M[x]$ with $\alpha \neq 0$ such that $\phi(f)\alpha = 0$, then by Lemma 2.1, we can assume that $\alpha \in M$. Thus $d_i \alpha = \phi(d_i) \alpha = 0$ for any $i = 0, 1, \ldots, n$. Since M is a GV-torsion-free R-module, we have $\alpha = 0$, which is a contradiction. Therefore $\phi(f)$ is not a zero-divisor of M[x].

Let $\phi: R \to T$ be a ring homomorphism. Let

$$S_{\phi} = \{\phi(f) \in T[x] \mid f \in R[x] \text{ is a GV-polynomial}\}.$$

Obviously the induced map $S_w \to S_\phi$ by ϕ is a surjection.

Lemma 2.4. Let $\phi : R \to T$ be a ring homomorphism. Then S_{ϕ} is a multiplicatively closed set of T[x].

Proof. This follows from the facts that S_w is a multiplicatively closed set of R[x] and $\phi: S_w \to S_\phi$ is a surjection.

In [16], Zhou, Kim and Hu provided an element-wise characterization of w-modules [16, Lemma 3.1 and Theorem 3.3] and proved that $(R/I)_w$ as the natural w-version of the factor ring R/I is also a ring, where I is a w-ideal of R [16, Remark 3.4]. Next we will obtain more general results and properties than theirs by considering ring homomorphisms. Although the proof is essentially the same as in [16], we give a proof for completeness.

Proposition 2.5. Let $\phi : R \to T$ be a ring homomorphism, where T as an R-module is a GV-torsion-free module. Let M be a T-module and let M as an *R*-module be a *GV*-torsion-free module. Then the following statements hold.

- (1) $M_w = \begin{cases} \sum_{i=0}^n u_i x^i \\ \sum_{i=0}^n \phi(d_i) x^i \end{cases} \in M[x]_{S_\phi} \mid \sum_{i=0}^n d_i x^i \text{ is a } GV\text{-polynomial and} \end{cases}$ $\phi(d_i)u_j = \phi(d_j)u_i \text{ for any } i, j \bigg\}.$
- (2) T[x]_{Sφ} ⊆ Q₀(T) and T_w is a subring of T[x]_{Sφ} containing T.
 (3) M_w is a T_w-module. Therefore M is a T_w-module when M is a wmodule.
- (4) Let A be a T-submodule of M. Then A_w is a T_w -submodule of M_w . Especially, if A is an ideal of T, then A_w is an ideal of T_w .
- (5) $Q_0(T_w) = Q_0(T)$ and $Q_0(T)$ as an *R*-module is a w-module.
- (6) Let T be an integral domain. Then $T_w \subseteq qf(T)$, and

 $T_w = \{ z \in qf(T) \mid Jz \subseteq T \text{ for some } J \in \mathrm{GV}(R) \}$ $= \bigcap \{T_{\mathfrak{m}} \mid \mathfrak{m} \in w \operatorname{-Max}(R) \text{ and } \ker(\phi) \subseteq \mathfrak{m} \}.$

Proof. (1) Let H be the righthand side of (1). Let $y \in H$ with $y \neq 0$. Write $y = \sum_{i=0}^{n} \frac{u_i x^i}{\phi(d_i) x^i}$, where $u_i \in M$, $d_i \in R$, $i = 0, 1, \dots, n$, $f(x) = \sum_{i=0}^{n} d_i x^i$

is a GV-polynomial. Then $d_k y = \frac{\sum_{i=0}^n \phi(d_k)u_i x^i}{\sum_{i=0}^n \phi(d_i) x^i} = u_k \in M$. Since M is a GV-torsion-free R-module, we have $(d_0, d_1, \ldots, d_n)y \neq 0$. Therefore H is an essential extension of M, and so $H \subseteq E(M)$. By the same process as above, $H \subseteq M_w$ is also obtained.

On the other hand, when $y \in M_w$, there exists $J = (d_0, d_1, \ldots, d_n) \in \operatorname{GV}(R)$ such that $Jy \subseteq M$. Write $d_k y = u_k$ and let $f(x) = \sum_{i=0}^n d_i x^i$. Then $f(x)y = \sum_{i=0}^n u_i x^i \in M[X]$. Therefore $y = \frac{\sum_{i=0}^n u_i x^i}{\sum_{i=0}^n \phi(d_i) x^i} \in M[X]_{S_\phi}$. Since $d_k y = u_k$, we have $d_k u_i = d_k d_i y = d_i d_k y = d_i u_k$ for any i and k, that is $\phi(d_k) u_i = \phi(d_i) u_k$. Therefore $M_w \subseteq H$. So we get $H = M_w$.

(2) Let $y, z \in T_w$. Then there exist $J_1, J_2 \in \mathrm{GV}(R)$ such that $J_1y, J_2z \subseteq T$. Thus $J_1J_2yz \in T$, and so $yz \in T_w$. Thus T_w is a multiplicatively closed set of $T[x]_{S_{\phi}}$.

 $T[x]_{S_{\phi}}. \text{ Therefore } T_w \text{ is a subring of } T[x]_{S_{\phi}}.$ $(3) \text{ Let } h = \frac{\sum_{i=0}^n b_i x^i}{\sum_{i=0}^n \phi(d_i) x^i} \in T_w, \ y = \frac{\sum_{j=0}^m u_j x^j}{\sum_{j=0}^m \phi(c_j) x^j} \in M_w, \text{ where } b_i \in T,$ $u_j \in M, \ J_1 := (d_0, d_1, \dots, d_n) \text{ and } J_2 := (c_0, c_1, \dots, c_m) \text{ are GV-ideals of } R.$ Since $d_i b_j = d_j b_i$ for any i, j, and $c_s u_t = c_t u_s$ for any s, t, it is easy to see that

$$hy = \frac{\sum\limits_{k=0}^{n+m} (\sum\limits_{i+j=k} b_i u_j) x^k}{\sum\limits_{k=0}^{n+m} (\sum\limits_{i+j=k} \phi(d_i c_j)) x^k} \in M_w$$

Therefore M_w is a T_w -module.

(4) This is obtained directly from (3).

(5) By Lemma 2.2(2), we can get $Q_0(T_w) = Q_0(T)$. To prove that $Q_0(T)$ is a *w*-*R*-module, let *T* as an *R*-module be a *w*-module. According to [11, Theorem 6.6.6](3), $Q_0(T)$ is a *w*-*T*-module. By Theorem 3.3, $Q_0(T)$ is a *w*-*R*-module.

(6) Let $y = \sum_{i=0}^{n} a_i x^i \in T_w$, where $a_i \in T$. Then $\phi(d_k) \neq 0$ for some k, and so $\lambda_k := \frac{a_k}{\phi(d_k)} \in qf(T)$. Since $a_i = d_i \frac{a_k}{\phi(d_k)}$ for $i = 0, 1, \ldots, n$, it follows that $y = \lambda_k \in qf(T)$.

