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APPROXIMATE CONTROLLABILITY FOR

SEMILINEAR INTEGRO-DIFFERENTIAL CONTROL

EQUATIONS WITH QUASI-HOMOGENEOUS

PROPERTIES

Daewook Kim* and Jin-Mun Jeong**

Abstract. In this paper, we consider the approximate controlla-
bility for a class of semilinear integro-differential functional control
equations in which nonlinear terms of given equations satisfy quasi-
homogeneous properties. The main method used is to make use
of the surjective theorems that is similar to Fredholm alternative
in the nonlinear case under restrictive assumptions. The sufficient
conditions for the approximate controllability is obtain which is dif-
ferent from previous results on the system operator, controller and
nonlinear terms. Finally, a simple example to which our main result
can be applied is given.

1. Introduction

In this paper, we deal with the approximate controllability for semi-
linear integro-differential functional control equations in the form
(1.1){

d
dtx(t) = Ax(t) +

∫ t
0 k(t− s)g(s, x(s))ds+ (Bu)(t), 0 < t ≤ T,

x(0) = x0,

where

f(t, x) =

∫ t

0
k(t− s)g(s, x(s))ds
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for a k belonging to L2(0, T ). Let V and H be complex Hilbert spaces
forming a Gelfand triple

V ↪→ H ≡ H∗ ↪→ V ∗

by identifying the antidual of H with H. Here, the principal operator A
generates an analytic semigroup (S(t))t≥0 in both H and V ∗ and B is a
bounded linear operator from another Hilbert space L2(0, T ;U)(T > 0)
to L2(0, T ;U). k belongs to L2(0, T ) and g is a nonlinear mapping as
detailed in Section 2.

The controllability problem is a question of whether is possible to
steer a dynamic system from an initial state to an arbitrary final state us-
ing the set of admissible controls. There are two main ways to deal with
the approximate controllability for semilinear control equations, the first
is to use the range condition argument of controller as seen in [27, 28].
The approximate controllability of semilinear systems dominated by lin-
ear parts(in case g ≡ 0) as matters connected with [19] has been studied
by assuming that S(t) is compact operator in [6, 10, 13, 20, 26]. An-
other approach is to use a fixed point theorem combined with technique
of operator transformations by configuring the resolvent as seen in [3].
Recently, the approximate controllability of stochastic equations have
been studied by authors [4, 21] as a continuous study. Similar consid-
erations of semilinear stochastic systems have been dealt with in many
references [2, 8, 15, 16, 17, 18, 22]. Sukavanam and Tomar [23] stud-
ied the approximate controllability for the general retarded initial value
problem by assuming that the Lipschitz constant of the nonlinear term
is less then one. In particular, Wang [26] established the approximate
controllability for the equation (1.1) with conditions the range condition
of controller provided

(1.2) lim sup
|||u||L2(0,T ;H)→∞

||f(·, u)||L2(0,T ;H)

||u||L2(0,T ;H)
:= γ

is sufficiently small. Moreover, [12] dealt with the approximate control-
lability for the system (1.1) even if γ 6= 1 of (1.2) by using so called
Fredholm theory: (λI − F )(u) = f is solvable in L2(0, T ;H).

In this paper, authors want to use a different method than the previ-
ous one. Our used tool is the surjective theorems similar to the Fredholm
alternative for nonlinear operators under restrictive assumption, which is
on the solution of nonlinear operator equations λB(x)−F (x) = y in de-
pendence on the real number λ, where B is a controller operator and F is
a nonlinear operator. In order to obtain the approximate controllability
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for a class of semilinear integro-differential functional control equations,
it is necessary to suppose that B acts as an odd homeomorphism opera-
tor while F related to the nonlinear term of (1.1) is quasi-homogeneous
as defined in Sect. 3. By using this method, the approximate controlla-
bility of (1.1) without restrictions such as the inequality constraints for
Lipschitz constant of f or compactness of S(t) can be given as applicable
conditions.

Sect. 2 is devoted to constructing a variation of constant formula of
L2-regularity and properties of the strict solutions of (1.1)(see [7] in the
linear case). In Sect. 3, in order to apply the surjective theory in the
proof of the main theorem, we assume some compactness of the embed-
ding between intermediate spaces. Then by virtue of [1], we can show
that the solution mapping of a control space to the terminal state space
is completely continuous by means of regularities results. Moreover, the
sufficient conditions on the controller and nonlinear terms for approxi-
mate controllability for (1.1) can be obtained while the nonlinear term
g of (1.1) is odd quasi-homogeneous. Finally, a simple example to which
our main result can be applied is given.

