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ANTI-PERIODIC SOLUTIONS FOR HIGHER-ORDER
NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS

Tai Yong Chen, Wen Bin Liu, Jian Jun Zhang, and Hui Xing Zhang

Abstract. In this paper, the existence of anti-periodic solutions for
higher-order nonlinear ordinary differential equations is studied by us-
ing degree theory and some known results are improved to some extent.

1. Introduction

Anti-periodic problems arise naturally from the mathematical models of a
variety of physical processes and have important applications in auto-control,
partial differential equations and engineering. Recently, there has been a great
deal of research on anti-periodic boundary value problem (see [1], [2], [9], [10],
[11], [12] and references therein). In mechanics, the simplest model of oscillation
equation is single pendulum equation

x′′ + ω2 sin x = p(t) = p(t + 2π),(1)

whose anti-periodic solutions satisfy

x (t + π) = −x(t), ∀t ∈ R.

In particular, many authors have discussed the existence of anti-periodic so-
lutions for the first order or second order nonlinear ordinary differential equa-
tion. Mawhin ([9]) generalized equation (1) to the general Duffing equation

x′′ + g(x) = p(t),

and obtained the existence results for anti-periodic solutions by using critical
point theory. In [1], the author proved the existence of anti-periodic solutions
for the following abstract nonlinear second order evolution equation

−x′′(t) + ax′(t) + A(t)x(t) = f(t)
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associated with maximal monotone operators in Hilbert spaces. In [2], some
results of anti-periodic solutions for Liénard equation

x′′ + f(x)x′ + g(t, x) = p(t)

were established by Leray-Schauder principle.
In recent years, many results relative to the existence of periodic solutions

for higher-order ordinary differential equations have been obtained (see [3], [6],
[7], [8] and references therein). In this paper, we consider the existence of anti-
periodic solutions for the following higher-order nonlinear ordinary differential
equations

x(2m) +
2m−1∑

i=2

aix
(i) + f(x)x′ + g(t, x) = p(t),(2)

x(2m+1) +
2m∑

i=2

aix
(i) + f(x)x′ + g(t, x) = p(t),(3)

where ai ∈ R(i = 2, 3, . . . , 2m), f(x) ∈ C(R,R), g(t, x) ∈ C(R2,R) and g(t +
2π, x) = g(t, x), p(t) ∈ C(R,R) and p(t + 2π) = p(t). We obtain several useful
results by using Leray-Schauder principle.

The plan of this paper is as follows. Section 2 contains the necessary prelim-
inaries. In section 3, we obtain the existence theorem of anti-periodic solutions
for equation (2) (Theorem 3.1). Section 4 consists of two parts. In the first
part, we establish two existence theorems of anti-periodic solutions for equa-
tion (3) (Theorem 4.1, 4.2). The second part is devoted to handling with the
equation (3) when g(t, x) = g(x) and we obtain two existence results of anti-
periodic solutions (Theorem 4.3, 4.4). Our results improve and generalize some
known results to some extent.

2. Preliminaries

Throughout the paper, we shall use the following notations

Ck,π =
{
x ∈ Ck(R,R) : x(t + π) = −x(t), ∀t ∈ R}

,

‖x‖2 =
{∫ 2π

0

|x(t)|2dt

}1/2

, ‖x‖∞ = max
t∈[0,2π]

|x(t)|,

‖x‖Ck = max
i=0,1,...,k

{∥∥∥x(i)
∥∥∥
∞

}
.

For x(t) ∈ C0,π, there exists the following Fourier expansion

x(t) =
∞∑

i=0

[a2i+1 cos(2i + 1)t + b2i+1 sin(2i + 1)t] .
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Let us define J : C0,π −→ C1,π

(Jx) (t) =
∫ t

0

x(s)ds−
∞∑

i=0

b2i+1

2i + 1

=
∞∑

i=0

[
a2i+1

2i + 1
sin(2i + 1)t− b2i+1

2i + 1
cos(2i + 1)t

]
.

Obviously
d

dt
[Jx(t)] = x(t).

By the definition of J , we have

|(Jx)(t)| ≤
∫ 2π

0

|x(s)|ds +
∞∑

i=0

|b2i+1|
2i + 1

≤ 2π‖x‖∞ +

( ∞∑

i=0

b2
2i+1

)1/2 [ ∞∑

i=0

1
(2i + 1)2

]1/2

.