Write $H_1 = \{z \in qf(T) \mid Jz \subseteq T \text{ for some } J \in GV(R)\}$. Since T is an integral domain, we have $Q_0(T) = qf(T)$. By Proposition 2.5(5), qf(T) is a w-R-module. Thus $T_w = H_1$.

Write $H = \bigcap \{T_{\mathfrak{m}} \mid \mathfrak{m} \in w$ -Max(R) and ker $(\phi) \subseteq \mathfrak{m}\}$. Since T is an integral domain, it follows that $T \subseteq T_{\mathfrak{m}} \subseteq qf(T)$ for a maximal ideal \mathfrak{m} of R. Therefore $T \subseteq H$. Since every $T_{\mathfrak{m}}$ is a *w*-*R*-module, H is a *w*-*R*-module. Therefore $T_w \subseteq H$.

Conversely, suppose $z \in H$. Let $I = \{r \in R \mid rz \in T_w\}$. Then I is a w-ideal of R containing ker (ϕ) . Since $z \in T_{\mathfrak{m}}$ for any maximal w-ideal \mathfrak{m} of R with ker $(\phi) \subseteq \mathfrak{m}$, there exists $s \in R \setminus \mathfrak{m}$ such that $sz \in T$. Thus $s \in I$. Hence $I \not\subseteq \mathfrak{m}$. Thus I = R. So we get $z \in T_w$.

Proposition 2.6. Let $\phi : R \to T$ be a ring homomorphism, where T is a GV-torsion-free R-module. Let P be a prime ideal of T. Then the following statements hold.

- (1) If $\phi^{-1}(P)$ is a w-ideal of T, then $P_w \neq T_w$.
- (2) If $P_w \neq T_w$, then P_w is a prime ideal of T_w and $P_w \cap T = P$.
- (3) If $P_w \neq T_w$ and P_1 is a prime ideal of T_w such that $P_1 \subseteq P_w$ and $P_1 \cap T = P$, then $P_1 = P_w$.

Proof. (1) If $P_w \neq T_w$, then $J \subseteq P$ for some $J \in GV(R)$. Thus $J \subseteq P \cap R$, a contradiction.

(2) Suppose $x \in P_w \cap T$. Then $Jx \subseteq P$ for some $J \in GV(R)$. Since $J \notin P$, we have that $P_w \cap T = P$.

(3) Suppose $x, y \in T_w$, $xy \in P_w$. Then $J_1x \subseteq T$, $J_2y \subseteq T$ for $J_1, J_2 \in GV(R)$. Hence $Jxy \subseteq P$ for some $J = J_1J_2 \in GV(R)$, and $Jx \subseteq P$ or $Jy \subseteq P$, therefore $x \in P_w$ or $y \in P_w$.

3. w-linked homomorphisms and the w_{ϕ} -operation

We begin this section by introducing the concept of w-linked homomorphisms.

Definition 3.1. Let $\phi : R \to T$ be a ring homomorphism. If T as an R-module is a w-module, then ϕ is called a w-linked homomorphism.

Clearly the identity homomorphism $\mathbf{1}: R \to R$ is a *w*-linked homomorphism. Recall that a ring extension $R \subseteq T$ is said to be *w*-linked if T as an R-module is a *w*-module. In this case, the inclusion map $\lambda : R \to T$ is a *w*-linked homomorphism.

For a ring homomorphism $\phi : R \to T$, there are *w*-operations on R and T, respectively. For a *T*-module N, we denote by N_w the *w*-envelope of N as an R-module and by N_W the *w*-envelope of N as a *T*-module.

Lemma 3.2. Let $\phi : R \to T$ be a ring homomorphism, $J \in GV(R)$, L be a T-module, and let L as an R-module be a GV-torsion-free module. Then the following statements hold.

(1) $\operatorname{Hom}_T(JT, L) \cong \operatorname{Hom}_T(T \otimes_R J, L).$

(2)
$$\operatorname{Ext}_T^1(T/JT, L) \cong \operatorname{Ext}_R^1(R/J, L).$$

Proof. (1) Let $0 \to A \to J \otimes_R T \xrightarrow{f} JT$ be an exact sequence of *R*-modules, where $A = \ker(f)$. Then we have the following exact sequence:

$$0 \to A_{\mathfrak{m}} \to (J \otimes_R T)_{\mathfrak{m}} \xrightarrow{J_{\mathfrak{m}}} (JT)_{\mathfrak{m}},$$

where \mathfrak{m} is a maximal w-ideal of R. Since $(J \otimes_R T)_{\mathfrak{m}} = J_{\mathfrak{m}} \otimes_{R_{\mathfrak{m}}} T_{\mathfrak{m}} = R_{\mathfrak{m}} \otimes_{R_{\mathfrak{m}}} T_{\mathfrak{m}} = T_{\mathfrak{m}}$, we have $(JT)_{\mathfrak{m}} = J_{\mathfrak{m}}T_{\mathfrak{m}} = T_{\mathfrak{m}}$. Then $f_{\mathfrak{m}}$ is an isomorphism, and thus $A_{\mathfrak{m}} = 0$. Therefore A is a GV-torsion module. Since L is a GV-torsion-free R-module and $\operatorname{Hom}_{T}(A, L) = 0$, we have the following exact sequence:

 $0 \to \operatorname{Hom}_T(JT, L) \to \operatorname{Hom}_T(J \otimes_R T, L) \to \operatorname{Hom}_T(A, L) = 0.$

Therefore $\operatorname{Hom}_T(JT, L) \cong \operatorname{Hom}_T(J \otimes_R T, L)$.

(2) Let $0 \to J \to R \to R/J \to 0$ and $0 \to JT \to T \to T/JT \to 0$ be short exact sequences. Consider the following commutative diagram with exact rows:

$$\begin{split} \operatorname{Hom}_{R}(T,L) &\longrightarrow \operatorname{Hom}_{R}(JT,L) \longrightarrow \operatorname{Ext}_{R}^{1}(T/JT,L) \longrightarrow 0 \\ & \downarrow^{g} & \downarrow^{h} & \downarrow \\ \operatorname{Hom}_{T}(R,L) &\longrightarrow \operatorname{Hom}_{T}(J,L) \longrightarrow \operatorname{Ext}_{T}^{1}(R/J,L) \longrightarrow 0 \end{split}$$

By Lemma 3.2(1), we can get:

 $\operatorname{Hom}_{T}(JT,L) \cong \operatorname{Hom}_{T}(J \otimes_{R} T,L) \cong \operatorname{Hom}_{R}(J,\operatorname{Hom}_{T}(T,L)) = \operatorname{Hom}_{R}(J,L),$

i.e., h is an isomorphism. It is easy to see that g is also an isomorphism. So in the above commutative diagram, by Five Lemma we can get $\operatorname{Ext}^1_T(T/JT, L) \cong \operatorname{Ext}^1_R(R/J, L)$.