2. Semilinear functional equations

The notations | · |, || · || and || · ||∗ denote the norms of H, V and V ∗,
respectively as usual. Therefore, for the brevity, we may regard that

||u||∗ ≤ |u| ≤ ||u||, ∀u ∈ V.

Let a(u, v) be a bounded sesquilinear form defined in V × V satisfying
G̊arding’s inequality

Re a(u, u) ≥ c0||u||2 − c1|u|2, c0 > 0, c1 ≥ 0.

Let A be the operator associated with this sesquilinear form:

(Au, v) = −a(u, v), u, v ∈ V.

Then A is a bounded linear operator from V to V ∗. The realization of
A in H which is the restriction of A to

D(A) = {u ∈ V : Au ∈ H}

is also denoted by A. Moreover, for each T > 0, by using interpolation
theory, we have

L2(0, T ;V ) ∩W 1,2(0, T ;V ∗) ⊂ C([0, T ];H).
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From the following inequalities

c0||u||2 ≤ Re a(u, u) + c1|u|2 ≤ |Au| |u|+ c1|u|2 ≤ (|Au|+ c1|u|)|u|,

it follows that there exists a constant C0 > 0 such that

||u|| ≤ C0||u||1/2D(A)|u|
1/2.

Therefore, in terms of the intermediate theory, we can see that

(D(A), H)1/2,2 = V, and (V, V ∗)1/2,2 = H,

where (V, V ∗)1/2,2 denotes the real interpolation space between V and
V ∗(Section 1.3.3 of [5], [25]). For the sake of simplicity we assume that
c1 = 0 and hence the closed half plane {λ : Reλ ≥ 0} is contained in the
resolvent set of A. It is known that A generates an analytic semigroup
S(t) in both H and V ∗. As seen in Lemma 3.6.2 of [24], there exists a
constant M > 0 such that

(2.1) |S(t)x| ≤M |x| and ||S(t)x||∗ ≤M ||x||∗,

moreover, for all t > 0 and every x ∈ H or V ∗:

|S(t)x| ≤Mt−1/2||x||∗, ||S(t)x|| ≤Mt−1/2|x|.

The following initial value problem for the abstract linear parabolic
equation

(2.2)

{
dx(t)
dt = Ax(t) + k(t), 0 < t ≤ T,
x(0) = x0.

By virtue of Theorem 3.3 of [7](or Theorem 3.1 of [10]), we have the
following result on the corresponding linear equation (2.2).

Proposition 2.1. Suppose that the assumptions for the principal
operator A stated above are satisfied. Then the following properties
hold:
1) Noting that V = (D(A), H)1/2,2, for x0 ∈ V and k ∈ L2(0, T ;H),
T > 0, there exists a unique solution x of (2.2) belonging to

L2(0, T ;D(A)) ∩W 1,2(0, T ;H) ⊂ C([0, T ];V )

and satisfying

(2.3) ||x||L2(0,T ;D(A))∩W 1,2(0,T ;H) ≤ C1(||x0||+ ||k||L2(0,T ;H)),

where C1 is a constant depending on T .
2) Let x0 ∈ H and k ∈ L2(0, T ;V ∗), T > 0. Then, noting that
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(V, V ∗)1/2,2 = H, there exists a unique solution x of (2.2) belonging
to

L2(0, T ;V ) ∩W 1,2(0, T ;V ∗) ⊂ C([0, T ];H)

and satisfying

(2.4) ||x||L2(0,T ;V )∩W 1,2(0,T ;V ∗) ≤ C1(|x0|+ ||k||L2(0,T ;V ∗)),

where C1 is a constant depending on T .

Lemma 2.2. Suppose that k ∈ L2(0, T ;H) and x(t) =
∫ t
0 S(t −

s)k(s)ds for 0 ≤ t ≤ T . Then there exists a constant C2 such that

(2.5) ||x||L2(0,T ;H) ≤ C2T ||k||L2(0,T ;H),

and

(2.6) ||x||L2(0,T ;V ) ≤ C2

√
T ||k||L2(0,T ;H).