Noting [ ∞∑

i=0

1
(2i + 1)2

]1/2

=
π

2
√

2
and using the Parseval equality

∫ 2π

0

|x(s)|2ds = π

∞∑

i=0

(
a2
2i+1 + b2

2i+1

)
,

we obtain

|(Jx)(t)| ≤ 2π‖x‖∞ +
π

2
√

2

[ ∞∑

i=0

(
a2
2i+1 + b2

2i+1

)
]1/2

= 2π‖x‖∞ +
π

2
√

2

(
1
π

∫ 2π

0

|x(s)|2ds

)1/2

≤ 2π‖x‖∞ +
π

2
‖x‖∞ =

5π

2
‖x‖∞, ∀t ∈ [0, 1].

Immediately

‖Jx‖∞ ≤ 5π

2
‖x‖∞.

Therefore, J is continuous. It is easy to prove that J is a completely continuous
operator by Arzela-Ascoli theorem.

Moreover, we will need the following lemmas.

Lemma 2.1 ([5]). Assume that x(t) ∈ C1(R,R) and x(0) = x(2π),
∫ 2π

0
x(t)dt =

0, then ∫ 2π

0

|x(t)|2dt ≤
∫ 2π

0

|x′(t)|2 dt.
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Lemma 2.2 ([4]). Suppose Ω is a bounded open set of normal space X, f is
compact in Ω and p ∈ X\f(∂Ω). Then the equation f(x) = p has a solution in
Ω, provided with deg(f, Ω, p) 6= 0.

3. The existence of anti-periodic solutions for equation (2)

In this section, we will prove the existence of anti-periodic solutions for
equation (2).

Theorem 3.1. Assume that
(H1) for t ∈ R, x ∈ R

f(−x) = f(x), g(t + π,−x) = −g(t, x), p(t + π) = −p(t);

(H2) there is α ≥ 0 such that

lim sup
|x|→+∞

|g(t, x)|
|x| = α, ∀t ∈ R;

(H3) 1−∑m−1
i=1 |a2i| − α > 0.

Then there exists at least one anti-periodic solution of equation (2).

Proof. We consider the auxiliary equation of (2)

x(2m) = −λ

2m−1∑

i=2

aix
(i) − λf(x)x′ − λg(t, x) + λp(t)

:= λq1

(
x(2m−1), . . . , x′, x, t

)
,(4)

where λ ∈ [0, 1]. Obviously, q1

(
x(2m−1), . . . , x′, x, t

)
is continuous.

Firstly, we can claim that there exists a prior bound in C2m,π, for the possible
solution x(t) of equation (4).

Multiplying equation (4) with x(t) and integrating it over [0, 2π], we get
∫ 2π

0

x(2m)(t)x(t)dt

= −λ

2m−1∑

i=2

ai

∫ 2π

0

x(i)(t)x(t)dt− λ

∫ 2π

0

f(x(t))x′(t)x(t)dt

−λ

∫ 2π

0

g(t, x(t))x(t)dt + λ

∫ 2π

0

p(t)x(t)dt.

Noting
∫ 2π

0
x(2i+1)(t)x(t)dt = 0 and

∫ 2π

0

f(x(t))x′(t)x(t)dt =
∫ 2π

0

f(x(t))x(t)d(x(t)) =
∫ x(2π)

x(0)

f(τ)τdτ = 0,
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combining with
∫ 2π

0
x(2m)(t)x(t)dt = (−1)m

∫ 2π

0

∣∣x(m)(t)
∣∣2 dt, we have

∫ 2π

0

∣∣∣x(m)(t)
∣∣∣
2

dt

= (−1)m+1λ

m−1∑

i=1

a2i

∫ 2π

0

x(2i)(t)x(t)dt + (−1)m+1λ

∫ 2π

0

g(t, x(t))x(t)dt

+(−1)mλ

∫ 2π

0

p(t)x(t)dt

≤
m−1∑

i=1

|a2i|
∣∣∣∣
∫ 2π

0

x(2i)(t)x(t)dt

∣∣∣∣ +
∫ 2π

0

|g(t, x(t))x(t)| dt

+
∫ 2π

0

|p(t)x(t)| dt.