Theorem 3.3. Let $\phi : R \to T$ be a ring homomorphism, where T as an R-module is a GV-torsion-free module. Then the following statements are equivalent.

- (1) $\phi(I)_w \subseteq (IT)_W$ for any ideal I of R.
- (2) $(I_wT)_W = (IT)_W$ for any ideal I of R.
- (3) $\phi^{-1}((IT)_W)$ is a w-ideal of R for any ideal I of R.
- (4) $\phi^{-1}(A)$ is a w-ideal of R for any w-ideal A of T.
- (5) $\phi^{-1}(P)$ is a w-ideal of R for any prime w-ideal P of T.
- (6) If $J \in GV(R)$, then $JT = \phi(J)T \in GV(T)$.
- (7) ϕ is a w-linked homomorphism.
- (8) Let L be a T-module. If L as a T-module is a w-module, then L as an R-module is a w-module.
- (9) Let L be a T-module. If L as a T-module is a GV-torsion-free module, then L as an R-module is a GV-torsion-free module.
- (10) Let L be a T-module. If L as an R-module is a GV-torsion-free module, then L is a GV-torsion T-module.

Proof. (1) \Rightarrow (2) Since $\phi(I)_w \subseteq (IT)_W$, it follows that

$$(I_wT)_W \subseteq (\phi(I)_wT)_W \subseteq ((IT)_WT_W)_W = (IT)_W.$$

 $(2) \Rightarrow (6)$ Let $J \in \mathrm{GV}(R)$. Then $J_w = R$, and so $T = (J_w T)_W = (JT)_W$. Therefore $JT \in \mathrm{GV}(T)$.

 $(6) \Rightarrow (1)$ Let $z \in T$ and $z \in \phi(I)_w$. Then there exists $J \in \mathrm{GV}(R)$ such that $Jz \subseteq \phi(I)$. Since $JTz \subseteq IT$, by the hypothesis $JT \in \mathrm{GV}(T)$, and so $z \in (IT)_W$. Hence $\phi(I)_w \subseteq (IT)_W$.

 $(6)\Rightarrow(8)$ By the hypothesis, L is a GV-torsion-free R-module. Let $J \in \mathrm{GV}(R)$. Then by Lemma 3.2, we can get $\mathrm{Ext}^1_R(R/J,L) \cong \mathrm{Ext}^1_T(T/JT,L) = 0$. Therefore L as an R-module is a w-module.

 $(8) \Rightarrow (7)$ Take L := T. Then T as an R-module is a w-module, i.e., ϕ is a w-linked homomorphism.

 $(7) \Rightarrow (6)$ Let $J \in GV(R)$. By Lemma 3.2, there exists an isomorphism

$$\operatorname{Ext}_T^1(T/JT, T) \cong \operatorname{Ext}_R^1(R/J, T) = 0,$$

and hence $JT \in \mathrm{GV}(T)$.

(8) \Rightarrow (4) Write $I := \phi^{-1}(A)$. Since $\phi(I_w) \subseteq \phi(I)_w \subseteq A_w = A$, we have $I_w \subseteq \phi^{-1}(A) = I$, and hence I is a *w*-ideal of R.

 $(4) \Rightarrow (3)$ By letting $A := (IT)_W$, we can get the conclusion.

 $(3) \Rightarrow (6)$ Let $J \in \mathrm{GV}(R)$. Then $J_w = R$. Hence $R \subseteq \phi^{-1}((JT)_W)$ by assumption. Since $1 = \phi(1) \in (JT)_W$, we have $(JT)_W = T$, namely $JT \in \mathrm{GV}(T)$.

 $(4) \Rightarrow (5)$ This is clear.

 $(5) \Rightarrow (6)$ Let $J \in \mathrm{GV}(R)$ and suppose that $JT \notin \mathrm{GV}(T)$. Then $(JT)_W \neq T$, and so there exists a *w*-prime ideal P of T such that $(JT)_W \subseteq P$. Hence $J \subseteq \phi^{-1}(P)$, since $\phi^{-1}(P)$ is a *w*-prime ideal of R, a contradiction.

(8) \Rightarrow (9) By the hypothesis, L_W is a *w*-module over *R*. Therefore *L* is a GV-torsion-free *R*-module.

 $(9)\Rightarrow(10)$ Set $A = \{z \in L \mid Jz = 0 \text{ for some } J \in \mathrm{GV}(T)\}$. Then L/A is a GV-torsion-free *T*-module. By the hypothesis, L/A is a GV-torsion *R*-module. Then L/A = 0, namely, L = A. Therefore *L* is a GV-torsion *T*-module.

 $(10) \Rightarrow (6)$ Let $J \in \mathrm{GV}(R)$. Then R/J is a GV-torsion R-module. From the natural isomorphism $T \otimes_R (R/J) \cong T/JT$, it follows that T/JT is a GV-torsion R-module. By the hypothesis, T/JT is a GV-torsion T-module. Therefore $JT \in \mathrm{GV}(T)$.

Let $\phi : R \to T$ be a *w*-linked homomorphism. Let A be a T-module. It is easy to see that $\operatorname{tor}_{\mathrm{GV}}(A)$ is a T-submodule of A. When A is an ideal of T, the mapping $w_{\phi} : A \mapsto A_w$ gives a *w*-liked operation over T, which is called the w_{ϕ} -operation. If an ideal A of T satisfies $A_w = A$, then we call A a w_{ϕ} -ideal. By Theorem 3.3, $\operatorname{GV}(\phi) := \{JT \mid J \in \operatorname{GV}(R)\} \subseteq \operatorname{GV}(T)$. Thus there exists the relationship of operations $w_{\phi} \leq w$ over T.

Accordingly let N be a T-module and let N as an R-module be a w-module. Then we also call N a w_{ϕ} -T-module.

Proposition 3.4. Let $\phi : R \to T$ be a *w*-linked homomorphism. Then the following statements hold.

- (1) Let P be a prime ideal of T. Then P is a w_{ϕ} -ideal of T if and only if $P_w \neq T$.
- (2) Let A be a w_{ϕ} -ideal of T. Then $A = \bigcup B_w$, where B runs over all the f.g. subideals of A.
- (3) Let A be a w_{ϕ} -ideal of T. Then there exists a maximal w_{ϕ} -ideal M of T such that $A \subseteq M$.
- (4) Every maximal w_{ϕ} -ideal of T is prime.
- (5) $\operatorname{Ann}_T(y)$ is a w_{ϕ} -ideal of T for any $y \in T$.
- (6) Let M be a T-module. Then M as an R-module is a GV-torsion module if and only if M_m = 0 for any maximal w_φ-ideal m of T.