Proof. By a consequence of (2.3), it is immediate that

(2.7) ||x||L2(0,T ;D(A)) ≤ C1||k||L2(0,T ;H),

Since

||x||2L2(0,T ;H) =
∫ T
0 |
∫ t
0 S(t− s)k(s)ds|2dt ≤M

∫ T
0 (
∫ t
0 |k(s)|ds)2dt

≤M
∫ T
0 t
∫ t
0 |k(s)|2dsdt ≤M T 2

2

∫ T
0 |k(s)|2ds,

where M is the constant of (2.1), it follows that

(2.8) ||x||L2(0,T ;H) ≤ T
√
M/2||k||L2(0,T ;H).

From (2.7), and (2.8) it holds that

||x||L2(0,T ;V ) ≤ C0

√
C1T (M/2)1/4||k||L2(0,T ;H).

So, if we take a constant C2 > 0 such that

C2 = max{
√
M/2, C0

√
C1(M/2)1/4},

Thus, (2.5) and (2.6) are satisfied.

Consider the following initial value problem for the abstract semilin-
ear parabolic equation

(2.9)

{
d
dtx(t) = Ax(t) +

∫ t
0 k(t− s)g(s, x(s))ds+ (Bu)(t),

x(0) = x0.

Let U be a Hilbert space and the controller operator B be a bounded
linear operator from L2(0, T ;U) to L2(0, T ;H).
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Let g : R+×V → H be a nonlinear mapping satisfying the following:

Assumption (F).

(i) For any x ∈ V , the mapping g(·, x) is strongly measurable;
(ii) There exist positive constants L0, L1 such that

(a) x 7→ g(t, x) is odd mapping (g(·,−x) = −g(·, x));
(b) for all t ∈ R+, x, x̂ ∈ V ,

|g(t, x)− g(t, x̂)| ≤ L1||x− x̂||,
|g(t, 0)| ≤ L0.

For x ∈ L2(0, T ;V ), we set

f(t, x) =

∫ t

0
k(t− s)g(s, x(s))ds

where k belongs to L2(0, T ).

Lemma 2.3. Let Assumption (F) be satisfied. Assume that x ∈
L2(0, T ;V ) for any T > 0. Then f(·, x) ∈ L2(0, T ;H) and
(2.10)

||f(·, x)||L2(0,T ;H) ≤ L0||k||L2(0,T )T/
√

2 + ||k||L2(0,T )

√
TL1||x||L2(0,T ;V ).

Moreover if x, x̂ ∈ L2(0, T ;V ), then

||f(·, x)− f(·, x̂)||L2(0,T ;H) ≤ ||k||L2(0,T )

√
TL1||x− x̂||L2(0,T ;V ).(2.11)

Proof. From Assumption (F) and using the Hölder inequality, it is
easily seen that

||f(·, x)||L2(0,T ;H) ≤ ||f(·, 0)||L2(0,T ;H) + ||f(·, x)− f(·, 0)||L2(0,T ;H)

≤
(∫ T

0
|
∫ t

0
k(t− s)g(s, 0)ds|2dt

)1/2

+

(∫ T

0
|
∫ t

0
k(t− s){g(s, x(s))− g(s, 0)}ds|2dt

)1/2

≤ L0||k||L2(0,T )T/
√

2 + ||k||L2(0,T )

√
T ||g(·, x)− g(·, 0)||L2(0,T ;H)

≤ L0||k||L2(0,T )T/
√

2 + ||k||L2(0,T )

√
TL1||x||L2(0,T ;V ).

The proof of (2.11) is similar.

By virtue of Theorem 2.1 of [11], we have the following result on
(2.9).
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Proposition 2.4. Let Assumption (F) be satisfied. Then there exists
a unique solution x of (2.9) such that

x ∈ L2(0, T ;V ) ∩W 1,2(0, T ;V ∗) ⊂ C([0, T ];H)

for any x0 ∈ H. Moreover, there exists a constant C3 such that

(2.12) ||x||L2(0,T ;V )∩W 1,2(0,T ;V ∗) ≤ C3(|x0|+ ||u||L2(0,T ;U)).

Corollary 2.5. Assume that the embedding D(A) ⊂ V is com-
pletely continuous. Let Assumption (F) be satisfied, and xu be the so-
lution of equation (2.9) associated with u ∈ L2(0, T ;U). Then the map-
ping u 7→ xu is completely continuous from L2(0, T ;U) to L2(0, T ;V ).

