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Abstract. Lienard’s equations are important nonlinear differential equations with ap-

plication in many areas of applied mathematics. In the present article, a new approach

known as the modified fractional Taylor series method (MFTSM) is proposed to solve the

nonlinear fractional Lienard equations with Caputo fractional derivatives, and the conver-

gence of this method is established. Numerical examples are given to verify our theoretical

results and to illustrate the accuracy and effectiveness of the method. The results obtained

show the reliability and efficiency of the MFTSM, suggesting that it can be used to solve

other types of nonlinear fractional differential equations that arise in modeling different

physical problems.

1. Introduction

Nonlinear fractional differential equations (NFDEs) are an important tool in
modeling many real-world problems that arise in fluid mechanics, elasticity, signal
processing, chemical reactions, electromagnetism, biology, biomedical, biomathe-
matics and so on. See for example [1, 2, 3, 8, 9, 14].

The difficulty of solving some NFDEs exactly, has necessitated the developement
of efficient numerical methods to solve them. In recent years, solutions of NFDEs
have been discussed by many researchers using various numerical techniques such
as: the Laplace decomposition method [11], the homotopy perturbation transform
method [12], the optimal homotopy analysis method [5], the fractional variational
iteration method [13], the new iterative method [6], and the residual power series
method [7].

The aim of this article is to use a new approach known as the modified frac-
tional Taylor series method (MFTSM) to obtain an analytical series solution for the
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nonlinear Caputo fractional Lienard equation in the form

(1.1) D2ηv(ζ) + av(ζ) + bv3(ζ) + cv5(ζ) = 0, ζ > 0,

with

(1.2) v(0) = Ψ0, D
ηv(0) = Ψ1.

Here D2η denotes the fractional derivative operator, in the Caputo sense, of
order 2η with 1/2 < η ≤ 1 and a, b, c,Ψ0 and Ψ1 are real numbers.

The MFTSM is an iterative algorithm. It is effective and makes it easy to obtain
a power series solution for linear and nonlinear fractional differential equations
without resorting to linearization, perturbation, or discretization. Unlike other
series methods, the MFTSM does not require matching the coefficients of similar
conditions, and no repeated connection is needed. The present method computes
the coefficients of the power series by a bond of algebraic equations. In addition,
the MFTSM does not need any transformation during the change from low order
to higher order, thus it is possible to work with the present method directly on a
given example by choosing an suitable initial estimate approximation.

The rest of the article is structured as follows. In Section 2, we provide some
definitions and preliminary concepts of fractional calculus theory. Section 3 is de-
voted to the basic idea of the MFTSM. In Section 4, we apply the above-mentioned
method to two numerical examples of a nonlinear Caputo fractional Lienard equa-
tion and discuss the applicability and reliability of the method through tables and
graphs. Section 5 is devoted to the conclusion.

2. Preliminaries

In this section we recall the basic definitions and concepts of fractional calculus
theory that are used in the present article.

Definition 2.1.([9]) Let v : R+ −→ R be a continous function. The fractional
integral in the Riemann-Liouville sense of order η ≥ 0, is defined as

(2.1) Iηv(ζ) =







1

Γ(η)

ζ
∫

0

(ζ − µ)η−1 v(µ)dµ, η > 0,

v(ζ), η = 0.

Here, Γ(.) denotes the gamma function.

Definition 2.2.([9]) Let v(n) : R+ −→ R be a continous function. The fractional
derivative in the Caputo sense of order n− 1 < η ≤ n, n ∈ N

∗, is defined as

(2.2) Dηv(ζ) =







1

Γ(n− η)

ζ
∫

0

(ζ − µ)n−η−1 v(n)(µ)dµ, n− 1 < η < n,

v(n)(ζ), η = n.
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Some properties of Dη are as follows

1)

Dη(λ) = 0, where λ ∈ R.

2)

Dηζγ =

{

Γ(γ+1)
Γ(γ−η+1)ζ

γ−η, γ > n− 1,

0, γ ≤ n− 1.

3)

Dη (vn(ζ)) = nvn−1(ζ)Dηv(ζ).

3. Analysis of MFTSM for nonlinear Caputo fractional Lienard equation

Theorem 3.1. Suppose we have the nonlinear Caputo fractional Lienard equation
(1.1) with (1.2). Using MFTSM, the solution of (1.1)-(1.2) can be expressed as

(3.1) v(ζ) =
∞
∑

i=0

Ψi

ζiη

Γ(iη + 1)
, 0 < η ≤ 1, 0 < ζ < R.

