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EXISTENCE OF POSITIVE SOLUTIONS FOR EIGENVALUE

PROBLEMS OF SINGULAR NONLINEAR FRACTIONAL

DIFFERENTIAL EQUATIONS

Yong-Hoon Lee and Jinsil Lee

Abstract. In this paper, we consider the existence of positive solutions

for eigenvalue problems of nonlinear fractional differential equations with
singular weights. We give various conditions on f and apply Krasnosel-

skii’s Cone Fixed Point Theorem. As a result, we obtain several existence

and nonexistence results corresponding to λ in certain intervals.

1. Introduction

In this paper, we investigate the existence and nonexistence of positive so-
lutions for fractional differential equations with Dirichlet boundary value prob-
lems of the form{

Dα
0+u(t) + λh(t)f(u(t)) = 0, t ∈ (0, 1),

u(0) = 0 = u(1),
(Eλ)

where Dα
0+ is the Riemann-Liouville fractional derivative of order α, which is

a real number in (1, 2], λ is a positive real parameter, f ∈ C([0,∞), [0,∞))and
h ∈ L1

loc((0, 1), [0,∞)) satisfies the condition

(H)

∫ 1

0

sα−1(1−s)α−1h(s)ds < +∞.

Several authors have widely studied existence of positive solutions for frac-
tional differential equations. In particular, Jiang and Yuan([2]) studied positive
solutions of nonlinear fractional boundary value problem{

Dα
0+u(t) + f(t, u(t)) = 0, t ∈ (0, 1),

u(0) = 0 = u(1),
(1.1)
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with the following hypotheses:
(A) f(t, u) is continuous on [0, 1]× [0,∞)
(B) there exist g ∈ C([0,∞), [0,∞)), q1, q2 ∈ C((0, 1), (0,∞)) such that

q1(t)g(u) ≤ f(t, tα−2u) ≤ q2(t)g(u),

and qi ∈ L1(0, 1) i = 1, 2 .
By means of a fixed point theorem, they proved the existence of positive

solutions for (1.1) when g0 = limu→0
g(u)
u and g∞ = limu→∞

g(u)
u are either 0

or ∞.
On the other hand, Han and Gao([3]) established the existence results for

the following type of differential equations{
Dα

0+u(t) + λa(t)f(t, u(t)) = 0, t ∈ (0, 1),

u(0) = 0 = u(1),
(1.2)

under assumptions a ∈ C([0, 1], [0,∞)), (A) and (B). They proved the existence
of at least one positive solution for (1.2) if both g0 and g∞ are finite.

It is interesting to consider the cases that g0 and g∞ are neither 0 nor ∞
and as far as the authors know, there have not been any studies about the cases
for eigenvlaue problems specially when the weight a is singular. To focus on
the singular effect on t-variable, we simply consider the nonlinear term as a
separation of variable type, that is, f is of the form f(t, u) = h(t)g(u). The
results to variable dependent case can be extended in obvious way.

For the problem having singular weights, Lee and Lee ([5]) investigate the
existence of a positive solution for the following nonlinear fractional differential
equation {

Dα
0+u(t) + h(t)f(u(t)) = 0, t ∈ (0, 1),

u(0) = 0 = u(1),
(1.3)

where Dα
0+ is the Riemann-Liouville fractional derivative of order α, which

is a real number in (1, 2], h ∈ L1
loc(0, 1) satisfies the condition (H) and f ∈

C([0,∞), [0,∞)). They show that (1.3) has at least one positive solution if
either f0 = 0, f∞ =∞ or f0 =∞, f∞ = 0.

Reminding that given weight function h in our problem is singular at the
boundary which may not be integrable but satisfying (H), we exploit several
existence and nonexistence results when the nonlinear term f satisfies several
conditions such as f0 and f∞ could be 0, ∞ or finite.

Our main idea is to construct a cone in a Banach space and a completely
continuous operator defined on this cone based on the corresponding Green’s
function and then we find fixed points for some λ in a certain interval. In addi-
tion, we also prove that (Eλ) has no positive solution when λ is in a particular
interval.
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2. Preliminaries

In this section, we introduce some definitions of fractional calculus and some
important theorems and lemmas which we will use later.

Definition 1. Assume that f(t) ∈ C[a, b] and let n be a number satisfying
n − 1 ≤ α < n. Then aD

α
t f(t) is said to be a Riemann-Liouville fractional

derivative which is defined by

aD
α
t f(t) =

1

Γ(n− α)
(
d

dt
)n
∫ t

a

(t− τ)−α+n−1f(τ)dτ.