Proof. If u ∈ L2(0, T ;U), then in view of (2.4) in Proposition 2.1

(2.13) ||xu||L2(0,T ;V )∩W 1,2(0,T ;V ∗) ≤ C3(|x0|+ ||B|| ||u||L2(0,T ;U)).

Since xu ∈ L2(0, T ;V ), we have f(·, xu) ∈ L2(0, T ;H). Consequently

xu ∈ L2(0, T ;D(A)) ∩W 1,2(0, T ;H).

Hence, with aid of (2.3) of Proposition 2.1, (2.10) and (2.12),

||xu||L2(0,T ;D(A))∩W 1,2(0,T ;H) ≤ C1(||x0||+ ||f(·, xu) +Bu||L2(0,T ;H))

≤ C1

{
||x0||+ L0||k||L2(0,T )T/

√
2 + ||k||L2(0,T )

√
TL1||x||L2(0,T ;V ) + ||Bu||L2(0,T ;H)

}
≤ C1

{
||x0||+ L0||k||L2(0,T )T/

√
2

+ ||k||L2(0,T )

√
TL1C3

(
|x0|+ ||u||L2(0,T ;U)

)
+ ||Bu||L2(0,T ;H)

}
.

Thus, if u is bounded in L2(0, T ;H), then so is xu in L2(0, T ;D(A)) ∩
W 1,2(0, T ;H). Since D(A) is compactly embedded in V by assumption,
the embedding

L2(0, T ;D(A)) ∩W 1,2(0, T ;V ) ⊂ L2(0, T ;V )

is completely continuous in view of Theorem 2 of [1], the mapping u 7→
xu is completely continuous from L2(0, T ;U) to L2(0, T ;V ).

3. Approximate controllability

Throughout this section, we assume that D(A) is compactly embed-
ded in V . Let x(T ; f, u) be a state value of the system (2.9) at time T
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corresponding to the nonlinear term f and the control u. We define the
reachable sets for the system (2.9) as follows:

RT (f) = {x(T ; f, u) : u ∈ L2(0, T ;U)},
RT (0) = {x(T ; 0, u) : u ∈ L2(0, T ;U)}.

Definition 3.1. The system (2.9) is said to be approximately con-
trollable in the time interval [0, T ] if for every desired final state x1 ∈ H
and ε > 0 there exists a control function u ∈ L2(0, T ;U) such that
the solution x(T ; f, u) of (2.9) satisfies |x(T ; f, u) − x1| < ε, that is, if

RT (f) = H where RT (f) is the closure of RT (f) in H, then the system
(2.9) is called approximately controllable at time T .

Let us introduce the theory of the degree for completely continuous
perturbations of the identity operator, which is the infinite dimensional
version of Borsuk’s theorem. Let 0 ∈ D be a bounded open set in
a Banach space X, D its closure and ∂D its boundary. The number
d[I − T ;D, 0] is the degree of the mapping I − T with respect to the set
D and the point 0 (see [9] or [14]).

Theorem 3.2. (Borsuk’s theorem) Let D be a bounded open sym-
metric set in a Banach space X, 0 ∈ D. Suppose that T : D → X be
odd completely continuous operator satisfying T (x) 6= x for x ∈ ∂D.
Then d[I − T ;D, 0] is odd integer. That is, there exists at least one
point x0 ∈ D such that (I − T )(x0) = 0.

Definition 3.3. Let T be a mapping defined by on a Banach space
X with value in a real Banach space Y . The mapping T is said to be a
(K,L, α)-homeomorphism of X onto Y if

(i) T is a homeomorphism of X onto Y ;
(ii) there exist real numbers K > 0, L > 0, and α > 0 such that

L||x||αX ≤ ||T (x)||Y ≤ K||x||αX , ∀x ∈ X.

Lemma 3.4. Let T be an odd (K,L, α)-homeomorphism of X onto
Y and F : X → Y a continuous operator satisfying

lim sup
||x||X→∞

||F (x)||Y
||x||αX

= N ∈ R+.

Then if |λ| /∈ [NK ,
N
L ] ∪ {0} then

lim
||x||X→∞

||λT (x)− F (x)||Y =∞.
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Proof. Suppose that there exist a constant M > 0 and a sequence
{xn} ⊂ X such that

||λT (xn)− F (xn)||Y ≤M
as xn →∞. From this it follows that

λT (xn)

||xn||αX
− F (xn)

||xn||αX
→ 0.