Proof. The proof is similar to the w-module case in [11].

Theorem 3.5. Let $\phi : R \to T$ be a w-linked homomorphism. Then the following statements are equivalent.

- (1) Every w_{ϕ} -ideal of T is also a w-ideal of T, in other words, $w_{\phi} = w$ over T.
- (2) Every maximal w_{ϕ} -ideal of T is also a maximal w-ideal of T.
- (3) Let $J \in GV(T)$. Then there exists $I \in GV(R)$ such that $\phi(I) \subseteq J$.
- (4) Let M be a T-module. If M as an R-module is a GV-torsion-free module, then M is a GV-torsion-free T-module.
- (5) Let M be a T-module. If M as an R-module is a w-module, then M is a w-T-module.
- (6) Let M be a T-module. If M as a T-module is a GV-torsion module, then M is also a GV-torsion R-module.
- (7) Let N be a T-module that is a GV-torsion-free R-module. Then $\operatorname{Hom}_R(T, N)$ is a GV-torsion-free T-module.
- (8) Let N be a T-module that is a w-module over R. Then $\operatorname{Hom}_R(T, N)$ is a w-module over T.

Proof. $(1) \Rightarrow (2)$ This is clear.

 $(2) \Rightarrow (3)$ Suppose that $J_w \neq T$. Then there exists a maximal w_{ϕ} -ideal P of T such that $J \subseteq P$. By the hypothesis, P is also a maximal w-ideal of T. Thus $J_W \neq T$, a contradiction to the fact that $J \in \text{GV}(T)$.

Now since $J_w = T$, we have $1 \in J_w$. Hence there is $I \in GV(R)$ such that $\phi(I) = I1 \subseteq J$.

 $(3)\Rightarrow(4)$ Let $J \in \mathrm{GV}(T)$, $z \in M$, Jz = 0. Let $I \in \mathrm{GV}(R)$ such that $\phi(I) \subseteq J$. Then Iz = 0. Since M is a GV-torsion-free R-module, we have that z = 0. Therefore M is a GV-torsion-free T-module.

 $(4) \Rightarrow (5)$ Let *E* be the injective hull of *M*, where *M* is a *T*-module. Since *M* is a *w*-*R*-module, by the hypothesis, *M* is a GV-torsion-free *T*-module. Hence *E* is a *w*-*T*-module. By Theorem 3.3, we can get *E* is also a *w*-*R*-module.

Consider the exact sequence $0 \to M \to E \to E/M \to 0$. Since M is a w-R-module, according to [11, Theorem 6.1.17], E/M is a GV-torsion-free R-module. By the hypothesis, E/M is a GV-torsion-free T-module. By [11, Theorem 6.1.17], M is a w-T-module.

 $(5) \Rightarrow (1)$ This is easy.

 $(3) \Rightarrow (6)$ Let $z \in M$. Since M is a GV-torsion T-module, there exists $J \in GV(T)$ such that Jz = 0. By the hypothesis, there exists $I \in GV(R)$ such that $I \subseteq J$. Thus we can get Iz = 0. Therefore M is also a GV-torsion R-module.

 $(6) \Rightarrow (2)$ Let P be a maximal w_{ϕ} -ideal of T. Then T/P as an R-module is a GV-torsion-free module. If P is not a maximal w-ideal of T, then T/P is a GV-torsion T-module, which is a contradiction.

 $(4) \Rightarrow (7)$ By [11, Proposition 6.1.10], $\operatorname{Hom}_R(T, N)$ is a GV-torsion-free *R*-module. By the hypothesis, $\operatorname{Hom}_R(T, N)$ is a GV-torsion-free *T*-module.

 $(7) \Rightarrow (2)$ Let P be a maximal w_{ϕ} -ideal of T. Then T/P is a GV-torsion-free R-module. By the hypothesis, $\operatorname{Hom}_R(T, T/P)$ is a GV-torsion-free T-module. Consider the exact sequence $0 \to \operatorname{Hom}_R(T/P, T/P) \to \operatorname{Hom}_R(T, T/P)$. Then $\operatorname{Hom}_R(T/P, T/P)$ is also a GV-torsion-free T-module. If P is not a maximal w-ideal of T, then there exists $J \in \operatorname{GV}(T)$ such that $J \subseteq P$. Use $\mathbf{1}$ to denote the identity mapping over T/P. Then in $\operatorname{Hom}_R(T/P, T/P)$, we have that $J\mathbf{1} = 0$. Hence T/P is not a GV-torsion-free T-module, which is a contradiction. Therefore P is a maximal w-ideal of T.

 $(7) \Rightarrow (8)$ Let *E* be the injective hull of *N*. Let C = E/N. Then *E* is a *w*-module. By [11, Theorem 6.1.17], *C* is a GV-torsion-free module. Consider the following exact sequence:

$$0 \longrightarrow \operatorname{Hom}_{R}(T, N) \longrightarrow \operatorname{Hom}_{R}(T, E) \longrightarrow \operatorname{Hom}_{R}(T, C).$$

By the hypothesis, $\operatorname{Hom}_R(T, E)$ and $\operatorname{Hom}_R(T, C)$ are GV-torsion-free T-modules. Notice that $\operatorname{Hom}_R(T, E)$ is also an injective T-module. Hence $\operatorname{Hom}_R(T, N)$ is a w-module over T.

 $(8) \Rightarrow (7)$ Let *E* be the injective hull of *N*. Then *E* is a *w*-module. By the hypothesis, $\operatorname{Hom}_R(T, E)$ is a *w*-module. Since $\operatorname{Hom}_R(T, N)$ is a submodule of $\operatorname{Hom}_R(T, E)$, it follows that $\operatorname{Hom}_R(T, N)$ is a GV-torsion-free *T*-module. \Box

Recall that a ring R is said to be a DW ring if every ideal of R is a w-ideal. Clearly if $\dim(R) = 0$, then R is a DW ring. Accordingly we can define DW_{ϕ} rings.

Definition 3.6. Let $\phi : R \to T$ be a *w*-linked homomorphism. If every ideal of *T* is a w_{ϕ} -ideal, namely it as an *R*-module is a *w*-module, then *T* is called a DW_{ϕ} ring.

Lemma 3.7. Let M be a GV-torsion module. Then there exists a continuous ascending chain of submodules of M

$$0 = M_0 \subseteq M_1 \subseteq \cdots \subseteq M_\alpha \subseteq M_{\alpha+1} \subseteq \cdots \subseteq M_\tau = M$$

such that $M_{\alpha+1}/M_{\alpha}$ is a cyclic GV-torsion module for each ordinal α .