By hypothesis (H2), we can find some constant β ≥ 0 such that

|g(t, x)| ≤ β + α|x|, ∀t, x ∈ R.

Thus
∫ 2π

0

∣∣∣x(m)(t)
∣∣∣
2

dt

≤
m−1∑

i=1

|a2i|
∫ 2π

0

∣∣∣x(i)(t)
∣∣∣
2

dt +
∫ 2π

0

(β + α|x(t)|) |x(t)| dt

+
∫ 2π

0

|p(t)x(t)| dt

≤
m−1∑

i=1

|a2i|
∥∥∥x(i)

∥∥∥
2

2
+ α‖x‖22 +

(√
2πβ + ‖p‖2

)
‖x‖2 .(5)

For x(t) ∈ C2m,π, we get
∫ 2π

0
x(i)(t)dt = 0 (i = 0, 1, . . . , 2m−1). By Lemma

2.1, it can be shown that

‖x‖2 ≤ ‖x′‖2 ≤ · · · ≤
∥∥∥x(2m)

∥∥∥
2
.

So, from (5)

∥∥∥x(m)
∥∥∥

2

2
≤

m−1∑

i=1

|a2i|
∥∥∥x(m)

∥∥∥
2

2
+ α

∥∥∥x(m)
∥∥∥

2

2
+

(√
2πβ + ‖p‖2

) ∥∥∥x(m)
∥∥∥

2
.

By assumption (H3), there exists M1 > 0 (independent of λ) such that

‖x‖2 ≤ ‖x′‖2 ≤ · · · ≤
∥∥∥x(m)

∥∥∥
2
≤ M1.
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Because
∫ 2π

0
x(t)dt = 0, there exists t0 ∈ [0, 2π] such that x(t0) = 0. Hence

‖x‖∞ ≤
∫ 2π

0

|x′(t)| dt ≤
√

2π ‖x′‖2 ≤
√

2πM1.(6)

A similar argument, we can prove∥∥∥x(i)
∥∥∥
∞
≤
√

2πM1, i = 1, 2, . . . ,m− 1.(7)

Multiplying equation (4) with x(2m)(t) and integrating it over [0, 2π], we get
∫ 2π

0

∣∣∣x(2m)(t)
∣∣∣
2

dt

= −λ

2m−1∑

i=2

ai

∫ 2π

0

x(i)(t)x(2m)(t)dt− λ

∫ 2π

0

f(x(t))x′(t)x(2m)(t)dt

−λ

∫ 2π

0

g(t, x(t))x(2m)(t)dt + λ

∫ 2π

0

p(t)x(2m)(t)dt

≤
2m−1∑

i=2

|ai|
∣∣∣∣
∫ 2π

0

x(i)(t)x(2m)(t)dt

∣∣∣∣ +
∫ 2π

0

∣∣∣f(x(t))x′(t)x(2m)(t)
∣∣∣ dt

+
∫ 2π

0

∣∣∣g(t, x(t))x(2m)(t)
∣∣∣ dt +

∫ 2π

0

∣∣∣p(t)x(2m)(t)
∣∣∣ dt.

For
∫ 2π

0
x(2i+1)(t)x(2m)(t)dt = 0, we can see

∫ 2π

0

∣∣∣x(2m)(t)
∣∣∣
2

dt

≤
m−1∑

i=1

|a2i|
∣∣∣∣
∫ 2π

0

x(2i)(t)x(2m)(t)dt

∣∣∣∣ +
∫ 2π

0

∣∣∣f(x(t))x′(t)x(2m)(t)
∣∣∣ dt

+
∫ 2π

0

∣∣∣g(t, x(t))x(2m)(t)
∣∣∣ dt +

∫ 2π

0

∣∣∣p(t)x(2m)(t)
∣∣∣ dt.(8)

By (6), there exist γ1, γ2 ≥ 0 such that |f(x)| ≤ γ1, |g(t, x)| ≤ γ2, ∀t, x ∈ R.
Hence, from (7) and (8), we can get

