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Ω-RESULT ON COEFFICIENTS OF AUTOMORPHIC

L-FUNCTIONS OVER SPARSE SEQUENCES

Huixue Lao and Hongbin Wei

Abstract. Let λf (n) denote the n-th normalized Fourier coefficient of
a primitive holomorphic form f for the full modular group Γ = SL2(Z).
In this paper, we are concerned with Ω-result on the summatory function∑

n6x λ2
f
(n2), and establish the following result

∑

n6x

λ2
f (n

2) = c1x+Ω(x
4
9 ),

where c1 is a suitable constant.

1. Introduction and main results

According to the Langlands program, there are many hidden structures un-
derlying the Fourier coefficients of an automorphic form. Thus it is very impor-
tant and essential to investigate its summatory function over a certain sequence.

Let H∗

k be the set of all normalized Hecke eigencuspforms of even integral
weight k for the full modular group Γ = SL2(Z). For f(z) ∈ H∗

k , f(z) has the
following Fourier expansion at the cusp ∞

f(z) =

∞
∑

n=1

λf (n)n
k−1
2 e2πinz,

where λf (n) is real and satisfies the multiplicative property

(1.1) λf (m)λf (n) =
∑

d|(m,n)

λf

(mn

d2

)

for any integers m ≥ 1 and n ≥ 1.
The size and oscillations of λf (n) deserve deep research. In 1974, Deligne
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[1] proved the Ramanujan-Peterson conjecture

(1.2) |λf (n)| ≤ d(n),

where d(n) is the Dirichlet divisor function.
Hafner and Ivić [4] obtained an O-estimate and Ω±-results for

∑

n≤x λf (n).

The second moment
∑

n≤x |λf (n)|
2 was treated in Rankin [16] and Selberg

[21]. Subsequently, Rankin [17, 18, 19] initiated the theme of lower and upper
estimates for the power moments

∑

n≤x |λf (n)|
2β for β > 0. Lau, Lü and Wu

[12] studied the summation
∑

n≤x λ
j
f (n), where j = 3, 4, 5, 6, 7, 8, and showed

that

(1.3)
∑

n≤x

λ
j
f (n) = xPj(log x) +Of,ε(x

θj+ε),

where the constants θj are given in Theorem 1 of Lau, Lü and Wu [12]. De-
noting by ∆j(f ;x) the error term in (1.3), they also obtained the lower bound
of ∆j(f ;x) using the Omega Theorem of Kühleitner and Nowak [9].

On the other hand, the sum over squares
∑

n≤x λf (n
2) was considered in

Ivić [5], Fomenko [2] and Sankaranarayanan [20]. Lü [14] obtained the bound of
∑

n≤x λf (n
j) (j = 3, 4). Lao and Sankaranarayanan [10] established the asymp-

totic formula of the sum
∑

n≤x λ
2
f (n

j), where j = 2, 3, 4. By using the prop-
erties of symmetric power L-functions and their Rankin-Selberg L-function,
which have been established in the references [3, 7, 8, 13, 22], they showed that

∑

n≤x

λ2f (n
j) = cj−1x+Of,ε(x

1− 2
(j+1)2+2

+ε
),

where j = 2, 3, 4.
In this paper, we are concerned with Ω-result on the error term of the as-

ymptotic formula of
∑

n≤x λ
2
f (n

2). Let

E(f, x) =
∑

n6x

λ2f (n
2)− c1x.

Based on the Omega Theorem of Kühleitner and Nowak [9] (see Lemma 2.1 in
Section 2), we establish the following result.

Theorem 1.1. Let f(z) ∈ H∗

k , and λf (n) denote its n-th normalized Fourier

coefficient. Then we have

E(f, x) = Ω(x
4
9 ).