Proof. Set $M_0 := 0$. Considering an element $x \in M$ with $x \neq 0$, $M_1 := Rx$ is a cyclic GV-torsion module. For a given ordinal α , by induction hypothesis, we may assume that M_β meets the conditions for all $\beta < \alpha$. If $M_\beta = M$, then the chain terminates. Otherwise, when α is not a limit ordinal number, consider an element $y \in M \setminus M_{\alpha-1}$ and set $M_\alpha := M_{\alpha-1} + Ry$. Then $M_\alpha/M_{\alpha-1}$ is a cyclic GV-torsion module. And when α is a limit ordinal number, set $M_\alpha := \bigcup_{\beta < \alpha} M_\beta$. By transfinite induction, the assertion follows.

Recall that an *R*-module *N* is said to be a strong *w*-module if $\operatorname{Ext}_{R}^{k}(R/J, N) = 0$ for any $J \in \operatorname{GV}(R)$ and for any $k \ge 1$. For the discussion about strong *w*-modules, we can refer to [13].

Theorem 3.8. Let $\phi : R \to T$ be a *w*-linked homomorphism. Then the following statements are equivalent.

- (1) T is a DW_{ϕ} ring.
- (2) Every prime ideal of T as an R-module is a w-module.
- (3) Every maximal ideal of T as an R-module is a w-module.
- (4) $GV(\phi) = \{T\}$, in other words, if $J \in GV(R)$, then JT = T.
- (5) Every f.g. ideal of T as an R-module is a w-module.
- (6) Every T-module as an R-module is a GV-torsion-free module.
- (7) Every cyclic T-module as an R-module is a GV-torsion-free module.
- (8) Every T-module as an R-module is a w-module.
- (9) Every cyclic T-module as an R-module is a w-module.
- (10) Every T-module as an R-module is a strong w-module.
- (11) $T \otimes_R R_1 = 0$ for any cyclic GV-torsion R-module R_1 .
- (12) $T \otimes_R R_1 = 0$ for any GV-torsion R-module R_1 .
- (13) Let $\xi : 0 \to A \to B \to C \to 0$ be a sequence of T-modules. If ξ is a w-exact sequence of R-modules, then ξ is already an exact sequence.

Proof. $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4)$ Trivial.

 $(4) \Rightarrow (6)$ Let N be a T-module, $J \in GV(R)$, $z \in M$, Jz = 0. Then Tz = JTz = 0. Thus z = 0. Therefore N is a GV-torsion-free R-module.

 $(6) \Rightarrow (10)$ Let $J \in GV(R)$ and $k \ge 1$ an integer. Then $\operatorname{Ext}_{R}^{k}(R/J, N)$ is a GV-torsion *R*-module. By the condition that $\operatorname{Ext}_{R}^{k}(R/J, N)$ is also a GV-torsion-free *R*-module, we have $\operatorname{Ext}_{R}^{k}(R/J, N) = 0$. Therefore *N* is a strong *w*-*R*-module.

 $(10) \Rightarrow (9) \Rightarrow (8) \Rightarrow (7)$ Trivial.

 $(7) \Rightarrow (5)$ Let $I = (a_1, \ldots, a_n)$ be an ideal of T. Use the method of induction on n. When n = 1, this is the hypothesis. When n > 1, let $I_1 = (a_1, \ldots, a_{n-1})$. Then according to the exact sequence $0 \rightarrow I_1 \rightarrow I \rightarrow I/I_1 \rightarrow 0$ and the fact that I_1 and I/I_1 are w-modules, we can get I is a w-module.

 $(5) \Rightarrow (1)$ Let *I* be an ideal of *T*. Then $I = \bigcup I_0$, where I_0 runs over all f.g. ideals of *R*. By the hypothesis, we can get *I* is also a *w*-module.

 $(4) \Rightarrow (11)$ Let $R_1 = Rx$ be a cyclic GV-torsion module. Then $Rx \cong R/I$ for some ideal I of R. Since Rx is a GV-torsion module, we have $I_w = R$. So there exists $J \in GV(R)$ such that $J \subseteq I$. Thus $R/J \to T \to 0$ is an exact sequence. Therefore we can get $T \otimes_R R_1 = 0$ by tensoring with T.

 $(11)\Rightarrow(12)$ According to transfinite induction and Lemma 3.7, we can finish the proof.

 $(12) \Rightarrow (4)$ Let $R_1 = R/J$ for any $J \in GV(R)$. Then applying the known condition, we can get the conclusion.

 $(8) \Rightarrow (13)$ By [11, Theorem 6.3.5], $0 \rightarrow A \rightarrow B \rightarrow C$ is an exact sequence. Let $g: B \rightarrow C$ be a given homomorphism. Since g is a w-epimorphism, we have $\operatorname{Im}(g) = \operatorname{Im}(g)_w = C$. Hence g is also an epimorphism, and so ξ is also an exact sequence.

 $(13) \Rightarrow (6)$ Let N be a T-module and let $L = \text{tor}_{\text{GV}}(N)$. Then T as an R-module is a GV-torsion module. So $0 \to L \to 0$ is a w-exact sequence. It follows the assumption that L = 0. Hence N is a GV-torsion-free R-module.

Corollary 3.9. Let $\phi : R \to T$ be a w-linked homomorphism.

(1) Let T be a DW_{ϕ} ring. Then $\dim(T) = w_{\phi} \cdot \dim(T)$.

(2) Let T be a DW ring. Then T is a DW_{ϕ} ring.

Proof. (1) This follows from Theorem 3.8(2).

(2) This follows from the fact that $GV(\phi) \subseteq GV(T) = \{T\}.$

Example 3.10. (1) Let R be a DW ring. Then any ring homomorphism $\phi: R \to T$ is a *w*-linked homomorphism and T is a DW_{ϕ} ring.

(2) Let \mathfrak{m} be a maximal *w*-ideal of R and let $\phi : R \to R_{\mathfrak{m}}$ be a natural homomorphism. Then by [11, Proposition 6.2.18], $R_{\mathfrak{m}}$ is a DW_{ϕ} ring.

(3) Let $R\{x\}$ be the Nagata ring of R and let $\phi : R \to R\{x\}$ be a natural homomorphism. By [11, Theorem 6.6.17], $R\{x\}$ is a DW ring, and so $R\{x\}$ is a DW_{ϕ} ring.

(4) Let R be an integral domain but not a field. Let K be the quotient field of R and let $\phi : R \to K$ be an including homomorphism. Then K is a DW_{ϕ} ring. So we can notice that even if T is a DW_{ϕ} ring, R is not necessary a DW ring.

(5) The converse of Corollary 3.9 is not necessarily true. For example, let R be a DW domain but not a field. Let $\phi : R \to R[x]$ be an inclusion homomorphism. By Corollary 3.9, the polynomial ring R[x] is a DW_{ϕ} ring. Let $a \in R$ be a nonzero and nonunit. Then $J = (a, x) \in \text{GV}(R[x])$. Therefore R[x] is not a DW ring.