Here, (3.1) is an infinite series which converges rapidly to the exact solution,
Ψi are real coefficients and R is the radius of convergence.

Proof. To prove this result, we assume that the solution of equation (1.1) takes the
following form

(3.2) v(ζ) =

∞
∑

i=0

Ψi

ζiη

Γ(iη + 1)
.

Therefore, the nth−order approximate solution of equation (1.1), can be written
as

(3.3) vn(ζ) =

n
∑

i=0

Ψi

ζiη

Γ(iη + 1)
= Ψ0 +Ψ1

ζη

Γ(η + 1)
+

n
∑

i=2

Ψi

ζiη

Γ(iη + 1)
.

Applying the operator D2η on equation (3.3), we get the following formula

(3.4) D2ηvn(ζ) =

n−2
∑

i=0

Ψi+2
ζiη

Γ(iη + 1)
.
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Then, by replacing equations (3.3) and (3.4) in equation (1.1), we obtain the
following iterative relation

0 =

n−2
∑

i=0

Ψi+2
ζiη

Γ(iη + 1)
+ a

(

Ψ0 +Ψ1
ζη

Γ(η + 1)
+

n
∑

i=2

Ψi

ζiη

Γ(iη + 1)

)

+b

(

Ψ0 +Ψ1
ζη

Γ(η + 1)
+

n
∑

i=2

Ψi

ζiη

Γ(iη + 1)

)3

+c

(

Ψ0 +Ψ1
ζη

Γ(η + 1)
+

n
∑

i=2

Ψi

ζiη

Γ(iη + 1)

)5

.

To determine the coefficient Ψn, n = 2, 3, 4, ..., we follow the same methodology
used to obtain the coefficients of the Taylor series. To achieve this, we must solve
the following equation

D(n−2)η {F (ζ, η, n)} ↓ζ=0= 0,

where

F (ζ, η, n) =
n−2
∑

i=0

Ψi+2
ζiη

Γ(iη + 1)
+ a

(

Ψ0 +Ψ1
ζη

Γ(η + 1)
+

n
∑

i=2

Ψi

ζiη

Γ(iη + 1)

)

+b

(

Ψ0 +Ψ1
ζη

Γ(η + 1)
+

n
∑

i=2

Ψi

ζiη

Γ(iη + 1)

)3

+c

(

Ψ0 +Ψ1
ζη

Γ(η + 1)
+

n
∑

i=2

Ψi

ζiη

Γ(iη + 1)

)5

.

We now determine the terms of the sequence {Ψn}N2 .

For n = 2 we have

F (ζ, η, 2) = Ψ2 + a

(

Ψ0 +Ψ1
ζη

Γ(η + 1)
+ Ψ2

ζ2η

Γ(2η + 1)

)

+b

(

Ψ0 +Ψ1
ζη

Γ(η + 1)
+ Ψ2

ζ2η

Γ(2η + 1)

)3

+c

(

Ψ0 +Ψ1
ζη

Γ(η + 1)
+ Ψ2

ζ2η

Γ(2η + 1)

)5

.

Solving F (0, η, 2) = 0, yields

Ψ2 = −(aΨ0 + bΨ3
0 + cΨ5

0).
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To determine Ψ3, we consider

F (ζ, η, 3) = Ψ2 +Ψ3
ζη

Γ(η + 1)
+ a

(

Ψ0 +Ψ1
ζη

Γ(η + 1)
+ Ψ2

ζ2η

Γ(2η + 1)
+ Ψ3

ζ3η

Γ(3η + 1)

)

+b

(

Ψ0 +Ψ1
ζη

Γ(η + 1)
+ Ψ2

ζ2η

Γ(2η + 1)
+Ψ3

ζ3η

Γ(3η + 1)

)3

+c

(

Ψ0 +Ψ1
ζη

Γ(η + 1)
+ Ψ2

ζ2η

Γ(2η + 1)
+ Ψ3

ζ3η

Γ(3η + 1)

)5

.

Then, we solve Dη {F (ζ, η, 3)} ↓ζ=0= 0, to get

Ψ3 = −(aΨ1 + 3bΨ2
0Ψ1 + 5cΨ4

0Ψ1).