Remark. It seems that one can consider similar omega-problems for sums over
cubes or 4th powers by similar arguments. However, for the sum

∑

n6x λ
2
f (n

3),

the condition (C) in Lemma 2.1 is not satisfied, and for the sum
∑

n6x λ
2
f (n

4),

the corresponding generating function has a factor L(sym6f×sym6f, s), whose
analytic properties are not clear (since the automorphy of the jth symmetric
power lift of an automorphic cuspidal representation over GL2(AQ) is only
known for j ≤ 4, see e.g. [3, 7, 8, 22]).
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2. Some lemmas

In this section we recall or establish some results, which we shall use in the
proof of our main result.

Lemma 2.1. Let a(n) be an arithmetic function which possesses a generating

Dirichlet series
∞
∑

n=1

a(n)

ns
= F (s) =

f1(m1s) · · · fK(mKs)

g1(n1s) · · · gJ(nJs)
h(s)

in a suitable half-plane of convergence, where

(A) for K ∈ N and J ∈ N0, m1 ≤ · · · ≤ mK and n1 ≤ · · · ≤ nJ are positive

integers.

(B) for each k = 1, . . . ,K, fk(s) is a meromorphic function in a certain

half-plane Re s > σ∗
k with at most finitely many poles, which possesses a repre-

sentation as a Dirichlet series

fk(s) =

∞
∑

n=1

ak(n)

ns

for Re s > 1, with ak(1) 6= 0, ak(n) ≪ nε as n→ ∞, for each ε > 0. For every

σ
′

> σ∗
k,

fk(σ + it) ≪ |t|C (as |t| → ∞)

uniformly in σ ≥ σ
′

, with an appropriate constant C depending on σ
′

.

Furthermore, there exist positive real numbers κk, k = 1, . . . ,K, with the

property that
∑K

k=1 κk > 1, such that
∣

∣

∣

∣

fk(σ + it)

fk(1 − σ + it)

∣

∣

∣

∣

≫ |t|κk(
1
2−σ) (as |t| → ∞)

on the vertical line σ = mkα, where

α :=

∑K
k=1 κk − 1

2
∑K

k=1mkκk
.

(C) for j = 1, . . . J (if J > 0), gj(s) is a meromorphic function with at most

finitely many poles in a half-plane Re s > σ
j
∗. For every ε > 0 there exists

a δ = δ(ε) > 0, such that gj(s) has at most O(T 1−δ) zeros in the domain

Re s ≥ σ
j
∗ + ε, 0 ≤ Im s ≤ T . In a certain half-plane of convergence,

gj(s) =

∞
∑

n=1

bj(n)

ns

with bj(n) ∈ C, bj(1) 6= 0. The inverse arithmetic function with respect to

Dirichlet multiplication (denoted by b∗j (n)) satisfies b
∗
j (n) ≪ nε as n→ ∞, for

each ε > 0. For every σ
′

> σ
j
∗,

gj(σ + it) ≪ |t|C (as |t| → ∞)
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uniformly in σ ≥ σ
′

, with an appropriate constant C depending on σ
′

.

(D) for some σ0 < α, h(s) is a meromorphic function on {s ∈ C : Re s ≥ σ0}
with at most finitely many poles, and satisfies

h(σ + it) ≪ |t|C (as |t| → ∞)

uniformly in σ ≥ σ0, with an appropriate constant C. At least in the half-plane

Re s > 1, h(s) has a representation as a Dirichlet series

h(s) =

∞
∑

n=1

c(n)

ns
,

with c(1) 6= 0, c(n) ≪ nε as n→ ∞, for every ε > 0.

(E) for j = 1, . . . J (if J > 0), njα > σ
j
∗, and for k = 1, . . . ,K,

σ∗
k

mk

< α <
1− σ∗

k

mk

.

(F) H(x) is an arbitrary expression of the form

H(x) =

I
∑

i=1

xβiPi(log x)

where βi ∈ C, α < Re βi ≤ 1, and Pi are polynomials (i = 1, . . . , I).
Under the general conditions (A)-(F), we have, for x→ ∞,

E(x) :=
∑

n≤x

a(n)−H(x) = Ω(xα).