(6) Let $\phi : R \to R[x]$ be an inclusion homomorphism and let R be not a DW ring. Then there exists a maximal ideal A of R such that A isn't a w-ideal. So A[x] as an R-module is not a w-module. Therefore a polynomial ring extension is not a DW_{ϕ} ring in general.

Recall that a ring R is said to be local if R has only one maximal ideal. However, the *w*-operation does not play a role over DW rings. So if R isn't a DW ring, we can introduce a local *w*-ring, which has the only one maximal *w*-ideal, but by the next theorem and corollary, we can see that it can't come true.

Theorem 3.11. Let $\phi : R \to T$ be a w-linked homomorphism. Let T be a non-DW_{ϕ} ring. Then T must have an infinite number of maximal w_{ϕ}-ideals.

Proof. Since T is not a DW_{ϕ} ring, by Theorem 3.8, there exists a maximal w_{ϕ} ideal M_1 of T such that M_1 is not a maximal ideal of T. Suppose on the contrary that T has only a finite number of maximal w_{ϕ} -ideals, say M_1, M_2, \ldots, M_n . Let P be a maximal ideal containing M_1 . Then P is not a w_{ϕ} -ideal. According to Prime Avoidance Theorem, $P \not\subseteq \bigcup_{i=1}^n M_i$. Let $y \in P \setminus \bigcup_{i=1}^n M_i$.

If y is a non-zero-divisor of T, then Ty is a proper w_{ϕ} -ideal of T. If y is a zero-divisor of R, then $\operatorname{Ann}_T(y) \neq 0$, and so $Ty \subseteq \operatorname{Ann}_T(\operatorname{Ann}(y)) \neq T$. By Proposition 3.4, $\operatorname{Ann}_T(\operatorname{Ann}(y))$ is a w_{ϕ} -ideal of T. By Proposition 3.4 again, there exists a maximal w_{ϕ} -ideal M of T such that $Tx \subseteq M$. Clearly $M \neq M_i$, $i = 1, 2, \ldots, n$, which is a contradiction.

Corollary 3.12. Let R be a non-DW ring. Then R must have an infinite number of maximal w-ideals.

Proof. The assertion follows immediately by letting T := R and ϕ be the identity homomorphism in Theorem 3.11.

4. Properties of a w-factor ring \overline{R}_w

Let R be a ring, let I be a proper w-ideal of R, and let $\overline{R} = R/I$. Let $\pi : R \to \overline{R}$ be a natural homomorphism and let $\lambda : \overline{R} \to \overline{R}_w$ be the inclusion homomorphism. Then $\phi : R \to \overline{R}_w$ is a natural w-linked homomorphism. We also call \overline{R}_w a w-factor ring of R.

Let I be an ideal of R. Write \mathcal{Q} as the multiplicative system of f.g. semiregular ideals of R. Recall that I is said to be a q-ideal, if $z \in R$ and $J \in \mathcal{Q}$ with $Jz \subseteq I$ imply $z \in I$.

Remark 4.1. (1) Let $\alpha \in \overline{R}_w$. By Proposition 2.5, write $\alpha = \frac{\sum_{i=0}^n \overline{a_i} x^i}{\sum_{i=0}^n \overline{d_i} x^i}$, where $a_i, d_i \in R, \sum_{i=0}^n d_i x^i$ is a GV-polynomial and $\overline{d_i} \overline{a_j} = \overline{d_j} \overline{a_i}$ for any i, j. So we have $\frac{\sum_{i=0}^n a_i x^i}{\sum_{i=0}^n d_i x^i} \in R\{x\}$. In other words, there exists a $u \in R\{x\}$ such that $\phi(u) = \alpha$.

(2) Let *I* be a *q*-ideal of *R*. For $\alpha = \frac{\sum_{i=0}^{n} a_i x^i}{\sum_{i=0}^{n} b_i x^i} \in Q_0(R)$, let $\pi(\alpha) = \frac{\sum_{i=0}^{n} \overline{a_i} x^i}{\sum_{i=0}^{n} \overline{b_i} x^i}$. Then the ring homomorphism $\pi : R \to \overline{R}$ can be extended to the map from $Q_0(R)$ to $Q_0(\overline{R})$.

(3) Let M be a GV-torsion-free R-module. Considering the identity homomorphism $\mathbf{1} : R \to R$, by Proposition 2.5, $M_w = \left\{ \sum_{i=0}^n \frac{u_i x^i}{d_i x^i} \in M[x]_{S_w} \mid \sum_{i=0}^n d_i x^i$ is a GV-ploynomial and $d_i u_j = d_j u_i$ for any $i, j \right\}$.

(4) Let M be an \overline{R} -module and let M as an R-module be a GV-torsion-free module. Denote $a \in R$ over \overline{R} by \overline{a} . Then $M_w = \left\{ \sum_{i=0}^n \frac{u_i x^i}{\overline{d_i x^i}} \in M[x]_{S_w} \mid \sum_{i=0}^n d_i x^i$ is a GV-ploynomial and $\overline{d_i} u_j = \overline{d_j} u_i$ for any $i, j \right\}$.

Proposition 4.2. Let B be an ideal of R containing I. Denote $\overline{B} = B/I$. Then:

(1)
$$B_w = (B_w)_w = (BR_w)_w.$$

(2) $\overline{B}_w = \overline{R}_w$ if and only if $B_w = R$

(3) Let B be a prime w-ideal of R. Then \overline{B}_w is a prime w_{ϕ} -ideal of \overline{R}_w and $\overline{B}_w \cap \overline{R} = \overline{B}$.

Proof. (1) By [11, Exercise 6.20(1)], $\overline{B}_w = (\overline{B}_w)_w$. Notice that $B\overline{R} = \overline{B}$. Hence $(B\overline{R}_w)_w = (B\overline{R})_w = B_w.$

(2) Let $B_w = R$. Then by (1), $\overline{B}_w = (\overline{B}_w)_w = \overline{R}_w$.

Conversely, let $\overline{B}_w = \overline{R}_w$. Then $(B/I)_{\mathfrak{m}} = B_{\mathfrak{m}}/I_{\mathfrak{m}} = R_{\mathfrak{m}}/I_{\mathfrak{m}}$ for any $\mathfrak{m} \in w$ -Max(R), and so $B_{\mathfrak{m}} = R_{\mathfrak{m}}$. Thus $B_w = R$.

(3) Let $y, z \in \overline{R}_w, yz \in \overline{B}_w$. Then there exists $J \in \mathrm{GV}(R)$ such that $Jy, Jz \subseteq \overline{R}$ and $J^2yz \subseteq \overline{B}$. Since \overline{B} is a prime ideal of \overline{R} , it follows that $Jy \subseteq \overline{B}$ or $Jz \subseteq \overline{B}$. Hence $y \in \overline{B}_w$ or $z \in \overline{B}_w$. Therefore \overline{B}_w is a prime w_{ϕ} -ideal of \overline{R}_w .

