• Title/Summary/Keyword: O2/Ar

Search Result 287, Processing Time 0.033 seconds

A Study of Al2O3 Thin Films Etching Characteristics Using Inductively Coupled BCl3/Ar Plasma (유도결합형 BCl3/Ar 플라즈마를 이용한 Al2O3 박막의 식각 특성)

  • Kim, Young-Keun;Kwon, Kwang-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.6
    • /
    • pp.445-448
    • /
    • 2011
  • In this study, the etching characteristics of $Al_2O_3$ thin films were investigated using an ICP (inductively coupled plasma) of $BCl_3$/Ar gas mixture. The etch rate of $Al_2O_3$ thin films as well as the $SiO_2/Al_2O_3$ etch selectivity were measured as functions of $BCl_3$/Ar mixing ratio (0~100% Ar) at a constant gas pressure (10 mTorr), total gas flow rate (40 sccm), input power (800 W) and bias power (100 W). The behavior of the $Al_2O_3$ etch rate was shown to be quite typical for ion-assisted etch processes with a dominant chemical etch pathway. To analyze the etching mechanism using DLP (double langmuir probe), OES (optical emission spectroscopy) and surface analysis using XPS (x-ray photoelectron spectroscopy) were carried out.

Dry Etching of Al2O3 Thin Film by Cl2/Ar Plasma (Cl2/Ar 플라즈마를 이용한 Al2O3 박막의 식각)

  • Yang, Xue;Um, Doo-Seung;Kim, Gwan-Ha;Song, Sang-Hun;Kim, Chang-Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.12
    • /
    • pp.1005-1008
    • /
    • 2009
  • In this study, adaptively coupled plasma (ACP) source was used for dry etching of $Al_2O_3$ thin film. During the etching process, the wafer surface temperature is an important parameter to influent the etching characteristics. Therefore, the experiments were carried out in ACP to measuring the etch rate, the selectivities of $Al_2O_3$ thin film to mask materials and the etch profile as functions of $Cl_2$/Ar gas ratio and substrate temperature. The highest etch rate of $Al_2O_3$ was 65.4 nm/min at 75% of $Cl_2/(Cl_2+Ar)$ gas mixing ratio. The etched profile was characterized using field effect scanning electron microscopy (FE-SEM). The chemical states of $Al_2O_3$ thin film surfaces were investigated with x-ray photoelectron spectroscopy (XPS).

Surface Etching of TiO2 Thin Films Using High Density Cl2/Ar Plasma

  • Woo, Jong-Chang;Joo, Young-Hee;Kim, Chang-Il
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.6
    • /
    • pp.346-350
    • /
    • 2015
  • In this study, we carried out an investigation of the etch characteristics of TiO2 thin films and the selectivity of TiO2 to SiO2 in adaptive coupled C12/Ar plasma. The maximum etch rate of the TiO2 thin film was 136±5 nm/min at a gas mixing ratio of C12/Ar (75%:25%). The X-ray photoelectron spectroscopy (XPS) analysis showed the efficient destruction of oxide bonds by the ion bombardment as well as the accumulation of low volatile reaction products on the etched surface.

A Study of the Etched ZnO Thin Films Surface by Reactive Ion in the Cl2/BCl3/Ar Plasma (Cl2/BCl3/Ar 플라즈마에서 반응성 이온들에 의해 식각된 ZnO 박막 표면 연구)

  • Woo, Jong-Chang;Kim, Chang-Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.10
    • /
    • pp.747-751
    • /
    • 2010
  • In the study, the characteristics of the etched Zinc oxide (ZnO) thin films surface, the etch rate of ZnO thin film in $Cl_2/BCl_3/Ar$ plasma was investigated. The maximum ZnO etch rate of 53 nm/min was obtained for $Cl_2/BCl_3/Ar$=3:16:4 sccm gas mixture. According to the x-ray diffraction (XRD) and atomic force microscopy (AFM), the etched ZnO thin film was investigated to the chemical reaction of the ZnO surface in $Cl_2/BCl_3/Ar$ plasma. The field emission auger electron spectroscopy (FE-AES) analysis showed an elemental analysis from the etched surfaces. According to the etching time, the ZnO thin film of etched was obtained to The AES depth-profile analysis. We used to atomic force microscopy to determine the roughness of the surface. So, the root mean square of ZnO thin film was 17.02 in $Cl_2/BCl_3/Ar$ plasma. Based on these data, the ion-assisted chemical reaction was proposed as the main etch mechanism for the plasmas.