Proof. This is Theorem 2 in Kühleitner and Nowak [9]. �

Lemma 2.2. Let f(z) ∈ H∗

k , and λf (n) denote its n-th normalized Fourier

coefficient. For j = 2, 3, 4, we introduce

Lj(s) =

∞
∑

n=1

λ2f (n
j)

ns
, Re s > 1.(2.1)

Let L(symjf, s) be the j-th symmetric power L-function associated with

f , and L(symjf × symjf, s) be the Rankin-Selberg L-function of symjf and

symjf . Then, we have that for Re s > 1,

Lj(s) = L(symjf × symjf)Vj(s),(2.2)

where Vj(s) converges uniformly and absolutely in the half-plane Re s ≥ 1
2 + ε

for any ε > 0.

Proof. See Lemma 1.1 in Lao and Sankaranarayanan [10]. �

Lemma 2.3. Let f(z) ∈ H∗

k , define Fj(s) =
∑

n≥1 λ
j
f (n)n

−s, where Re s > 1.
Then

Fj(s) = Gj(s)Hj(s) for j = 0, 1, 2, 3, 4, 5, 6, 7, 8,
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where

G0(s) = ζ(s), G1(s) = L(f, s), G2(s) = ζ(s)L(sym2f, s),

G3(s) = L(f, s)2L(sym3f, s),

G4(s) = ζ(s)2L(sym2f, s)3L(sym4f, s),

G5(s) = L(f, s)5L(sym3f, s)3L(sym4f × f, s),

G6(s) = ζ(s)5L(sym2f, s)8L(sym4f, s)4L(sym4f × sym2f, s),

G7(s) = L(f, s)13L(sym3f, s)8L(sym4f × f, s)5L(sym4f × sym3f, s),

G8(s) = ζ(s)13L(sym2f, s)21L(sym4f, s)13L(sym4f × sym2f, s)6

L(sym4f × sym4f, s),

and the function Hj(s) admits a Dirichlet series convergent absolutely in Re s >
1
2 and Hj(s) 6= 0 for Re s = 1.

Proof. This is Lemma 2.1 in Lau, Lü and Wu [12]. �

Lemma 2.4. The Dirichlet series L2(s) admits the factorization

L2(s) = G(s)ψ(2s)γ(s),

where G(s) = L(sym2f × sym2f, s), ψ(s) =
G8

2(s)

G4
0(s)G

3
4(s)

, and γ(s) is defined

by a Dirichlet series that is absolutely convergent in Re s > 1
3 . Moreover, the

meromorphic function ψ(s) has no pole on the line Re s = 1.

Proof. In view of the multiplicity of λ2f (n
2), we can write L2(s) in (2.1) as an

Euler product

L2(s) =
∏

p

(1 +
∑

v≥1

λ2f (p
2v)

pvs
).(2.3)

Calculating the logarithm of both sides in (2.3)

logL2(s) =
∑

p

log(1 +
∑

v≥1

λ2f (p
2v)

pvs
).(2.4)

Applying Taylor-type formula on the right-hand side of (2.4), we learn the
p-local factor of logL2(s) is

λ2f (p
2)

ps
+
λ2f (p

4)− 1
2λ

4
f (p

2)

p2s
+O(p−3s).(2.5)

From [1], we learn that the Hecke L-function attached to f(z) ∈ H∗
k

L(f, s) =

∞
∑

n=1

λf (n)

ns
=

∏

p

(1 − αf (p)p
−s)−1(1− βf (p)p

−s)−1,

where αf (p) and βf (p) satisfy

(2.6) λf (p) = αf (p) + βf (p), |αf (p)| = |βf (p)| = αf (p)βf (p) = 1.
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Let f(z) ∈ H∗

k , the Rankin-Selberg L-function attached to symif and symjf

is defined as

L(symif×symjf, s) :=
∏

p

i
∏

m=0

j
∏

µ=0

(1−αf(p)
i−mβf (p)

mαf (p)
j−µβf (p)

µp−s)−1

=
∏

p

i
∏

m=0

j
∏

µ=0

(1−αf(p)
(i+j)−2(m+µ)p−s)−1, Re s > 1.(2.7)

The product over primes also gives a Dirichlet series representation for L(symif

×symjf, s), for Re s > 1,

L(symif × symjf, s) =
∞
∑

n=1

λsymif×symjf (n)

ns
,

where λsymif×symjf (n) is a multiplicative function. Then we have that for
Re s > 1,

L(symif × symjf, s) =
∏

p

(1 +
∑

k

λsymif×symjf (p
k)

pks
).