Remark 1. ([1]) In particular Riemann-Liouville fractional derivative case, let
n be a number satisfying n−1 ≤ α < n. Then we define the derivative Dα

0+f(t)
as

Dα
0+f(t) =

1

Γ(n− α)
(
d

dt
)n
∫ t

0

(t− τ)−α+n−1f(τ)dτ.

Also, we define the integral Iα0+f(t) as

Iα0+f(t) =
1

Γ(α)

∫ t

0

f(τ)

(t− τ)1−α
dτ, x > 0 and α > 0.

By definitions, we know Dα
0+f(t) = ( ddt )

nIn−α0+ f(t).

Definition 2. Let E be a real Banach space. A nonempty closed set P ⊂ E is
said to be a cone provided that

(1) au+ bv ∈ P for all u, v ∈ P and all a ≥ 0, b ≥ 0, and
(2) u, −u ∈ P implies u = 0.

Theorem 2.1. (Fixed point theorem of cone expansion/compression type) Let
E be a Banach space and let P be a cone in E. Assume that Ω1 and Ω2 are
open subsets of E with 0 ∈ Ω1, Ω1 ⊂ Ω2. Assume that T : P ∩ (Ω2 \ Ω1) → P
is completely continuous such that either

(1) ‖Tu‖ ≤ ‖u‖, for u ∈ P ∩ ∂Ω1 and ‖Tu‖ ≥ ‖u‖, for u ∈ P ∩ ∂Ω2, or
(2) ‖Tu‖ ≥ ‖u‖, for u ∈ P ∩ ∂Ω1 and ‖Tu‖ ≤ ‖u‖, for u ∈ P ∩ ∂Ω2.

Then T has a fixed point in P ∩ (Ω2 \ Ω1).

3. An Application to Eigenvalue Problems

In this section, we prove our main results. We first consider the solution
operator. Since h is singular, we cannot get the operator directly by taking
fractional integral. In [5], the authors showed that problem (Eλ) is equivalently
written as

u(t) = λ

∫ 1

0

G(t, s)h(s)f(u(s))ds,
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where

G(t, s) =


(t(1− s))α−1 − (t− s)α−1

Γ(α)
, 0 ≤ s ≤ t ≤ 1,

(t(1− s))α−1

Γ(α)
, 0 ≤ t ≤ s ≤ 1.

(3.1)

Remark 2. ([2], [4]) The Green function G(t, s) defined by (3.1) has the follow-
ing properties

(1) G(t, s) ∈ C([0, 1]× [0, 1]), and G(t, s) > 0 for t, s ∈ (0, 1),
(2) max0≤t≤1G(t, s) = G(s, s), for s ∈ (0, 1).

Let E = C[0, 1] be endowed with the ordering u ≤ v if u(t) ≤ v(t) for all
t ∈ [0, 1]. We define P ⊆ E by

P = {u ∈ E | u(t) ≥ 0, u(t) ≥ (α− 1)t(1− t)||u||∞}.

Then we can easily see that P is a cone. For u ∈ E, define an operator T given
as

Tu(t) = λ

∫ 1

0

G(t, s)h(s)f(u(s))ds.

Then problem (Eλ) can be equivalently written as

u = Tu

and it is known ([5]) that T : E → P is completely continuous. When either
f0 = 0, f∞ =∞ or f0 =∞, f∞ = 0, it is also known ([5]) that under assump-
tion (H), problem (Eλ) has at least one positive solution for all λ > 0.

In this paper, we first consider the case that f0 is finite.

Lemma 3.1. Assume 0 < f0 <∞ and f∞ =∞ and assume (H). Then prob-

lem (Eλ) has at least one positive solution for λ ∈ (0, (f0
∫ 1

0
G(s, s)h(s)ds)−1).

Proof. Fix λ with

λ < (f0

∫ 1

0

G(s, s)h(s)ds)−1.

Then we may choose ζ > 0 satisfying

λ = ((f0 + ζ)

∫ 1

0

G(s, s)h(s)ds)−1.
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From the definition of f0, we can select r1 > 0 such that f(u) < u(f0 + ζ) for
0 < u ≤ r1. Take Ωr1 = {u ∈ C[0, 1]|||u||∞ < r1}. For u ∈ P ∩ ∂Ωr1 , we have

Tu(t) = λ

∫ 1

0

G(t, s)h(s)f(u(s))ds

≤ λ

∫ 1

0

G(s, s)h(s)(f0 + ζ)u(s)ds

≤ ||u||∞λ
∫ 1

0

G(s, s)h(s)(f0 + ζ)ds

= ||u||∞.