Effects of Heat Treatment Conditions of FeC2O4·2H2O on the Formation of Fe3O4-δ (FeC2O4·2H2O의 열처리 조건이 Fe3O4-δ 형성에 미치는 영향)

  • Oh, Kyoung-Hwan;Park, Won-Shik;Rhee, Sang-In;Suhr, Dong-Soo
    • Korean Journal of Materials Research
    • /
    • v.22 no.11
    • /
    • pp.620-625
    • /
    • 2012
  • A general synthetic method to make $Fe_3O_{4-{\delta}}$ (activated magnetite) is the reduction of $Fe_3O_4$ by $H_2$ atmosphere. However, this process has an explosion risk. Therefore, we studied the process of synthesis of $Fe_3O_{4-{\delta}}$ depending on heat-treatment conditions using $FeC_2O_4{\cdot}2H_2O$ in Ar atmosphere. The thermal decomposition characteristics of $FeC_2O_4{\cdot}2H_2O$ and the ${\delta}$-value of $Fe_3O_{4-{\delta}}$ were analyzed with TG/DTA in Ar atmosphere. ${\beta}-FeC_2O_4{\cdot}2H_2O$ was synthesized by precipitation method using $FeSO_4{\cdot}7H_2O$ and $(NH_4)_2C_2O_4{\cdot}H_2O$. The concentration of the solution was 0.1 M and the equivalent ratio was 1.0. ${\beta}-FeC_2O_4{\cdot}2H_2O$ was decomposed to $H_2O$ and $FeC_2O$4 from $150^{\circ}C$ to $200^{\circ}C$. $FeC_2O4$ was decomposed to CO, $CO_2$, and $Fe_3O_4$ from $200^{\circ}C$ to $250^{\circ}C$. Single phase $Fe_3O_4$ was formed by the decomposition of ${\beta}-FeC_2O_4{\cdot}2H_2O$ in Ar atmosphere. However, $Fe_3C$, Fe and $Fe_4N$ were formed as minor phases when ${\beta}-FeC_2O_4{\cdot}2H_2O$ was decomposed in $N_2$ atmosphere. Then, $Fe_3O_4$ was reduced to $Fe_3O_{4-{\delta}}$ by decomposion of CO. The reduction of $Fe_3O_4$ to $Fe_3O_{4-{\delta}}$ progressed from $320^{\circ}C$ to $400^{\circ}C$; the reaction was exothermic. The degree of exothermal reaction was varied with heat treatment temperature, heating rate, Ar flow rate, and holding time. The ${\delta}$-value of $Fe_3O_{4-{\delta}}$ was greatly influenced by the heat treatment temperature and the heating rate. However, Ar flow rate and holding time had a minor effect on ${\delta}$-value.

The Etching Properties of Indium Tin Oxide Thin Films in O2/BCl3/Ar Gas Mixture Using Inductively Coupled Plasma (유도결합플라즈마를 이용한 O2/BCl3/Ar가스에 따른 Indium Tin Oxide 박막의 식각 특성 연구)

  • Wi, Jae-Hyung;Woo, Jong-Chang;Kim, Chang-Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.10
    • /
    • pp.752-758
    • /
    • 2010
  • The etching characteristics of indium tin oxide (ITO) thin films in an $O_2/BCl_3/Ar$ plasma were investigated. The etch rate of ITO thin films increased with increasing $O_2$ content from 0 to 2 sccm in $BCl_3$/Ar plasma, whereas that of ITO decreased with increasing $O_2$ content from 2 sccm to 6 sccm in $BCl_3$/Ar plasma. The maximum etch rate of 65.9 nm/m in for the ITO thin films was obtained at 2 sccm $O_2$ addition. The etch conditions were the RF power of 500 W, the bias power of 200 W, the process pressure of 15 mTorr, and the substrate temperature of $40^{\circ}C$. The analysis of x-ray photo electron spectroscopy (XPS) was carried out to investigate the chemical reactions between the surfaces of ITO thin films and etch species.

Etching Mechanism Of Bi4-xEuxTiO12 (BET) Thin films Using Ar/CF4 Inductively Coupled Plasma (Ar/CF4 유도결합 플라즈마를 이용한 BET 박막의 식각 메카니즘)