∫ 2π

0

∣∣∣x(2m)(t)
∣∣∣
2

dt

≤
m−1∑

i=1

|a2i|
∫ 2π

0

∣∣∣x(i+m)(t)
∣∣∣
2

dt +
(√

2πM1γ1 + γ2

) ∫ 2π

0

∣∣∣x(2m)(t)
∣∣∣ dt

+
∫ 2π

0

∣∣∣p(t)x(2m)(t)
∣∣∣ dt

≤
m−1∑

i=1

|a2i|
∥∥∥x(i+m)

∥∥∥
2

2
+

(
2πM1γ1 +

√
2πγ2 + ‖p‖2

)∥∥∥x(2m)
∥∥∥

2
.
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By using Lemma 2.1, we know

∥∥∥x(2m)
∥∥∥

2

2
≤

m−1∑

i=1

|a2i|
∥∥∥x(2m)

∥∥∥
2

2
+

(
2πM1γ1 +

√
2πγ2 + ‖p‖2

)∥∥∥x(2m)
∥∥∥

2
.

For (H3), there exists M2 > 0 (independent of λ) such that

‖x‖2 ≤ ‖x′‖2 ≤ · · · ≤
∥∥∥x(2m)

∥∥∥
2
≤ M2.

Similar with the proof of (6), we can prove
∥∥∥x(i)

∥∥∥
∞
≤
√

2πM2, i = 0, 1, . . . , 2m− 1.

By the equation (4), there exists M3 > 0 (independent of λ) such that
∥∥∥x(2m)

∥∥∥
∞
≤ M3.

Set T1 = max
{√

2πM2,M3

}
+ 1. Then

‖x‖C2m < T1.(9)

Secondly, we can prove the existence of anti-periodic solutions for equation
(2). Set

Ω =
{
x(t) ∈ C2m,π : ‖x‖C2m < T1

}
.

Then Ω is a bounded open set in C2m,π. By hypothesis (H1), it is easy to see
that

q1

(
x(2m−1)(t + π), . . . , x′(t + π), x(t + π), t + π

)

= −q1

(
x(2m−1)(t), . . . , x′(t), x(t), t

)
, ∀x(t) ∈ C2m,π.

Hence q1 : C2m−1,π −→ C0,π. Define Fλ : Ω −→ C2m,π

Fλx = λJ2mq1x, λ ∈ [0, 1].

Obviously, Fλ is compact. Hence, the fixed points of F1 in Ω are the anti-
periodic solutions of equation (2).

Let hλ(x) : Ω× [0, 1] −→ C2m,π

hλ(x) = x− Fλx.

By (9), we get θ /∈ hλ(∂Ω). Hence

deg(id− F1,Ω, θ) = deg(h1, Ω, θ) = deg(h0,Ω, θ)
= deg(id,Ω, θ) = 1.

Consequently, F1 has at least one fixed point in Ω by Lemma 2.2. Namely, the
equation (2) has at least one anti-periodic solution. ¤
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4. The existence of anti-periodic solutions for equation (3)

In this section, we will prove the existence of anti-periodic solutions for
equation (3).

Theorem 4.1. Assume that
(H4) for x ∈ R

(−1)m+1f(x) ≤ 0;

(H5) 1−∑m−1
i=1 |a2i+1| − α > 0

and the assumptions (H1), (H2) are true. Then there exists at least one anti-
periodic solution of equation (3).

Proof. We consider the auxiliary equation of (3)

x(2m+1) = −λ

2m∑

i=2

aix
(i) − λf(x)x′ − λg(t, x) + λp(t)

:= λq2

(
x(2m), . . . , x′, x, t

)
,(10)

where λ ∈ [0, 1]. Obviously, q2

(
x(2m), . . . , x′, x, t

)
is continuous.

Similar with the proof of Theorem 3.1, we need only prove that there exists
a prior bound in C2m+1,π, for the possible solution x(t) of equation (10).

Multiplying equation (10) with x′(t) and integrating it over [0, 2π], we get
∫ 2π

0

x(2m+1)(t)x′(t)dt

= −λ

2m∑

i=2

ai

∫ 2π

0

x(i)(t)x′(t)dt− λ

∫ 2π

0

f(x(t)) (x′(t))2 dt

−λ

∫ 2π

0

g(t, x(t))x′(t)dt + λ

∫ 2π

0

p(t)x′(t)dt.