Hence, this implies that ||Tu||∞ ≤ ||u||∞ for u ∈ P ∩ ∂Ωr1 .
On the other hand, since f∞ = ∞, we may choose M,R1 > 0 such that

α−1
16 λ

∫ 3
4
1
4

G( 1
2 , s)h(s)Mds ≥ 1 and f(u) ≥ Mu for all u > R1. Take R∗ >

α−1
16 R1+r1 and define ΩR∗ = {u ∈ C[0, 1]|||u||∞ < R∗}. Then for u ∈ P ∩∂ΩR∗ ,

we obtain

u(t) ≥ α− 1

16
||u||∞ > R1, t ∈ [

1

4
,

3

4
]

and thus

Tu(
1

2
) ≥ λ

∫ 3
4

1
4

G(
1

2
, s)h(s)f(u(s))ds

≥ λ

∫ 3
4

1
4

G(
1

2
, s)h(s)Mu(s)ds

≥ α− 1

16
||u||∞λ

∫ 3
4

1
4

G(
1

2
, s)h(s)Mds

≥ ||u||∞.

This implies that ||Tu||∞ ≥ ||u||∞, for u ∈ P ∩ ∂ΩR∗ and therefore T has a
fixed point u in u ∈ P ∩ (ΩR∗ \ Ωr1). �

Based on this lemma, we can prove a theorem on the existence and nonexis-
tence of solutions as follows;

Theorem 3.2. Assume 0 < f0 < ∞ and f∞ = ∞. Also assume (H). Then
there exist λ∗ and λ∗∗ such that problem (Eλ) has at least one positive solution
for 0 < λ < λ∗ and no positive solution for λ > λ∗∗.

Proof. From the above assumptions, we know that there exists K > 0 such
that f(u) ≥ Ku, for all u > 0. Let u be a solution of (Eλ), then u ∈ P, since



328 Y. LEE AND J. LEE

T : E → P and by the above facts, we obtain

||u||∞ ≥ u(
1

2
) = λ

∫ 1

0

G(
1

2
, s)h(s)f(u(s))ds

≥ λ

∫ 3
4

1
4

G(
1

2
, s)h(s)Ku(s)ds

≥ λ

∫ 3
4

1
4

G(
1

2
, s)h(s)

K(α− 1)

16
||u||∞ds

which implies

λ ≤ (

∫ 3
4

1
4

G(
1

2
, s)h(s)

K(α− 1)

16
ds)−1.

Therefore, it follows that the set {λ > 0 : there exists nonzero uλ such that
Tuλ = uλ} is bounded above. Together with Lemma 3.1, we completes the
proof. �

Next, we consider the case, f0 = ∞ and 0 < f∞ < ∞. By using similar
arguments, we obtain the following lemma and theorem.

Lemma 3.3. Assume f0 = ∞ and 0 < f∞ < ∞. Also assume (H). Then
problem (Eλ) has at least one positive solution for

λ ∈ (0, (f∞

∫ 1

0

G(s, s)h(s)ds)−1).

Theorem 3.4. Assume f0 = ∞ and 0 < f∞ < ∞. Also assume (H). Then
there exist λ∗ and λ∗∗ such that problem (Eλ) has at least one positive solution
for 0 < λ < λ∗ and no positive solution for λ > λ∗∗.

Now, we consider the case 0 < f0 < ∞ and f∞ = 0. In this case, we obtain
the following lemma

Lemma 3.5. Assume 0 < f0 < ∞ and f∞ = 0. Also assume (H). Then
problem (Eλ) has at least one positive solution for

λ ∈ ((
f0(α− 1)

16

∫ 3
4

1
4

G(
1

2
, s)h(s)ds)−1,∞).

Proof. Fix λ and then we can take η where

λ =
( (f0 − η)(α− 1)

16

∫ 3
4

1
4

G(
1

2
, s)h(s)ds

)−1
.
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From the definition of f0, we may choose r2 > 0 such that f(u) > u(f0 − η) for
0 < u ≤ r2. Take Ωr2 = {u ∈ C[0, 1]|||u||∞ < r2}.

||Tu||∞ ≥ Tu(
1

2
) = λ

∫ 1

0

G(
1

2
, s)h(s)f(u(s))ds

≥ λ

∫ 3
4

1
4

G(
1

2
, s)h(s)(f0 − ζ)u(s)ds

≥ λ||u||∞
(f0 − η)(α− 1)

16

∫ 3
4

1
4

G(
1

2
, s)h(s)ds

= ||u||∞.