Let $r \in R$, $\overline{r} = \frac{\sum_{i=0}^{n} \overline{b_i x^i}}{\sum_{i=0}^{n} \overline{d_i x^i}}$, where $b_i \in B$, $\overline{d_j b_i} = \overline{d_i b_j}$, $J := (d_0, d_1, \dots, d_n) \in$ $\operatorname{GV}(R)$. Then $\overline{d_k}\overline{r} = \overline{b_k}$, and so $Jr \subseteq B$. Since B is a prime w-ideal, we have $r \in B$. Therefore $\overline{B}_w \cap \overline{R} = \overline{B}$. \square

Lemma 4.3. Let M, N be w-modules over R, $f: M \to N$ be a homomorphism, and A be a w-submodule of N. Then $B := f^{-1}(A)$ is a w-submodule of M.

Proof. Let $J \in GV(R)$, $x \in M$, $Jx \subseteq B$. Then $Jf(x) = f(Jx) \subseteq f(B) \subseteq A$. Since A is a w-submodule of N, we have $f(x) \in A$. Thus $x \in B$. Therefore $B := f^{-1}(A)$ is a *w*-submodule of *M*.

Proposition 4.4. Let $\phi : R \to \overline{R}_w$ be a natural w-linked homomorphism. Then:

- (1) Let A be a w_{ϕ} -ideal of \overline{R}_{w} . Write $B = \phi^{-1}(A)$. Then $I \subseteq B$ and $A = (B/I)_w.$
- (2) Let A_i be a w_{ϕ} -ideal of \overline{R}_w for i = 1, 2. Write $B_i = \phi^{-1}(A_i)$. Then $A_1 = A_2$ if and only if $B_1 = B_2$.
- (3) There is a one-to-one correspondence between the set of w-ideals (resp., prime w-ideals, maximal w-ideals) of R containing I and the set of w_{ϕ} ideals (resp., prime w_{ϕ} -ideals, maximal w_{ϕ} -ideals) of \overline{R}_{w} .
- (4) $(\sqrt{I}/I)_w = nil(\overline{R}_w).$

Proof. (1) By Lemma 4.3, B is a w-ideal of R. Clearly $I \subseteq B$. Since $\phi(x) =$ $\pi(x) = \overline{x} \in A$ for $x \in B$, we have $B/I \subseteq A$. Thus $(B/I)_w \subseteq A$.

Conversely, let $\alpha = \frac{\sum_{i=0}^{n} \overline{r_i} x^i}{\sum_{i=0}^{n} \overline{d_i} x^i} \in A$. Then $\overline{d_i} \alpha = \overline{r_i}$. So $r_i \in B$, and thus $\overline{r_i} \in B/I$. Hence $\alpha \in (B/I)_w$. So we can get $A = (B/I)_w$.

(2) Let $A_1 = A_2$. Then it is easy to get $B_1 = B_2$.

Conversely, let $B_1 = B_2$. Then $A_1 = (B_1/I)_w = (B_2/I)_w = A_2$.

(3) This follows from (2).

(4) Let $\alpha = \frac{\sum_{i=0}^{n} \overline{r_i x^i}}{\sum_{i=0}^{n} \overline{d_i x^i}} \in nil(\overline{R}_w)$. Then there exists a positive integer msuch that $\alpha^m = 0$. So $\sum_{i=0}^n \overline{r_i} x^i$ is a nilpotent element. Hence every $\overline{r_i}$ is

a nilpotent element. Thus $\overline{r_i} \in nil(\overline{R}) = \sqrt{I}/I$. Hence $\alpha \in (\sqrt{I}/I)_w$. So $nil(\overline{R}_w) \subseteq (\sqrt{I}/I)_w$.

Conversely, since $\sqrt{I}/I \subseteq nil(\overline{R}_w)$, we have that $(\sqrt{I}/I)_w \subseteq nil(\overline{R}_w)$. \Box

Let I_1, I_2 be w-ideals of R such that $I_1 \subseteq I_2$. Then there exists the natural homomorphism $\sigma : R/I_1 \to R/I_2$ such that $\sigma(\overline{r}) = \overline{r}$. Notice that the bars in the two locations have different meanings. So σ induces a ring homomorphism $\sigma : (R/I_1)_w \to (R/I_2)_w$ such that

$$\sigma\big(\frac{\sum\limits_{i=0}^{n}\overline{a_{i}}x^{i}}{\sum\limits_{i=0}^{n}\overline{b_{i}}x^{i}}\big) = \frac{\sum\limits_{i=0}^{n}\overline{a_{i}}x^{i}}{\sum\limits_{i=0}^{n}\overline{b_{i}}x^{i}}.$$

Theorem 4.5. Let $\phi : R \to \overline{R}_w$ be a natural w-linked homomorphism. Then:

- (1) I is a prime w-ideal of R if and only if \overline{R}_w is an integral domain.
- (2) I is a maximal w-ideal of R if and only if \overline{R}_w is a field.

Proof. (1) Let I be a prime w-ideal of R. Then R/I is an integral domain. By Proposition 2.5(6), \overline{R}_w is an integral domain.

Conversely, let \overline{R}_w be an integral domain. Since $\overline{R} = R/I \subseteq \overline{R}_w$, it follows that \overline{R} is an integral domain. Therefore I is a prime ideal.

(2) Let I be a maximal w-ideal of R. By [11, Proposition 6.5.5], $\overline{R}_w = qf(\overline{R})$ is a field.

Conversely, let P be a maximal w-ideal of R and $I \subseteq P$. Then there exists a natural homomorphism $\sigma : \overline{R}_w \to (R/P)_w$. Since \overline{R}_w is a field, σ is a monomorphism. Thus the natural homomorphism $R/I \to R/P$ is a monomorphism. Therefore I = P is a maximal w-ideal of R.

Theorem 4.6. The following statements are equivalent.

- (1) \overline{R}_w satisfies the descending chain condition on w_{ϕ} -ideals of \overline{R}_w .
- (2) \overline{R}_w satisfies the minimal condition on w_{ϕ} -ideals of \overline{R}_w .
- (3) \overline{R}_w is an Artinian ring.

Proof. $(1) \Rightarrow (2)$ It is trivial.

 $(2) \Rightarrow (3)$ We should prove that \overline{R}_w has only a finite number of maximal w_{ϕ} -ideals, and then by Theorem 3.11, \overline{R}_w is a DW_{ϕ} ring. Hence every ideal of \overline{R}_w is a w_{ϕ} -ideal. Therefore \overline{R}_w is an Artinian ring.

