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BOUNDED OSCILLATION FOR SECOND-ORDER
NONLINEAR DELAY DIFFERENTIAL EQUATIONS
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ABSTRACT. Two necessary and sufficient conditions for the oscillation of
the bounded solutions of the second-order nonlinear delay differential equa-
tion

(a®)a' ()" + () (2[r(2)]) = 0
are obtained by constructing the sequence of functions and using inequality
technique.
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1. Introduction

Consider the second-order nonlinear delay differential equation
(a(t)a’(t)) + q(&) f([r(B)]) =0, &> to. (1.1)

The paper assumes the following conditions hold:
(H1) a(t) € C!([tg, 00),(0,00)), q(t) € C([to,0), [0, 00)), and with t — oo,
¢
1
At) = / ——ds — oc;
to a’(s)
(H2) f(x) € C(R,R) is non-decreasing function , and f(mw) > 6 > 0 with
x # 0;
(Hs) 7(t) € C([tg,0), R), 7(t) < t, and flim 7(t) = oc.
L—> 00
We call that z(t) € CY([Ty,00), R) (T, > to) is the solution of equation
(1.1) if a(t)2’(t) € CY([Ts,0),R) and =z(t) satisfy (1.1) for t € [T,,00). We
suppose that every solution of (1.1) can be extended in [tg, +00). In any infinite
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interval [T, 4+00), we call z(t) is a regular solution of (1.1) if x(¢) is not the
eventually identically zero. The regular solution of (1.1) is said to be oscillatory
in case it has arbitrarily large zero point; otherwise, the solution is said to be
nonoscillatory.

For the equation (1.1), if a(t) = 1, the equation (1.1) becomes

a"(t) + q(t) f(z[r()]) =0, =t (1.2)

For the equation (1.2), if f(x) =, 7(¢t) =t, and ¢(t) = ¢(t), the equation (1.2)
is simplified to be the second-order linear differential equation

2" (t) + c(t)x(t) =0, t>to. (1.3)

There are some oscillation criteria for the equation (1.3), and one of the most
important criteria is given by Wintner [1] as follows: If

1 t s
lim f/ / c(x)dzds = o0, (1.4)
t—oo t to Jto

the equation (1.3) is oscillatory. In 1978, Kamenev [2] improved the result of
Wintner. He proved that if

t

lim sup i}\/ (t —s) e(s)ds = oo (1.5)
t—oo L to

where is a constant and A > 1, the equation (1.3) is oscillatory.

In recent years, the oscillation theory and its application of differential equa-
tions have been greatly concerned. For example, you can see the recent mono-
graphs [3-5]. In particular, the result on oscillation criteria of second-order differ-
ential equation is very rich (see [6-16]), but the most results obtained establish
the sufficient condition of the oscillation for differential equations. Generally,
the necessary and sufficient condition is difficult to obtain. This article discusses
the oscillation for the bounded solution of the equation (1.1), and establishes
two necessary and sufficient conditions of oscillation for the bounded solution of
(1.1) by constructing a sequence of functions and using inequality technique.

2. Main results

Theorem 2.1. Suppose that (Hy)—(Hs) hold. Then the necessary and sufficient
condition of the oscillation for every bounded solution of the equation (1.1) is

/tOO A(s)g(s)ds = co. (2.1)

0

Proof. Sufficiency. Suppose that there is nonoscillatory bounded solution z(t) of
the equation (1.1). Without loss of generality we assume that z(t) is eventually
positive, then there exists ¢1(t1 > o) such that as ¢t > 1,

2(t) > 0, z(r(t)) > 0.
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From the equation (1.1), we get
(a(t)a'(t) = —q(t)f(z[r()]) <0, t > t.

Thus, we can determine that

a(t)z'(t) >0, t > t;. (2.2)
Actually, if there exists t(t3 > t1) such that

a(ta)x' (ta) = ¢ < 0,
noticing a(t)z’(t) is nonincreasing, we can obtain

a(t)r'(t) <c
ast > to, i.e.
c

2 (t) < —, t >t

a(t)’
Integrating the above formula from ¢5 to ¢, by (Hy), we get that
¢
x(t) < z(t2) —i—c/tz ﬁds — —00 (t = ).
This contradicts with that z(t) is eventually positive, so (2.2) holds. Thus, for
t > t1, we have
z(t) > 0, 2'(t) > 0, (a(t)2’(t)) <O.
Then there exists t3(t3 > t2) and I(I > 0) such that when ¢ > t3,

f(@(r(t)) = ba(r(t)) = 1. (2.3)
Substituting (2.3) into equation (1.1), we get
(a(t)2'(t)) +1q(t) <0, t > t3. (2.4)

Multiplying the both ends of the above formula by A(t) , we can get
A(t) (a(®)z' (t) + 1A(H)q(t) <0, t > ts. (2.5)
Because
(A(t)a(t)a' () = A(t) (alt)a’ (1) +a'(¢),
we can obtain
At) (a()' (1)) = (A(a(t)a’ () = '(2).
Substituting the above into (2.5), we get

/

(A(t)a(t)z'(t)) — () + 1A(t)q(t) <0, t > ts.

Integrating the above formula from t¢3 to ¢, we obtain

l/ A(s)q(s)ds < x(t) — x(tz) — A(t)a(t)a'(t) + A(tz)a(ts)x’' (t3)

< 2(t) — x(ts) + A(ts)a(ts)2’ (t3).
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Because z(t) is increasing and bounded, there exists C'(C' > 0) such that
/ A(s)q(s)ds < C.
t3

This contradicts with the condition (2.1). The proof of sufficient section is
completed.
Necessity. If

| Aass < o

to
then there is T > tg such that for ¢t > T, we have

e 1
A(s)q(s)ds < —.
| A < o
Constructing the sequence of functions such that
;Eo(t) = 27
t oo
e = | 1+ [ A@a@ @D+ A0 [T a@ @il @has =T 20
21 (1), 7(T) <t < T,
for k=1,2,--- . Then
t

21(t) = 1+ £(2) (/T A(s)q(s)ds + A(t)/t q(s)ds) <ao(t) =2,t > T;
21(T) <zo(T)=2,7(T) <t <T.
Suppose that
1< ap(t) S ap—a(t) < - Saa(t) Swo(t) =2, t > 7(D).