In general, to determine Ψr, we consider

F (ζ, η, r) =

r−2
∑

i=0

Ψi+2
ζiη

Γ(iη + 1)
+ a

(

Ψ0 +Ψ1
ζη

Γ(η + 1)
+

r
∑

i=2

Ψi

ζiη

Γ(iη + 1)

)

+b

(

Ψ0 +Ψ1
ζη

Γ(η + 1)
+

r
∑

i=2

Ψi

ζiη

Γ(iη + 1)

)3

+c

(

Ψ0 +Ψ1
ζη

Γ(η + 1)
+

r
∑

i=2

Ψi

ζiη

Γ(iη + 1)

)5

.

Then, we solve D(r−2)η {F (ζ, η, r)} ↓ζ=0= 0, to get

Ψr = −







aΨr−2 + b

r−2∑

i=0

r−2−i∑

j=0

ΨiΨjΨr−2−i−jΓ((r−2)η+1)

Γ(iη+1)Γ(jη+1)Γ((r−2−i−j)η+1)

+c

r−2∑

i=0

r−2−i∑

j=0

r−2−i−j∑

l=0

r−2−i−j−l∑

m=0

ΨiΨjΨlΨmΨr−2−i−j−l−mΓ((r−2)η+1)

Γ(iη+1)Γ(jη+1)Γ(lη+1)Γ(mη+1)Γ((r−2−i−j−l−m)η+1)






.

Therefore, the solution of equations (1.1)-(1.2) is

v(ζ) = lim
n−→∞

vn(ζ)

= lim
n−→∞

n
∑

i=0

Ψi

ζiη

Γ(iη + 1)

=

∞
∑

n=0

Ψi

ζiη

Γ(iη + 1)
.

2

Theorem 3.2. The series solution given in equation (3.1) converges to the exact
solution if there exists a constant 0 < τ < 1 such that

‖vn+1(ζ)‖ ≤ τ ‖vn(ζ)‖ , n ∈ N, 0 < ζ < R.
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Proof. For every 0 < ζ < R, we have

‖v(ζ)− vn(ζ)‖ =

∥

∥

∥

∥

∥

∞
∑

r=n+1

vr(ζ)

∥

∥

∥

∥

∥

≤
∞
∑

r=n+1

‖vr(ζ)‖

≤
∞
∑

r=n+1

τ ‖vr−1(ζ)‖ ≤
∞
∑

k=n+1

τ2 ‖vr−2(ζ)‖

≤ ... ≤ ‖v0‖
∞
∑

r=n+1

τr

=
τn+1

1− τ
‖v0‖ .

Because 0 < τ < 1 and v0 is bounded, so we get

lim
n−→∞

‖v(ζ) − vn(ζ)‖ = 0.

2

4. Examples

In this section, we demonstrate the accurateness and effectiveness of the pro-
posed method by presenting two different examples of nonlinear Caputo fractional
Lienard equations.

Example 4.1. Let us take the following nonlinear Caputo fractional Lienard equa-
tion

(4.1) D2ηv(ζ)− v(ζ) + 4v3(ζ)− 3v5(ζ) = 0, 1/2 < α ≤ 1, ζ > 0,

with

(4.2) v(0) =
1√
2
, Dηv(0) =

1√
8
.

Using the same procedure of the MFTSM given in Section 3, we have

v(ζ) =

∞
∑

i=0

Ψi

ζiη

Γ(iη + 1)
,
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and

Ψ0 =
1√
2
,

Ψ1 =
1√
8
,

Ψ2 = − 1√
32

,

Ψ3 = − 5√
128

,

...

Therefore, the solution of equations (4.1)-(4.2), is given by

(4.3) v(ζ) =
1√
2

(

1 +
1

2

ζη

Γ(η + 1)
− 1

4

ζ2η

Γ(2η + 1)
− 5

8

ζ3η

Γ(3η + 1)
+ ...

)

.

If we take η = 1 in equation (4.3), the solution becomes

v(ζ) =
1√
2

(

1 +
1

2
ζ − 1

8
ζ2 − 5

48
ζ3 + ...

)

=

√

1 + tanh(ζ)

2
,

which is the exact solution for equations (4.1)-(4.2), when η = 1 (See.[4]).