Hence, we have

lim sup
n→∞

|λ|||T (xn)||Y
||xn||αX

= N,

and so, |λ|K ≥ N ≥ |λ|L. It is a contradiction with |λ| /∈ [NK ,
N
L ].

Proposition 3.5. Let T be an odd (K,L, α)-homeomorphism of X
onto Y and F : X → Y an odd completely continuous operator. Suppose
that for λ 6= 0,

(3.1) lim
||x||X→∞

||λT (x)− F (x)||Y =∞.

Then λT − F maps X onto Y .

Proof. We follow the proof Theorem 1.1 in Chapter II of [9]. Suppose
that there exists y ∈ Y such that λT (x) = y. Then from (3.1) it follows
that FT−1 : Y → Y is an odd completely continuous operator and

lim
||y||Y→∞

||y − FT−1(y
λ

)||Y =∞.

Let y0 ∈ Y . There exists r > 0 such that

||y − FT−1(y
λ

)||Y > ||y0||Y ≥ 0

for each y ∈ Y satisfying ||y||Y = r. Let Yr = {y ∈ Y : ||y||Y < r} be a
open ball. Then by view of Theorem 3.1, we have d[y − FT−1( yλ);Yr, 0]
is an odd number. For each y ∈ Y satisfying ||y||Y = r and t ∈ [0, 1],
there is

||y − FT−1(y
λ

)− ty0||Y ≥ ||y − FT−1(
y

λ
)||Y − ||y0||Y > 0

and hence, by the homotopic property of degree, we have

d[y − FT−1(y
λ

);Yr, y0] = d[y − FT−1(y
λ

);Yr, 0] 6= 0.

Hence, by the existence theory of the Leray-Schauder degree, there exists
a y1 ∈ Yr such that

y1 − FT−1(
y1
λ

) = y0.
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We can choose x0 ∈ X satisfying λT (x0) = y1, and so, λT (x0)−F (x0) =
y0. Thus, it implies that λT − F is a mapping of X onto Y .

Combining Lemma 3.4. and Proposition 3.5, we have the following re-
sults.

Corollary 3.6. Let T be an odd (K,L, α)-homeomorphism of X
onto Y and F : X → Y an odd completely continuous operator satisfying

lim sup
||x||X→∞

||F (x)||Y
||x||αX

= N ∈ R+.

Then if |λ| /∈ [NK ,
N
L ] ∪ {0} then λT − F maps X onto Y . Therefore, if

N = 0, then for all λ 6= 0 the operator λT − F maps X onto Y .

Let X be a Banach space with the norm ‖ · ‖X . Denote by X∗

the adjoint space of all bounded linear functionals on X. The pairing
between x∗ ∈ X∗ and x ∈ X is denoted by (x∗, x). Unless otherwise
stated, we use symbols ”→ ” and ” ⇀ ” to denote the strong and weak
convergence, respectively, i.e., the sequence {xn}, xn ∈ X converges
strongly (weakly) to the point x0 ∈ X, denote by xn → x0 (xn ⇀ x0), if

lim
n→∞

‖xn − x0‖X = 0 ( lim
n→∞

(x∗, xn) = (x∗, x0) for each x∗ ∈ X∗).

Let F be mapping (nonlinear, in general) with the domain M ⊂ X
and the range in the Banach space Y . F is said to strongly (weakly)
continuous on M if xn → x0 (xn ⇀ x0) in X implies F (xn) → F (x0)
in Y for xn, x0 ∈ M , and F is said to be completely continuous on M
if F is continuous on M and for each bounded subset D ⊂ M , F (D) is
compact subset in Y .

Definition 3.7. Let F be a mapping defined by on a Banach space
X with value in a real Banach space Y and b > 0 a real number.

(a) F is said to be b-homogeneous if

tbF (u) = F (tu)

holds for each t ≥ 0 and all u ∈ X.
(b) F is said to be b-quasi-homogeneous if there exist nonlinear op-

erators R and F0 defined on X with value in Y such that F0 is
b-homogeneous and F (u) = R(u)F0(u) for every u ∈ X satisfying

lim
||u||X→∞

||R(u)||Y ∈ R+.
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Example 3.8. Set X = Y = R and

F (u) =
u

1 + |u|
u3.

Then F is said to be 3-quasi-homogeneous.