Set

 $S = \{M_1 \cap M_2 \cap \dots \cap M_k \mid k \ge 1, M_i \text{ is a maximal } w_{\phi} \text{-ideal of } \overline{R}_w\}.$

By the hypothesis, S has a minimal element $M_1 \cap M_2 \cap \cdots \cap M_n$. Now we prove that M_1, M_2, \ldots, M_n are all the maximal w_{ϕ} -ideals of R.

Let M be a maximal ideal of R. By the minimal property of $M_1 \cap M_2 \cap \cdots \cap M_n$, we have

 $M \cap M_1 \cap M_2 \cap \dots \cap M_n = M_1 \cap M_2 \cap \dots \cap M_n.$

Then $M_1 M_2 \cdots M_n \subseteq M$. So there exists *i* such that $M_i \subseteq M$. Since M_i is the maximal w_{ϕ} -ideal, we have $M_i = M$.

 \square

 $(3) \Rightarrow (1)$ This is clear.

Theorem 4.7. Let R be an integral domain. Then the following statements are equivalent.

- (1) R is an SM-domain with w-dim $(R) \leq 1$.
- (2) For any nonzero w-ideal I of R, $(R/I)_w$ is an Artinian ring.
- (3) For any nonzero element $a \in R$, $(R/(a))_w$ is an Artinian ring.
- (4) For any nonzero element $a \in R$, R has the descending chain condition on w-ideals of R containing a.

Proof. (1) \Rightarrow (2) Let (ξ) : $A_1 \supseteq A_2 \supseteq \cdots \supseteq A_n \supseteq \cdots$ be a descending chain of w_{ϕ} -ideals of $(R/I)_w$. For every n, let $B_n = \phi^{-1}(A_n)$. By Proposition 4.4, $(\eta): B_1 \supseteq B_2 \supseteq \cdots \supseteq B_n \supseteq \cdots$ is a descending chain of w-ideals of R. By [4, Theorem 3.2], the descending chain (η) is stationary. By Proposition 4.4, the descending chain (ξ) is stationary. By Theorem 4.6, \overline{R}_w is an Artinian ring. $(2)\Rightarrow(3)$ This is trivial.

 $(3) \Rightarrow (4)$ Let $(\xi) : I_1 \supseteq I_2 \supseteq \cdots \supseteq I_n \supseteq \cdots$ be a descending chain of w-ideals of R containing a. Then $(\eta) : (I_1/(a))_w \supseteq (I_2/(a))_w \supseteq \cdots \supseteq (I_n/(a))_w \supseteq \cdots$ is a descending chain of w_{ϕ} -ideals of $(R/(a))_w$. Since $(R/(a))_w$ is an Artinian ring, the descending chain (η) is stationary. By Proposition 4.4, the descending chain (ξ) is stationary.

 $(4) \Rightarrow (1)$ Let I be a nonzero w-ideal of R and let $(\xi) : I_1 \supseteq I_2 \supseteq \cdots \supseteq I_n \supseteq \cdots$ be a descending chain of w-ideals of R containing I. For any $a \in I$ with $a \neq 0$, (ξ) is also a descending chain of w-ideals of R containing a. By the hypothesis, (ξ) is stationary. By [4, Theorem 3.2] again, R is an SM domain with w-dim $(R) \leq 1$.

References

- [1] D. Costa and M. Roitman, A lifting approach to v- and t-ideals, Comm. Algebra 18 (1990), no. 11, 3725–3742. https://doi.org/10.1080/00927879008824105
- [2] D. E. Dobbs, E. G. Houston, T. G. Lucas, M. Roitman, and M. Zafrullah, On t-linked overrings, Comm. Algebra 20 (1992), no. 5, 1463–1488. https://doi.org/10.1080/ 00927879208824414
- [3] D. E. Dobbs, E. G. Houston, T. G. Lucas, and M. Zafrullah, t-linked overrings and Prüfer v-multiplication domains, Comm. Algebra 17 (1989), no. 11, 2835–2852. https: //doi.org/10.1080/00927878908823879
- W. Fanggui and R. L. McCasland, On strong Mori domains, J. Pure Appl. Algebra 135 (1999), no. 2, 155–165. https://doi.org/10.1016/S0022-4049(97)00150-3
- [5] B. G. Kang, A characterization of Krull rings with zero divisors, J. Pure Appl. Algebra 72 (1991), no. 1, 33–38. https://doi.org/10.1016/0022-4049(91)90127-N
- [6] B. G. Kang, Characterizations of Krull rings with zero divisors, J. Pure Appl. Algebra 146 (2000), no. 3, 283-290. https://doi.org/10.1016/S0022-4049(98)00100-5
- [7] H. Kim, Module-theoretic characterizations of t-linkative domains, Comm. Algebra 36 (2008), no. 5, 1649–1670. https://doi.org/10.1080/00927870701872513

- T. G. Lucas, Krull rings, Pr
 üfer v-multiplication rings and the ring of finite fractions, Rocky Mountain J. Math. 35 (2005), no. 4, 1251–1325. https://doi.org/10.1216/rmjm/ 1181069687
- [9] A. Mimouni, Integral domains in which each ideal is a W-ideal, Comm. Algebra 33 (2005), no. 5, 1345–1355. https://doi.org/10.1081/AGB-200058369
- [10] F. Wang, w-dimension of domains. II, Comm. Algebra 29 (2001), no. 6, 2419–2428. https://doi.org/10.1081/AGB-100002398
- [11] F. Wang and H. Kim, Foundations of commutative rings and their modules, Algebra and Applications, 22, Springer, Singapore, 2016. https://doi.org/10.1007/978-981-10-3337-7
- [12] F. Wang and R. L. McCasland, On w-modules over strong Mori domains, Comm. Algebra 25 (1997), no. 4, 1285–1306. https://doi.org/10.1080/00927879708825920
- [13] F. Wang and L. Qiao, A homological characterization of Krull domains II, Comm. Algebra 47 (2019), no. 5, 1917–1929. https://doi.org/10.1080/00927872.2018.1524007
- [14] L. Xie, F. G. Wang, and Y. Tian, On w-linked overrings, J. Math. Res. Exposition 31 (2011), no. 2, 337–346.
- [15] H. Yin, F. Wang, X. Zhu, and Y. Chen, w-modules over commutative rings, J. Korean Math. Soc. 48 (2011), no. 1, 207–222. https://doi.org/10.4134/JKMS.2011.48.1.207
- [16] D. Zhou, H. Kim, and K. Hu, A Cohen-type theorem for w-Artinian modules, J. Algebra Appl. 20 (2021), no. 6, Paper No. 2150106, 25 pp. https://doi.org/10.1142/ S0219498821501061

XIAOYING WU SCHOOL OF MATHEMATICS SCIENCE SICHUAN NORMAL UNIVERSITY CHENGDU, SICHUAN 610066, P. R. CHINA *Email address*: mengwxy2017@163.com