ANTI-PERIODIC SOLUTIONS FOR HIGHER-ORDER NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS |
Chen, Tai Yong
(DEPARTMENT OF MATHEMATICS CHINA UNIVERSITY OF MINING AND TECHNOLOGY)
Liu, Wen Bin (DEPARTMENT OF MATHEMATICS CHINA UNIVERSITY OF MINING AND TECHNOLOGY) Zhang, Jian Jun (DEPARTMENT OF MATHEMATICS CHINA UNIVERSITY OF MINING AND TECHNOLOGY) Zhang, Hui Xing (DEPARTMENT OF MATHEMATICS CHINA UNIVERSITY OF MINING AND TECHNOLOGY) |
1 | A. R. Aftabizadeh, S. Aizicovici, and N. H. Pavel, On a class of second-order antiperiodic boundary value problems, J. Math. Anal. Appl. 171 (1992), no. 2, 301-320. DOI |
2 | T. Y. Chen, W. B. Liu, J. J. Zhang, and M. Y. Zhang, Existence of anti-periodic solutions for Lienard equations, J. Math. Study 40 (2007), no. 2, 187-195. |
3 | F. Z. Cong, Q. D. Hunang, and S. Y. Shi, Existence and uniqueness of periodic solutions for (2n+1)th-order differential equations, J. Math. Anal. Appl. 241 (2000), no. 1, 1-9. DOI ScienceOn |
4 | B. W. Li and L. H. Huang, Existence of periodic solutions for nonlinear nth order ordinary differential equations, Acta Math. Sinica (Chin. Ser.) 47 (2004), no. 6, 1133-1140. |
5 | W. G. Li, Periodic solutions for 2kth order ordinary differential equations with resonance, J. Math. Anal. Appl. 259 (2001), no. 1, 157-167. DOI ScienceOn |
6 | G. H. Hardy, J. E. Littlewood, and G. Polya, Inequalities, Cambridge University Press, 1952. |
7 | J. Mawhin and M. Willem, Multiple solutions of the periodic boundary value problem for some forced pendulum-type equations, J. Differential Equations 52 (1984), no. 2, 264-287. DOI |
8 | W. B. Liu and Y. Li, Existence of periodic solutions for higher-order Duffing equations, Acta Math. Sinica (Chin. Ser.) 46 (2003), no. 1, 49-56. |
9 | M. Nakao, Existence of an anti-periodic solution for the quasilinear wave equation with viscosity, J. Math. Anal. Appl. 204 (1996), no. 3, 754-764. DOI ScienceOn |
10 | K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985. |
11 | M. A. Pinsky and A. A. Zevin, Oscillations of a pendulum with a periodically varying length and a model of swing, Internat. J. Non-Linear Mech. 34 (1999), no. 1, 105-109. DOI ScienceOn |
12 | R. Ortega, Counting periodic solutions of the forced pendulum equation, Nonlinear Anal. 42 (2000), no. 6, Ser. A: Theory Methods, 1055-1062. DOI ScienceOn |