• 제목/요약/키워드: Nonholonomic mobile robot

검색결과 78건 처리시간 0.025초

일반화된 보로노이 다이어그램을 이용한 논홀로노믹 모바일 로봇의 자율 주행 (Autonomous Navigation of Nonholonomic Mobile Robots Using Generalized Voronoi Diagrams)

  • 소명뢰;신동익;신규식
    • 한국생산제조학회지
    • /
    • 제24권1호
    • /
    • pp.98-102
    • /
    • 2015
  • This paper proposes an autonomous navigation method for a nonholonomic mobile robot, based on the generalized Voronoi diagram (GVD). We define the look-ahead point for a given motion constraint to determine the direction of motion, which solves the problem of a minimum turning radius for the real nonholonomic mobile robot. This method can be used to direct the robot to explore an unknown environment and construct smooth feedback curves for the nonholonomic robot. As the trajectories can be smoothed, the position of the robot can be stabilized in the plane. The simulation results are presented to verify the performance of the proposed methods for the nonholonomic mobile robot. Furthermore, this approach is worth drawing on the experience of any other mobile robots.

이동로보트의 점근적으로 안정한 추종제어 (Asymptotically stable tracking control of mobile robots)

  • 김도현;오준호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.187-190
    • /
    • 1997
  • In the past few years, many researchers are interesting of control of mobile robot with nonholonomic constraints. And tracking problems is important as well as regulation in nonholonomic system control. Some researchers have investigated the stable tracking control law for mobile robot. But, few results showed the globally asymptotically stable control method simply. So, we address the design of globally asymptotically stable tracking control law for mobile robot with nonholonomic velocity constraints using simple method. The stabilizability of the controller is derived by Lyapunov direct method. And we analyze the system responses according to the variation of control parameters in line tracking problem. It is derived that the responses represent no overshoot property in line tracking. Examples are two-wheeled mobile robot and car-like mobile robot and the simulation results represent the effectiveness of our method.

  • PDF

Path Following Control of Mobile Robot Using Lyapunov Techniques and PID Cntroller

  • Jin, Tae-Seok;Tack, Han-Ho
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제11권1호
    • /
    • pp.49-53
    • /
    • 2011
  • Path following of the mobile robot is one research hot for the mobile robot navigation. For the control system of the wheeled mobile robot(WMR) being in nonhonolomic system and the complex relations among the control parameters, it is difficult to solve the problem based on traditional mathematics model. In this paper, we presents a simple and effective way of implementing an adaptive following controller based on the PID for mobile robot path following. The method uses a non-linear model of mobile robot kinematics and thus allows an accurate prediction of the future trajectories. The proposed controller has a parallel structure that consists of PID controller with a fixed gain. The control law is constructed on the basis of Lyapunov stability theory. Computer simulation for a differentially driven nonholonomic mobile robot is carried out in the velocity and orientation tracking control of the nonholonomic WMR. The simulation results of wheel type mobile robot platform are given to show the effectiveness of the proposed algorithm.

불확실성을 가지는 전기 구동 논홀로노믹 이동 로봇의 궤적 추종을 위한 강인 적응 퍼지 백스테핑 제어 (Robust Adaptive Fuzzy Backstepping Control for Trajectory Tracking of an Electrically Driven Nonholonomic Mobile Robot with Uncertainties)

  • 신진호
    • 제어로봇시스템학회논문지
    • /
    • 제18권10호
    • /
    • pp.902-911
    • /
    • 2012
  • This paper proposes a robust adaptive fuzzy backstepping control scheme for trajectory tracking of an electrically driven nonholonomic mobile robot with uncertainties and actuator dynamics. A complete model of an electrically driven nonholonomic mobile robot described in this work includes all models of the uncertain robot kinematics with a nonholonomic constraint, the uncertain robot body dynamics with uncertain frictions and unmodeled disturbances, and the uncertain actuator dynamics with disturbances. The proposed control scheme uses the backstepping control approach through a kinematic controller and a robust adaptive fuzzy velocity tracking controller. The presented control scheme has a voltage control input with an auxiliary current control input rather than a torque control input. It has two FBFNs(Fuzzy Basis Function Networks) to approximate two unknown nonlinear robot dynamic functions and a robust adaptive control input with the proposed adaptive laws to overcome the uncertainties such as parameter uncertainties and external disturbances. The proposed control scheme does not a priori require the accurate knowledge of all parameters in the robot kinematics, robot dynamics and actuator dynamics. It can also alleviate the chattering of the control input. Using the Lyapunov stability theory, the stability of the closed-loop robot control system is guaranteed. Simulation results show the validity and robustness of the proposed control scheme.