Taking i = j = 2 in (2.7), we have

L(sym2f × sym2f, s) =
∏

p

(1 − αf (p)
4p−s)−1(1− αf (p)

2p−s)−2(1 − p−s)−3

(1 − αf (p)
−2p−s)−2(1− αf (p)

−4p−s)−1.(2.8)

Calculating the logarithm of both sides in (2.8), we have

logL(sym2f × sym2f, s) =
∑

p

(− log(1− αf (p)
4p−s)− 2 log(1− αf (p)

2p−s)

− 3 log(1− p−s)− 2 log(1 − αf (p)
−2p−s)

− log(1 − αf (p)
−4p−s)).(2.9)

Applying Taylor-type formula log(1− x) =
∑∞

ϑ=1
xϑ

ϑ
on the right-hand side in

(2.9), we learn p-local factor of logL(sym2f × sym2f, s) is

∞
∑

ϑ=1

α4ϑ
f (p) + 2α2ϑ

f (p) + 3 + 2α−2ϑ
f (p) + α−4ϑ

f (p)

ϑpϑs

=

∞
∑

ϑ=1

(αϑ
f (p) + α−ϑ

f (p))4 − 2(αϑ
f (p) + α−ϑ

f (p))2 + 1

ϑpϑs
.(2.10)

Writing αf (p) = eiθ = cos θ + i sin θ, (2.10) becomes

∞
∑

ϑ=1

(2 cos(ϑθ))4 − 2(2 cos(ϑθ)2) + 1

ϑpϑs
.
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Let Un(x) be the n-th Chebyshev polynomial of the second kind, then

Un(cos θ) =
sin((n+ 1)θ)

sin θ
.

In particular, U1(cos(ϑθ)) = 2 cos(ϑθ). Thus p-local factor of logL(sym2f ×
sym2f, s) is

∞
∑

ϑ=1

U4
1 (cos(ϑθ)) − 2U2

1 (cos(ϑθ)) + 1

ϑpϑs

=
U4
1 (cos θ)− 2U2

1 (cos θ) + 1

ps
+

1
2 − U2

1 (cos(2θ)) +
1
2U

4
1 (cos(2θ))

p2s
+O(p−3s).

Hence, the difference between the local factors of logL2(s) and logL(sym2f ×
sym2f, s) equals

∆P =
λ2f (p

2)− (U4
1 (cos θ)− 2U2

1 (cos θ) + 1)

ps

+
λ2f (p

4)− 1
2λ

4
f (p

2)− (12 − U2
1 (cos 2θ) +

1
2U

4
1 (cos 2θ))

p2s
+O(p−3s)

=:
∆P1

ps
+

∆P2

p2s
+O(p−3s).

From the theory of Hecke operators, we have the following recursive relation

(2.11) λf (p
j) = λf (p

j−1)λf (p)− λf (p
j−2).

In view of (2.6), we know λf (p) = 2 cos θ = U1(cos θ). Thus we have ∆P1 = 0.
By the recursive relation (2.11), we get

λ2f (p
4)−

1

2
λ4f (p

2) =
1

2
λ8f (p)− 4λ6f (p) + 8λ4f (p)− 4λ2f (p) +

1

2
.

Observing that U1(cos 2θ) = U2
1 (cos θ)− 2 and λf (p) = U1(cos θ), we obtain

∆P2 = −3U4
1 (cos θ) + 8U2

1 (cos θ)− 4.