Noticing f(u) is non-decreasing, then

1 <zpia(?)
t [e%e}

1 [ Ao anlroDds + A) [ o) fanlr(s)ds < ou(e). 0 = T
ot (T) < on(T), 7(T) <t <T. '
Thus, by mathematical induction, for any positive integer k, we get
1< ap(t) < azpa(t) <2, t > 7(T).
Therefore, the limit of the sequence of functions {xx(t)} exists, i.e.
khj& xg(t) = x(t)

and 1 < z(t) <2, t > 7(T). Applying Lebesgue control convergence theorem to
(2.6), we can get
t

sy = 1 [ AGE Il + A0 [ o) alr)st > T
x(T),7(T) <t <T.
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Derivation of the both sides of the above formula and multiplying them by a(t),
we get that for t > T

a(t)a'(t)
= a(®)A()q(t) f(z[7(1)]) + alt) [A’(t)/tooq(S)f(w[T(S)])ds — A(t)q(t) f (x[7(1)])

— [ as)sGalr(s)as
t
Continually after derivation of the both sides of the above formula, we get

(a(t)a! (1)) = —q(&) f(x[r(1)]), t > T.
It is easy to see that xz(t) is an eventually positive bounded solution of (1.1),

which is contradictory to that every bounded solution of the equation (1.1) is
oscillatory. The proof is completed. O

Remark 2.1. For linear case of (1.1) (i.e. f(x) = x), oscillation criterion relative
to Theorem 2.1 has been obtained in Corollary 2 in [17].

By Theorem 2.1, we can obtain for equation (1.2)

Corollary 2.2. Suppose that (Hy) — (H3) hold. Then every bounded solution of
equation (1.2) is oscillatory if and only if

/too(s —tg)q(s)ds = 0. (2.7)

Theorem 2.3. Assume that (Hy) — (H3) hold. Then every bounded solution of
(1.1) is oscillatory if and only if

/t:o ﬁ (/:O (I(u)du> ds = oco. (2.8)

Proof. Sufficiency. Suppose that there is nonoscillatory bounded solution z(t) of
the equation (1.1). Without loss of generality, we assume that z(t) is eventually
positive, then there exists ¢1(t; > ¢g) such that

z(t) >0, z(r(t)) >0

for t > t;. Using arguments similar to ones in the proof of Theorem 2.1, we can
get (2.4), i.e.
(a()2 (1)) +lg(t) < O, t >t > t1.

Integrating the above from ¢ to ¢t + v, we get
t+v
a(t + v)2'(t + v) — a(t)a' (1) +1 / g(s)ds < 0.
t
Noticing (2.2) and letting v — oo, we get that

1) /tOO q(s)ds < 2'(t).

10}
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Integrating the above from T(T > t5) to t(t > T), it follows

z/Tt ﬁ (/oo q(u)du> ds < 2(t) — 2(T) < a(b).

Let t — oo to acquire the limits of both sides of the above. Because z(t) is
bounded and increasing, it is easy to get

[ ([ o)

This is contradictory to the condition (2.8). The proof of sufficiency is completed.
Necessity. Suppose that

/: ﬁ (/OO (I(U)du> ds < oo,

and there exists T(T > to) such that

[ ata ([ stae)ae= 75

for t > T. Construct the sequence of functions and let

X9 (t) = 2,
([ (29)
1 — du)ds, t>T; :
Try1(t) = +/T a(s) (/S q(u) f (zx[r(u)]) U) s, 12
i1 (T), T(T) <t <T,
k=1,2,--- . Similarly to the proof of Theorem 2.1, by the mathematical induc-

tion for any positive integer k, we have
1< ap(t) < apoq(t) <2, t > (7).
So the limit of {xx ()} exists, i.e.
lim g (t) = x(t)

k—o0

and 1 < z(t) <2, t > 7(T). By Lebesgue control convergence theorem to (2.9),
it follows that

st)=4 1T /Tta(ls) (/OO q(u)f(x[f(u)])du) ds, t>T;
z(T), T(T)<t<T.

Derivation of the both sides of the above and multiplying them by a(t), we get
that for ¢t > T

(o)
a0’ ()= [ at) (alr(w)])du
t
Continuing to take the derivatives of the both sides of the above, we can get

(a(V)z' (1)) = —q() f(z[r(@)]), t > T.
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Thus z(t) is an eventually positive bounded solution of (1.1), which is contra-
dictory to that every bounded solution of the equation (1.1) is oscillatory. The
proof is completed. O

By Theorem 2.3, we can get for equation (1.2).

Corollary 2.4. Suppose that (Hy) — (H3) hold. Then every bounded solution of
(1.2) is oscillatory if and only if

/too /:O q(u)duds = oo. (2.10)

Example 2.5. Consider second-order linear differential equation
1
(t-a'(t)) + ca(t) =0, t>1. (2.11)

Here )
alt) =1, alt) = 5, f(2) =2, 7(0) =t

The conditions (H;)-(Hs), (2.1) and (2.8) are clearly satisfied. Altogether, by
Theorems 2.1 and 2.3, every bounded solution of the equation (2.11) is oscilla-
tory. In fact, (t) = coslnt is a bounded oscillatory solution of the equation
(2.11).
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