Noting
∫ 2π

0
x(2i)(t)x′(t)dt = 0 and

∫ 2π

0

x(2m+1)(t)x′(t)dt = (−1)m

∫ 2π

0

∣∣∣x(m+1)(t)
∣∣∣
2

dt,

we have ∫ 2π

0

∣∣∣x(m+1)(t)
∣∣∣
2

dt

= (−1)m+1λ

m−1∑

i=1

a2i+1

∫ 2π

0

x(2i+1)(t)x′(t)dt

+(−1)m+1λ

∫ 2π

0

f(x(t)) (x′(t))2 dt

+(−1)m+1λ

∫ 2π

0

g(t, x(t))x′(t)dt + (−1)mλ

∫ 2π

0

p(t)x′(t)dt.
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By the assumption (H4), we can see
∫ 2π

0

∣∣∣x(m+1)(t)
∣∣∣
2

dt

≤
m−1∑

i=1

|a2i+1|
∣∣∣∣
∫ 2π

0

x(2i+1)(t)x′(t)dt

∣∣∣∣ +
∫ 2π

0

|g(t, x(t))x′(t)| dt

+
∫ 2π

0

|p(t)x′(t)| dt

≤
m−1∑

i=1

|a2i+1|
∫ 2π

0

∣∣∣x(i+1)(t)
∣∣∣
2

dt +
∫ 2π

0

|g(t, x(t))x′(t)| dt

+
∫ 2π

0

|p(t)x′(t)| dt.

A similar argument with Theorem 3.1, we can prove that there exists at least
one anti-periodic solution of equation (3). ¤

Similar with Theorem 4.1, we can obtain the following result.

Theorem 4.2. Assume that
(H6) there is M ≥ 0 such that

|f(x)| ≤ M, ∀x ∈ R;

(H7) 1−∑m−1
i=1 |a2i+1| −M − α > 0

and the assumptions (H1), (H2) are true. Then there exists at least one anti-
periodic solution of equation (3).

When g(t, x) = g(x), we can remove the assumption (H2) in Theorem 4.1
and obtain the following result.

Theorem 4.3. Assume that
(H8) 1−∑m−1

i=1 |a2i+1| > 0
and the assumptions (H1), (H4) are true. Then there exists at least one anti-
periodic solution of equation (3) (g(t, x) = g(x)).

Proof. We consider the auxiliary equation of (3)

x(2m+1) = −λ

2m∑

i=2

aix
(i) − λf(x)x′ − λg(x) + λp(t)

:= λq3

(
x(2m), . . . , x′, x, t

)
,(11)

where λ ∈ [0, 1]. Obviously, q3

(
x(2m), . . . , x′, x, t

)
is continuous.

Similar with the proof of Theorem 3.1, we need only prove that there exists
a prior bound in C2m+1,π, for the possible solution x(t) of equation (11).
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Similar with the proof of Theorem 4.1, multiplying equation (11) with x′(t)
and integrating it over [0, 2π], we get

∫ 2π

0

∣∣∣x(m+1)(t)
∣∣∣
2

dt

= (−1)m+1λ

m−1∑

i=1

a2i+1

∫ 2π

0

x(2i+1)(t)x′(t)dt

+(−1)m+1λ

∫ 2π

0

f(x(t)) (x′(t))2 dt

+(−1)m+1λ

∫ 2π

0

g(x(t))x′(t)dt + (−1)mλ

∫ 2π

0

p(t)x′(t)dt.

Noting
∫ 2π

0

g(x(t))x′(t)dt =
∫ 2π

0

g(x(t))d(x(t)) =
∫ x(2π)

x(0)

g(τ)dτ = 0

and by hypothesis (H4), we get
∫ 2π

0

∣∣∣x(m+1)(t)
∣∣∣
2

dt ≤
m−1∑

i=1

|a2i+1|
∫ 2π

0

∣∣∣x(i+1)(t)
∣∣∣
2

dt +
∫ 2π

0

|p(t)x′(t)| dt.

A similar argument with Theorem 3.1, we can prove that there exists at least
one anti-periodic solution of equation (3) (g(t, x) = g(x)). ¤

Similar with Theorem 4.3, we can obtain the following result.

Theorem 4.4. Assume that
(H9) 1−∑m−1

i=1 |a2i+1| −M > 0
and the assumptions (H1), (H6) are true. Then there exists at least one anti-
periodic solution of equation (3) (g(t, x) = g(x)).
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