Remark 3.9. In [9], the relationship between F and F0 is defined
in other words as F is said to be b-strongly quasi-homogeneous with
respect to F0, if

tn > 0→ 0, un ⇀ u0 ⇒ tbnF (un/tn)→ F0(u0) ∈ Y.

If F is the strong continuous and b-quasi-homogeneous, then F is a b-
strongly quasi-homogeneous with respect to F0, So, our basic results
follow theorems of [9].

Theorem 3.10. LetX be a reflexive space, and let T be odd (K,L, a)-
homeomorphism of X onto Y , F : X → Y an odd strong continuous
and b-quasi-homogeneous operator. If a > b, then λT −F maps X onto
Y for any λ 6= 0.

Proof. Since X is a reflexive space, we know that every strong con-
tinuous operator F : X → Y is also completely continuous. Hence
according to Corollary 3.6 it is sufficient to prove that

lim
x→∞

‖F (x)‖Y
‖x‖aX

= 0.

Since F is b-quasi-homogeneous, there exist R and F0 be a mappings
defined by on a Banach space X with value in R+ and a real Banach
space Y , respectively, such that F = RF0 satisfying

lim
|u|→∞

R(u) = c0

for some a constant c0 > 0 holds and F0 is b-homogeneous. Suppose
that there exist ε > 0 and a sequence {xn} , xn ∈ X , ‖xn‖X →∞ such
that

xn
‖xn‖X

= vn ⇀ v0

and
‖F (xn)‖Y
‖x‖aX

≥ ε

for any positive integer n. Then

F (‖xn‖vn)

‖xn‖bX
= R(‖xn‖vn)F0(vn)→ c0F0(v0),
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and
‖xn‖bX
‖xn‖aX

→ 0

implies

0 < ε ≤ ‖F (xn)‖
‖xn‖a

=
‖xn‖b

‖xn‖a
· ‖F (xn)‖
‖xn‖b

→ 0,

which is a contradiction.

Theorem 3.11. LetX be a reflexive space, and let T be odd (K,L, a)-
homeomorphism of X onto Y , F : X → Y an odd strongly continuous
and b-quasi-homogeneous operator. If F0(v) = 0 imply v = 0, and a < b,
then λT − F maps X onto Y for any λ 6= 0.

Proof. According to Proposition 3.5, we shall prove

lim
x→∞

‖λT (x)− F (x)‖Y =∞.

Since F is b-quasi-homogeneous, there exist R and F0 be mappings de-
fined by on a Banach space X with value in R+ and a real Banach space
Y , respectively, such that F = RF0 satisfying

lim
|u|→∞

R(u) = c0

for some a constant c0 > 0 holds and F0 is b-homogeneous. Suppose that
there exist a constant M > 0 and a sequence {xn}, xn ∈ X, ‖xn‖X →∞
such that

xn
‖xn‖

= vn → v0

and

‖λT (xn)− F (xn)‖Y ≤M
for any positive integer n. Then

λT (‖xn‖ vn)

‖xn‖b
− F ‖xn‖ vn
‖xn‖b

→ 0,

and so
λT (‖xn‖ vn)

‖xn‖b
→ c0F0(v0).

But since T is (K,L, a)- homeomorphism, we have

K|λ|‖xn‖
a

‖xn‖b
≥ ‖λT (xn)‖

‖xn‖b
≥ L|λ|‖xn‖

a

‖xn‖b
.



Approximate controllability 201

Thus, noting that a < b, it holds

‖λT (xn)‖
‖xn‖b

→ 0,

and F0(v0) = 0. From our assumption v0 = 0 and this is a contradiction
with ‖v0‖X = 1.

Now, we consider the approximate controllability for the following
semilinear control system

(3.2)

{
d
dtx(t) = Ax(t) + f(t, x(t)) + (Bv)(t),

x(0) = x0.

We shall make use of the following assumption:
Assumption (A) The embedding D(A) ⊂ V is completely continuous.

By using the Krasnosel’skii theorem(see [2]), we can define an oper-
ator F : L2(0, T ;U)→ L2(0, T ;H) as

(3.3) F (v) = −f(·, xv).

Assumption (F1) F is b-quasi-homogeneous.

Theorem 3.12. Under Assumptions (A), (F) and (F1), if 1 > b, then
we have

RT (0) ⊂ RT (f).

