• Title/Summary/Keyword: Nonlinear differential equations

Search Result 611, Processing Time 0.02 seconds

APPROXIMATE CONTROLLABILITY FOR SEMILINEAR INTEGRO-DIFFERENTIAL CONTROL EQUATIONS WITH QUASI-HOMOGENEOUS PROPERTIES

  • Kim, Daewook;Jeong, Jin-Mun
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.34 no.3
    • /
    • pp.189-207
    • /
    • 2021
  • In this paper, we consider the approximate controllability for a class of semilinear integro-differential functional control equations in which nonlinear terms of given equations satisfy quasi-homogeneous properties. The main method used is to make use of the surjective theorems that is similar to Fredholm alternative in the nonlinear case under restrictive assumptions. The sufficient conditions for the approximate controllability is obtain which is different from previous results on the system operator, controller and nonlinear terms. Finally, a simple example to which our main result can be applied is given.

A New Analytical Series Solution with Convergence for Nonlinear Fractional Lienard's Equations with Caputo Fractional Derivative

  • Khalouta, Ali
    • Kyungpook Mathematical Journal
    • /
    • v.62 no.3
    • /
    • pp.583-593
    • /
    • 2022
  • Lienard's equations are important nonlinear differential equations with application in many areas of applied mathematics. In the present article, a new approach known as the modified fractional Taylor series method (MFTSM) is proposed to solve the nonlinear fractional Lienard equations with Caputo fractional derivatives, and the convergence of this method is established. Numerical examples are given to verify our theoretical results and to illustrate the accuracy and effectiveness of the method. The results obtained show the reliability and efficiency of the MFTSM, suggesting that it can be used to solve other types of nonlinear fractional differential equations that arise in modeling different physical problems.

Large amplitude free vibration analysis of functionally graded nano/micro beams on nonlinear elastic foundation

  • Setoodeh, AliReza;Rezaei, Mohammad
    • Structural Engineering and Mechanics
    • /
    • v.61 no.2
    • /
    • pp.209-220
    • /
    • 2017
  • The purpose of this paper is to study the geometrically nonlinear free vibration of functionally graded nano/micro beams (FGNBs) based on the modified couple stress theory. For practical applications, some analytical expressions of nonlinear frequencies for FGNBs on a nonlinear Pasternak foundation are developed. Hamilton's principle is employed to obtain nonlinear governing differential equations in the context of both Euler-Bernoulli and Timoshenko beam theories for a comprehensive investigation. The modified continuum theory contains one material length scale parameter to capture the size effect. The variation of two-constituent material along the thickness is modeled using Reddy's power-law. Also, the Mori-Tanaka method as an accurate homogenization technique is implemented to estimate the effective material properties of the FGNBs. The results are presented for both hinged-hinged and clamped-clamped boundary conditions. The nonlinear partial differential equations are reduced to ordinary differential equations using Galerkin method and then the powerful method of homotopy analysis is utilized to obtain the semi-analytical solutions. Eventually, the presented analytical expressions are used to examine the influences of the length scale parameter, material gradient index, and elastic foundation on the nonlinear free vibration of FGNBs.

EXISTENCE AND UNIQUENESS RESULTS FOR SYSTEM OF FRACTIONAL DIFFERENTIAL EQUATIONS WITH INITIAL TIME DIFFERENCE

  • Nanware, J.A.;Dawkar, B.D.;Panchal, M.S.
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.5
    • /
    • pp.1035-1044
    • /
    • 2021
  • Existence and uniqueness results for solutions of system of Riemann-Liouville (R-L) fractional differential equations with initial time difference are obtained. Monotone technique is developed to obtain existence and uniqueness of solutions of system of R-L fractional differential equations with initial time difference.

Nonlinear vibration of hybrid composite plates on elastic foundations

  • Chen, Wei-Ren;Chen, Chun-Sheng;Yu, Szu-Ying
    • Structural Engineering and Mechanics
    • /
    • v.37 no.4
    • /
    • pp.367-383
    • /
    • 2011
  • In this paper, nonlinear partial differential equations of motion for a hybrid composite plate subjected to initial stresses on elastic foundations are established to investigate its nonlinear vibration behavior. Pasternak foundation and Winkler foundations are used to represent the plate-foundation interaction. The initial stress is taken to be a combination of pure bending stress plus an extensional stress in the example problems. The governing equations of motion are reduced to the time-dependent ordinary differential equations by the Galerkin's method. Then, the Runge-Kutta method is used to evaluate the nonlinear vibration frequency and frequency ratio of hybrid composite plates. The nonlinear vibration behavior is affected by foundation stiffness, initial stress, vibration amplitude and the thickness ratio of layer. The effects of various parameters on the nonlinear vibration of hybrid laminated plate are investigated and discussed.

A NEW METHOD FOR SOLVING NONLINEAR SECOND ORDER PARTIAL DIFFERENTIAL EQUATIONS

  • Gachpazan. M.;Kerayechian, A.;Kamyad, A.V.
    • Journal of applied mathematics & informatics
    • /
    • v.7 no.2
    • /
    • pp.453-465
    • /
    • 2000
  • In this paper, a new method for finding the approximate solution of a second order nonlinear partial differential equation is introduced. In this method the problem is transformed to an equivalent optimization problem. them , by considering it as a distributed parameter control system the theory of measure is used for obtaining the approximate solution of the original problem.

OSCILLATION AND NONOSCILLATION THEOREMS FOR NONLINEAR DIFFERENTIAL EQUATIONS OF SECOND ORDER

  • Kim, Rak-Joong;Kim, Dong-Il
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.6
    • /
    • pp.1453-1467
    • /
    • 2007
  • By means of a Riccati transform some oscillation or nonoscillation criteria are established for nonlinear differential equations of second order $$(E_1)\;[p(t)|x#(t)|^{\alpha}sgn\;x#(t)]#+q(t)|x(\tau(t)|^{\alpha}sgn\;x(\tau(t))=0$$. $$(E_2),\;(E_3)\;and\;(E_4)\;where\;0<{\alpha}$$ and $${\tau}(t){\leq}t,\;{\tau}#(t)>0,\;{\tau}(t){\rightarrow}{\infty}\;as\;t{\rightarrow}{\infty}$$. In this paper we improve some previous results.

EXISTENCE OF POSITIVE SOLUTIONS FOR EIGENVALUE PROBLEMS OF SINGULAR NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS

  • Lee, Yong-Hoon;Lee, Jinsil
    • East Asian mathematical journal
    • /
    • v.33 no.3
    • /
    • pp.323-331
    • /
    • 2017
  • In this paper, we consider the existence of positive solutions for eigenvalue problems of nonlinear fractional differential equations with singular weights. We give various conditions on f and apply Krasnoselskii's Cone Fixed Point Theorem. As a result, we obtain several existence and nonexistence results corresponding to ${\lambda}$ in certain intervals.

BOUNDED OSCILLATION FOR SECOND-ORDER NONLINEAR DELAY DIFFERENTIAL EQUATIONS

  • Song, Xia;Zhang, Quanxin
    • Journal of applied mathematics & informatics
    • /
    • v.32 no.3_4
    • /
    • pp.447-454
    • /
    • 2014
  • Two necessary and sufficient conditions for the oscillation of the bounded solutions of the second-order nonlinear delay differential equation $$(a(t)x^{\prime}(t))^{\prime}+q(t)f(x[{\tau}(t)])=0$$ are obtained by constructing the sequence of functions and using inequality technique.