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

ζ

0.7

0.71

0.72

0.73

0.74

0.75

0.76

0.77

0.78

v(
ζ
)

Exact solution
η=1
η=0.9
η=0.8
η=0.7

Figure 1: Graph of the exact solution and MFTSM-solution for Example 4.1
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η = 2 η = 1 Absolute error

ζ vexact vFHATM vMFTSM |vexact − vMFTSM |
0.00 0.70711 0.70711 0.70711 0
0.02 0.71414 0.71414 0.71414 5.0793 × 10−9

0.04 0.72110 0.72110 0.72110 8.2374 × 10−8

0.06 0.72799 0.72799 0.72799 4.2249 × 10−7

0.08 0.73479 0.73479 0.73479 1.3522 × 10−6

0.1 0.74151 0.74151 0.74151 3.3415 × 10−6

Table 1: Comparison between the exact solution, FHATM solution and
MFTSM solution for Example 4.1

Example 4.2. Let us take the following nonlinear Caputo fractional Lienard equa-
tion

(4.4) D2ηv(ζ) − v(ζ) + 4v3(ζ) + 3v5(ζ) = 0, 1/2 < η ≤ 1, ζ > 0,

with

(4.5) v(0) =
1

√

1 +
√
2
, Dηv(0) = 0.

Using the same procedure of the MFTSM given in Section 3, we have

v(ζ) =

∞
∑

i=0

Ψi

ζiη

Γ(iη + 1)
,

and

Ψ0 =
1

√

1 +
√
2
,

Ψ1 = 0,

Ψ2 = −
(

4 + 2
√
2

(

1 +
√
2
)2√

1 +
√
2

)

,

Ψ3 = 0,

...

Therefore, the solution of equations (4.4)-(4.5), is given by

(4.6) v(ζ) =
1

√

1 +
√
2

(

1− 4 + 2
√
2

(

1 +
√
2
)2

ζ2η

Γ(2η + 1)
+ ...

)

.
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If we take η = 1 in equation (4.6), the solution becomes

v(ζ) =
1

√

1 +
√
2

(

1− 2 +
√
2

(

1 +
√
2
)2 ζ

2 + ...

)

=

√

sech2(ζ)

2
√
2 +

(

1−
√
2
)

sech2(ζ)
.

which is the exact solution for equations (4.4)-(4.5), when η = 1 (See.[4]).

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

ζ

0.615

0.62

0.625

0.63

0.635

0.64

0.645

v(
ζ
)

Exact solution
η=1
η=0.9
η=0.8
η=0.7

Figure 2: Graph of the exact solution and MFTSM-solution for Example 4.2

η = 2 η = 1 Absolute error

ζ vexact vFHATM vMFTSM |vexact − vMFTSM |
0.00 0.64359 0.64359 0.64359 0.0
0.02 0.64344 0.64344 0.64344 3.2888 × 10−8

0.04 0.64299 0.64299 0.64299 5.2585 × 10−7

0.06 0.64224 0.64224 0.64224 2.6590 × 10−6

0.08 0.64119 0.64118 0.64118 8.3902 × 10−6

0.1 0.63984 0.63982 0.63982 2.0441 × 10−5

Table 2: Comparison between the exact solution, FHATM solution and
MFTSM solution for Example 4.2
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Figures 1 and 2 show the graphs of the exact solutions and the 3rd order approximate
solutions using the MFTSM at η = 0.7, 0.8, 0.9, 1 for equations (4.1) and (4.4),
respectively. The figures show that for various fractional-order values, the proposed
method is reliable, accurate and efficient. Tables 1 and 2 shows the comparison
between the exact solutions, approximate soluions using FHATM at η = 2 (See.[10])
and approximate solutions using MFTSM at η = 1. The tables show that there is
a very good agreement between the solutions obtained and those available in the
literature.

5. Conclusion

In this article, we used a new approach known as the modified fractional Taylor
series method (MFTSM) to obtain an analytical series solution of the nonlinear
fractional Lienard equation with the Caputo fractional derivative. Numerical results
have been presented to demonstrate the accuracy and efficiency of the MFTSM.
From the obtained results, it is clear that the MFTSM provided highly accurate
series solutions, which converge very rapidly to the exact solution. In addition, it
has been observed that there exists a very good agreement between the solutions
obtained and those available in the literature. Finally, we can conclude that the
proposed method is extremely methodical, more effective and very accurate, and
which can be applied to solve various classes of nonlinear fractional differential
equations.
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