Therefore, if the linear system (3.2) with f ≡ 0 is approximately con-
trollable, then so is the nonlinear system (3.2).

Proof. Thanks to Corollary 2.5, F defined by (3.3) is a completely
continuous mapping from L2(0, T ;U) to L2(0, T ;H). We shall show that
F is strongly continuous. Given a sequence {un} , un ∈ L2(0, T ;U) ,
un ⇀ u, we claim that F (un)→ F (u). By (2.11) and (2.12), we have

||F (un)− F (u)||L2(0,T ;H) ≤ ||k||L2(0,T )

√
TL1||xun − xu||L2(0,T ;V )

≤ ||k||L2(0,T )

√
TL1C3||un − u||L2(0,T ;U),

and so, F (un) ⇀ F (u). Hence, to prove our claim it suffices to show that
every subsequence of {F (un)} contains another subsequence which con-
verge. However, this is immediate because the sequence {un} is bounded
and F is a completely continuous.

Since 1 > b and the identity operator I on L2(0, T ;H) is an odd
(1, 1, 1)-homeomorphism, from Theorem 3.2, it follows that that λI −F
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maps L2(0, T ;H) onto itself for any λ 6= 0. Let

η =

∫ T

0
S(T − s)(Bv)(s)ds ∈ RT (0).

We are going to show that there exists w such that

η = x(T ; g, w).

We denote the range of the operator B by HB, its closure HB in

L2(0, T ;H). LetH
⊥
B be the orthogonal complement ofHB in L2(0, T ;H).

Let X = L2(0, T ;H)/H
⊥
B be the quotient space and the norm of a coset

ỹ = yB +H
⊥
B ∈ X is defined of ||ỹ|| = ||yB +H

⊥
B|| = inf{|yB + g| : yB ∈

HB, g ∈ H
⊥
B}. We define by Q the isometric isomorphism from X onto

HB, that is, Qỹ = Q(yB + g : yB ∈ HB, g ∈ H⊥B) = yB. Let

F ỹ = F (Qỹ) +H
⊥
B

for ỹ ∈ X. Then F is also a completely continuous mapping from X to
itself.

Set z = Bv. Then z ∈ HB and z̃ = z+H
⊥
B ∈ X. Hence, by Theorem

3.10 with λ = 1, there exists w̃ ∈ X such that

(3.4) z̃ = w̃ −Fw̃.

Put wB = Qw̃ . Then we have that w − wB =∈ H⊥B. Hence,

(3.5) z̃ = w − F (wB) +H
⊥
B = wB − F (wB) +H

⊥
B.

Thus, from (3.4) and (3.5) it follows that

η =

∫ T

0
S(T − s)(−F(wB)(s) + wB(s))ds

=

∫ T

0
S(T − s)(f(s, x̂wB ) + wB(s))ds.

Since wB ∈ HB, there exists a sequence {vn} ∈ L2(0, T ;U) such that
Bvn 7→ wB in L2(0, T ;H).

Let yf be the solution of the equation with B = I{
d
dtx(t) = Ax(t) + f(t, x(t)) + f(t),

x(0) = x0.

Then

yf = S(T )x0 +

∫ T

0
S(T − s){f(s, x(s)) + f(s)}ds.
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Here, we note yBvnf = x(T ; g, vn). Thus, for each ε > 0, we can choose
a control function vN such that

||BvN − wB||L2(0,T ;H) <
{(
M
√
T
(
||k||L2(0,T )

√
TL1C3 + 1

)}−1
ε,

where M is a constant in (2.1). Then we have

||yvN − η||L2(0,T ;H) ≤
(
M
√
T
(
||k||L2(0,T )

√
TL1C3 + 1

)
||BvN − wB|| < ε.

Since ε is given arbitrary, we conclude η ∈ RT (f).

Theorem 3.13. Let Assumptions (A), (F) and (F1) hold. If F (v) = 0
imply v = 0 and 1 6= b, then we have

RT (0) ⊂ RT (f).

Proof. If 1 > b, it holds from Theorem 3.10. The case if 1 < b is
obvious from Theorem 3.11.

We need to impose following assumption:

Assumption (B). There exist positive constants β, γ such that

β‖u‖ ≤ |Bu| ≤ γ‖u‖, ∀u ∈ L2(0, T ;U).

Theorem 3.14. Under Assumptions (A), (F), (F1), and (B), if 1 < b
then the semilinear control system (3.2) is approximately controllable.