The local factor of logGl(s) is

(2.12)
∑

v≥1

U1(cos(vθ))
l

vpvs
,

which is (4.3) in [12]. From Lemma 2.3 and (2.12), we have

L2(s) =
L(sym2f × sym2f, s)G8

2(2s)

G4
0(2s)G

3
4(2s)

γ(s),

where γ(s) is a Dirichlet series that is absolutely convergent in Re s > 1
3 . From

Lemma 7.1 in [11], we learn that G2j(s) has a pole of order g2j = (2j)!
j!(j+1)! at

s = 1, i.e., g0 = 1, g2 = 1, g4 = 2, g6 = 5, g8 = 14. Let

ψ(s) =:
G8

2(s)

G4
0(s)G

3
4(s)

.
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Hence the order of ψ(s) at s = 1 is equal to −2, which shows that ψ(s) has no
pole on the line Re s = 1. This completes the proof. �

3. Proof of Theorem 1.1

We apply Lemma 2.1 to the sum
∑

n6x λ
2
f (n

2) and establish its Ω-result on
the error term of the asymptotic formula. According to Lemma 2.4, we write

L2(s) =
f1(s)

g1(2s)
h(s),

where

f1(s) = L(sym2f × sym2f, s), g1(s) = G4
0(s)G

3
4(s), h(s) = G8

2(2s)γ(s).

The conditions (A)-(E) required in Lemma 2.1 will be verified with the following
choice of parameters in Lemma 2.1:











J = 1, n1 = 2, σ1
∗ = 2α− 10−4

K = 1, m1 = 1, K1 = 9, σ∗
1 = 0

α =
∑K

k=1 Kk−1

2
∑

K
k=1 mkKk

= 4
9 >

1
3 .

Apparently f1(s), g1(s) and h(s) are absolutely convergent Dirichlet series for
Re s > 1:

f1(s) =
∑

n≥1

a1(n)n
−s, g1(s) =

∑

n≥1

b1(n)n
−s, h(s) =

∑

n≥1

c(n)n−s,

with a1(1) = b1(1) = c(1) = 1, and a1(n), b1(n), b
∗
1(n) ≪ε n

ε for any ε > 0 and
all n ≥ 1, thanks to the Deligne inequality (1.2). Note that b∗1(n) is the inverse
arithmetic function of b∗1(n) with respect to Dirichlet convolution. Conditions
(A), (B) and (D) in Lemma 2.1 are quite obviously valid, for instance,

∣

∣

∣

∣

f1(σ + iτ)

f1(1 − σ + iτ)

∣

∣

∣

∣

≫ |τ |9(
1
2−σ),

for σ = α and |τ | ≥ 1, as the degree of f1(s) is 9.
The crucial condition (C) concerns the zero density of g1(s). Denote by

NL(σ0, T ) the number of zeros of a generic L-function L(s) in σ ≥ σ0 and

0 ≤ t ≤ T. Condition (C) will holds if Ng1(σ, T ) ≪ T 1− 1
10 when σ = σ1

∗ =
2α − 10−4, where g1 is a meromorphic function with at most finitely many
poles in half-plane Re s > σ1

∗. To this end, we invoke [15, Theorem 1]: if L(s)
is in the Selberg class and of degree d, then

NL(σ, T ) ≪ T d(1−σ)+ε,
2

d
≤ σ < 1.

From Lemma 2.3, we learn that

G4(s) = ζ(s)2L(sym2f, s)3L(sym4f, s),

where L(sym4f, s) is in the Selberg class and has degree d = 5, and

d(1 − σ) = 5(1− 2α+ 10−4) ≪ 0.9,
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where L(sym2f, s) is in the Selberg class and has degree d = 3, and

d(1 − σ) = 3(1− 2α+ 10−4) ≪ 0.9.

For L(s) = ζ(s), NL(σ, T ) ≪ T 0.9. Condition (C) is hence satisfied. Condition
(E) is also valid for our choice of parameters. As Lemma 2.1 is applicable, our
proof of Theorem 1.1 is complete.
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