Since f∞ = 0, we pick N,R2 > 0 such that λ
∫ 1

0
G(s, s)h(s)Nds < 1 and

f(u) ≤ Nu for all u > R2. TakeR∗∗ > max{R2,
{max0≤u≤R2

|f(u)|}λ
∫ 1
0
G(s,s)h(s)ds

1−Nλ
∫ 1
0
(s(1−s))α−1h(s)ds

}.
Then for u ∈ P ∩ ∂ΩR∗∗ ,

Tu(t) ≤
∫ 1

0

G(s, s)h(s)f(u(s))ds

≤
[ ∫

0≤u≤R2

G(s, s)h(s)f(u(s))ds

+

∫
R2<u≤R∗∗

G(s, s)h(s)f(u(s))ds
]

≤
[

max
0≤u≤R2

|f(u)|
∫
0≤u≤R2

G(s, s)h(s)ds

+

∫
R2<u≤R∗∗

G(s, s)h(s)Nu(s)ds
]

≤
(

max
0≤u≤R2

|f(u)|+N ||u||∞
)∫ 1

0

G(s, s)h(s)ds

≤ R2 = ||u||∞.

Therefore, T has a fixed point u in u ∈ P ∩ (ΩR∗∗ \ Ωr2). �

By using similar caculation in the proof of Lemma 3.5 and Theorem 3.2, we
get the following existence and nonexistence result.

Theorem 3.6. Assume 0 < f0 <∞ and f∞ = 0. Also assume (H). Then there
exist λ∗ and λ∗∗ such that problem (Eλ) has no positive solution for 0 < λ < λ∗

and at least one positive solution for λ > λ∗∗.

Moreover, we add several results of similar pattern for the cases, f0 = 0 and
0 < f∞ <∞ or 0 < f0 <∞ and 0 < f∞ <∞.
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Lemma 3.7. Assume f0 = 0 and 0 < f∞ < ∞. Also assume (H). Then
problem (Eλ) has at least one positive solution for

λ ∈ ((
f∞(α− 1)

16

∫ 3
4

1
4

G(
1

2
, s)h(s)ds)−1,∞).

Theorem 3.8. Assume f0 = 0 and 0 < f∞ <∞. Also assume (H). Then there
exist λ∗ and λ∗∗ such that problem (Eλ) has no positive solution for 0 < λ < λ∗

and at least one positive solution for λ > λ∗∗.

Lemma 3.9. Assume 0 < f0 < ∞ and 0 < f∞ < ∞. Also assume (H). Then
problem (Eλ) has at least one positive solution for each λ satisfying either

(1)
( f∞(α−1)

16

∫ 3
4
1
4

G( 1
2 , s)h(s)ds

)−1 ≤ λ ≤ (f0 ∫ 1

0
G(s, s)h(s)ds)−1 or

(2) ( f0(α−1)16

∫ 3
4
1
4

G( 1
2 , s)h(s)ds

)−1 ≤ λ ≤ (f∞ ∫ 1

0
G(s, s)h(s)ds

)−1
.

Theorem 3.10. Assume 0 < f0 < ∞ and 0 < f∞ < ∞. Also assume (H).
Then there exist λ∗, λ∗∗,λ∗ and λ∗∗ such that problem (Eλ) has no positive
solution for λ∗ < λ < λ∗∗ and at least one positive solution for λ∗ < λ < λ∗∗.

Example 3.11. Consider the boundary value problem{
Dα

0+u(t) + λt−βf(u) = 0, 1 < β < α < 2

u(0) = 0 = u(1),
(3.2)

where

f(u) =

tanu, u ∈ (0,
π

4
]

16

π2
u2, u ∈ (

π

4
,∞).

We can easily check that h(t) = t−β /∈ L1(0, 1) satisfying (H) and f satisfies
0 < f0 < ∞ and f∞ = ∞ and thus we conclude that there exist λ∗ and λ∗∗

such that problem (3.2) has at least one positive solution for 0 < λ < λ∗ and no
positive solution for λ > λ∗∗ from Theorem 3.2. We notice that the advantage
of our results in this paper is to figure out λ∗ and λ∗∗ explicitly. For example,
let us take α=1.5, β=1.2 in (3.2). Then by the fact that f(u) ≥ u for all u > 0,
we may choose K = 1 and we can calculate λ∗ ≈ 3.21197 and λ∗∗ ≈ 76.39489.
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