Proof. Since B is odd (γ, β, 1)- homeomorphism of L2(0, T ;U) onto
L2(0, T ;H), F : L2(0, T ;U) → L2(0, T ;H) an odd strong continuous b-
homogeneous operator. From Theorem 3.10, it follows that if 1 > b then
λB−F maps L2(0, T ;U) onto L2(0, T ;H) for any λ 6= 0. Let ξ ∈ D(A).
Then there exists a function p ∈ C1(0, T ;H) such that

ξ =

∫ T

0
S(T − s)p(s)ds,

for instance, put p(s) = (ξ + sAξ)/T . Hence, there exists a function
u ∈ L2(0, T ;U) such that

p = (λB − F )u,

that is,

ξ =

∫ T

0
S(T − s){f(s, x(s)) + (Bu)(s))ds.

Therefore, if 1 > b, then D(A) ⊂ RT (f), which complete the proof.

Theorem 3.15. Let Assumptions (A), (B), (F) and (F1) hold. If
F (v) = 0 imply v = 0 and 1 6= b, then the semilinear control system
(3.2) is approximately controllable.
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Proof. This theorem is obvious from Theorems 3.13 and 3.14.

Example 3.16. We consider the semilinear heat equation dealt with
by [19] and [27]. Let

H = L2(0, π), V = H1
0 (0, π), V ∗ = H−1(0, π),

a(u, v) =

∫ π

0

du(x)

dx

dv(x)

dx
dx

and

A = d2/dx2 with D(A) = {y ∈ H2(0, π) : y(0) = y(π) = 0}.

We consider the following retarded functional differential equation

(3.6)
d

dt
x(t) = Ax(t) + f(x(t)) +Bw(t),

where

f(x) =
σx

1 + |x|
x3, σ > 0.

For x, y ∈ H, set max{|x(ξ)|, |x(ξ)|} for almost all ξ ∈ (0, π). Then we
have

|f(x(ξ))− f(y(ξ))| ≤ 3σm3(1 +m)−1|x(ξ)− y(ξ)|
for almost all ξ ∈ (0, π). It is easily seen that Assumption (F) is satisfied
and f is 3-quasi-homogeneous.

The eigenvalue and the eigenfunction of A are λn = −n2 and φn(x) =
sinnx, respectively. Let

U = {
∞∑
n=2

unφn :

∞∑
n=2

u2n <∞},

Bu = 2u2φ1 +
∞∑
n=2

unφn, for u =
∞∑
n=2

un ∈ U.

Now we can define bounded linear operator B̂ from L2(0, T ;U) to L2(0, T ;H)

by (B̂u) = Bu(t), u ∈ L2(0, T ;U). It is easily known that the operator

B̂ is one to one and the range of B̂ is closed. it follows that the opera-
tor satisfies Assumption (B). We can see many examples which satisfy
Assumption (B) as seen in [27, 28].

The solution of the following equation

d

dt
x(t) = Ax(t) +Bw(t)
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with initial datum 0 is

x(t) =

∫ t

0
e(t−s)ABw(s)ds.

Let ξ ∈ D(A) and
u(s) = B−1(ξ + sAξ)/T.

Then it follows that x(T ) = ξ, which says that the reachable set RT (0)
for linear system is a dense subspace. Moreover, from Theorem 3.15 with
λ = 1, it follows that the system of (3.6) is approximately controllable.

4. Conclusion

The purpose of this paper is obtained some sufficient conditions for
the approximate controllability of a class of semilinear integro-differential
functional control equations in which nonlinear terms of given equations
satisfy quasi-homogeneous properties. Our used tool is the surjective
theorems similar to the Fredholm alternative for nonlinear operators
under restrictive assumption, which is on the solution of nonlinear op-
erator equations λI(x)−F (x) = y in dependence on the real number λ,
where I is the identity operator and F is a nonlinear operator. To solve
this problem, we prove that λT −F maps for any λ 6= 0 provided that T
is an odd (K,L, a)- homeomorphism, F an odd strongly continuous and
b-quasi-homogeneous operator satisfying a¿b. Motivated by this consid-
eration, we derive the approximate controllability of semilinear systems
provided the approximate controllability of the corresponding linear sys-
tems considering T as the identity function. In the finite dimensional
case we prove the same assertion under the assumption a < b, but it
seems to be unsolved up to this time in infinite dimensional space.
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