Robust Adaptive Control of a Nonholonomic Mobile Robot

  • Kim, M. S.;Lee, J. J.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1999년도 제14차 학술회의논문집
    • /
    • pp.5-8
    • /
    • 1999
  • The main stream of researches on the mobile robot is planning motions of the mobile robot under nonholonomic constraints while only considering kinematic model of a mobile robot. These researches, however, assume that there is some kind of dynamic controller which can produce perfectly the same velocity that is necessary for the kinematic controller. Moreover, there are little results about the problem of integrating the nonholonomic kinematic controller and the dynamic controller for a mobile robot. Also the literature on the robustness of the controller in the presence of uncertainties or external disturbances in the dynamical model of a mobile robot is very few. Thus, in this paper, the robust adaptive controller which can achieve velocity tracking while considering not only kinematic model but also dynamic model of the mobile robot is proposed. The stability of the dynamic system will be shown through the Lyapunov method.

  • PDF

경로 관측기를 이용한 차륜형 이동 로봇의 경로 추종 (Path-Following using Path-Observer for Wheeled Mobile Robots)

  • 임미섭;임준홍
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권11호
    • /
    • pp.1448-1456
    • /
    • 1999
  • In this paper, we propose a new technique for path-following of the wheeled mobile robot systems with nonholonomic constraints using a path-observer. We discuss the path-following problems of the nonholonomic mobile robot systems which have two nonsteerable, independently driven wheels with the various initial conditions such as a position, a heading angle, and a velocity. It is shown that the performance of dynamic path-following importantly is affected by the intial conditions. Particularly, if the initial conditions become more distant from the desired path and the desired velocity become faster, the system is shown to have worse performance and small time local stable. To find the controllable and stable control for path-following with various initial configuration, we propose the path-observer which can be used for control of the stable path-following of nonholonomic mobile robot system with the various initial conditions. The proposed scheme exhibits the efficient path-following properties for nonholonomic mobile robot in any intial conditions. The simulation results demonstrate the effectiveness of the proposed method for dynamic path-following tasks with the various initial conditions.

  • PDF

Nonholonomic 모바일 로봇의 퍼지 PID제어 (A Fuzzy PID Control of Nonholonomic Mobile Robot)

  • 김도우;양해원;정원철;황영호;김홍필
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 D
    • /
    • pp.2756-2759
    • /
    • 2000
  • In this paper. A PID motion controller based on the fuzzy concept is discussed for nonholonomic mobile robot. The difficulties in controlling such a Mobile robot vehicle lies in the fact that it usually has only two degrees of freedom for motion control in a tracking mode. It makes the control of speed and steering possible to decompose the error between the reference posture and the current posture. The Gyro compass is used to measure the position of robot. The proposed nonholonomic mobile robot is shown to follow the reference trajectory and compensate the dynamics. Simulation results are provided to validate the proposed controller. Experiments have been used to verify the effectiveness and robustness of the motion controller.

  • PDF

Neurointerface Using an Online Feedback-Error Learning Based Neural Network for Nonholonomic Mobile Robots

  • Lee, Hyun-Dong;Watanabe, Keigo;Jin, Sang-Ho;Syam, Rafiuddin;Izumi, Kiyotaka
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.330-333
    • /
    • 2005
  • In this study, a method of designing a neurointerface using neural network (NN) is proposed for controlling nonholonomic mobile robots. According to the concept of virtual master-slave robots, in particular, a partially stable inverse dynamic model of the master robot is acquired online through the NN by applying a feedback-error learning method, in which the feedback controller is assumed to be based on a PD compensator for such a nonholonomic robot. A tracking control problem is demonstrated by some simulations for a nonholonomic mobile robot with two-independent driving wheels.

  • PDF

Cooperating Control of Multiple Nonholonomic Mobile Robots Carrying a Ladder with Obstacles

  • Yang, Dong-Hoon;Choi, Yong-Chul;Hong, Suk-Kyo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.818-829
    • /
    • 2003
  • A cooperating control algorithm for two nonholonomic mobile robots is proposed. The task is composed of collision avoidance against obstacles and carrying a ladder. The front robot and the rear robot are called the leader and the follower, respectively. Each robot has a nonholonomic constraint so it cannot move in perpendicular directions. The environment is initially supposed to be unknown except target position. The torque that drives leader is determined by distance between the leader and the target position or the distance between it and the obstacles. The torque by target is attractive and the torque by obstacles is repulsive. The two mobile robots are supposed to be connected by link that can be expanded and contracted. The follower computes its torque using position and orientation information from the leader by communication. Simulation results show that the robots can drive to target position without colliding into the obstacles and maintain the distance in the allowable range.

  • PDF

Robust Nonlinear Control of a Mobile Robot

  • Zidani, Ghania;Drid, Said;Chrifi-Alaoui, Larbi;Arar, Djemai;Bussy, Pascal
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권4호
    • /
    • pp.1012-1019
    • /
    • 2016
  • A robust control intended for a nonholonomic mobile robot is considered to guarantee good tracking a desired trajectory. The main drawbacks of the mobile robot model are the existence of nonholonomic constraints, uncertain system parameters and un-modeled dynamics. in order to overcome these drawbacks, we propose a robust control based on Lyapunov theory associated with sliding-mode control, this solution shows good robustness with respect to parameter variations, measurement errors, noise and guarantees position and velocity tracking. The global asymptotic stability of the overall system is proven theoretically. The simulation results largely confirm the effectiveness of the proposed control.