  • 임규태;김경태;김동표;김창일
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.4
    • /
    • pp.298-303
    • /
    • 2003
  • Bi$_4$-$_{x}$EU$_{x}$Ti$_3$O$_{12}$ (BET) thin films were etched by inductively coupled CF$_4$/Ar plasma. We obtained the maximum etch rate of 78 nm/min at the gas mixing ratio of CF$_4$(10%)/Ar(90%). The variation of volume density for F and Ar atoms are measured by the optical emission spectroscopy. As CF$_4$increased in CF$_4$/Ar plasma, the emission intensities of F increase, but Ar atoms decrease, which confirms our suggestion that emission intensity is proportional to the volume density of atoms. From X-ray photoelectron spectroscopy, the intensities of the Bi-O, the Eu-O and the Ti-O peaks are changed. By pure Ar plasma, intensity peak of the oxygen-metal (O-M : TiO$_2$, Bi$_2$O$_3$, Eu$_2$O$_3$) bond was seemed to disappear while the intensity of pure oxygen peak showed an opposite tendency. After the BET thin films was etched by CF$_4$/Ar plasma, the peak intensity of O-M bond increase slowly, but more quickly than that of peak belonged to pure oxygen atoms due to the decrease of Ar ion bombardment. Scanning electron microscopy was used to investigate etching Profile. The Profile of etched BET thin film was over 85$^{\circ}$./TEX>.

Dry Etching of Al2O3 Thin Films in O2/BCl3/Ar Inductively Coupled Plasma

  • Yang, Xeng;Woo, Jong-Chang;Um, Doo-Seung;Kim, Chang-Il
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.5
    • /
    • pp.202-205
    • /
    • 2010
  • In this study, the etch properties of $Al_2O_3$ thin films deposited by atomic layer deposition were investigated as a function of the $O_2$ content in $BCl_3$/Ar inductively coupled plasma. The experiments were performed by comparing the etch rates and selectivity of $Al_2O_3$ over the hard mask materials as functions of the input plasma parameters, such as the gas mixing ratio, DC-bias voltage, ratio-frequency (RF) power and process pressure. The highest obtained etch rate was 477 nm/min at an RF power of 700 W, $O_2$ to $BCl_3$/Ar gas ratio of 15%, DC-bias voltage of -100 V and process pressure of 15 mTorr. The deposition occurred on the surfaces when the amount of $O_2$ added to the $BCl_3$/Ar gas was too high at a low DC-bias voltage or high process pressure. X-ray photoelectron spectroscopy was used to investigate the chemical reactions on the etched surface.

Temperature effect on Dry Etching of ZrO2 in Cl2/BCl3/Ar Plasma (기판 온도에 따른 Cl2/BCl3/Ar 플라즈마에서 ZrO2 박막의 건식 식각)

  • Yang, Xue;Ha, Tae-Kyung;Wi, Jae-Hyung;Um, Doo-Seung;Kim, Chang-Il
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.6
    • /
    • pp.256-259
    • /
    • 2009
  • The wafer surface temperature is an important parameter in the etching process which influences the reaction probabilities of incident species, the vapor pressure of etch products, and the re-deposition of reaction products on feature surfaces. In this study, we investigated all of the effects of substrate temperature on the etch rate of $ZrO_2$ thin film and selectivity of $ZrO_2$ thin film over $SiO_2$ thin film in inductively coupled plasma as functions of $Cl_2$ addition in $BCl_3$/Ar plasma, RF power and dc-bias voltage based on the substrate temperature in range of $10^{\circ}C$ to $80^{\circ}C$. The elements on the surface were analyzed by x-ray photoelectron spectroscopy (XPS).

The Etching Characteristics of (Ba0.6Sr0.4)TiO3 films Using Ar/CF4 Inductively Coupled Plasma (Ar/CF4 유도결합 플라즈마를 이용한 (Ba0.6Sr0.4)TiO3 박막의 식각 특성)

  • 강필승;김경태;김동표;김창일;이수재
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.11
    • /
    • pp.933-938
    • /
    • 2002
  • (Ba,Sr)TiO$_{4}$ (BST) thin films on Pt/Ti/SiO$_{2}$/Si substrates were deposited by a sol-gel method and the etch characteristics of BST thin films have been investigated as a function of gas mixing ratio. The maximum etch rate of the BST films was 440 $AA$/min under such conditions as: CF$_{4}$(CF$_{4}$+Ar) of 0.2, RF-power of 700 W, DC-bias voltage of -200 V, pressure of 15 mTorr and substrate temperature of 30 $^{circ}C$. The selectivities of BST to Pt, SiO$_{2}$ and PR were 0.38, 0.25 and 0.09, respectively. In the XPS (X-ray photoelectron spectroscopy) analysis, Barium (Ba) and Strontium (Sr) component in BST thin films formed low volatile compounds such as BaFx, SrFx, which are forms by the chemical reaction with F atoms and is removed by Ar ion bombardment. Titanium (Ti) is removed by chemical reaction such as TiF with ease. The result of secondary ion mass spectrometry (SIMS) analysis confirmed the existence of the BaFx, SrFK, TiFx.