
ICCAS2005 June 2-5, KINTEX, Gyeonggi-Do, Korea

Neurointerface Using an Online Feedback-Error Learning Based Neural Network for
Nonholonomic Mobile Robots

Hyun-Dong Lee∗, Keigo Watanabe∗, Sang-Ho Jin∗∗, Rafiuddin Syam∗ and Kiyotaka Izumi∗

∗ Department of Advanced Systems Control Eng., Graduate School of Science and Engineering,
Saga University, 1-Hojomachi, Saga 840-8502, Japan

(Tel: +81-952-28-8602; Fax: +81-952-28-8587; E-mail: s2hd@cnu.ac.kr,{watanabe,izumi}@me.saga-u.ac.jp)
∗∗ Department of Mechanical Engineering, Doowon Technical College

678, Jangwon-ri, Juksan-myon, Ansung-shi, Kyonggi-do, 456-718 Korea
(Tel: +81-31-670-7134; E-mail: shjin@doowon.ac.kr)

Abstract: In this study, a method of designing a neurointerface using neural network (NN) is proposed for controlling nonholonomic mobile
robots. According to the concept of virtual master-slave robots, in particular, a partially stable inverse dynamic model of the master robot is
acquired online through the NN by applying a feedback-error learning method, in which the feedback controller is assumed to be based on a
PD compensator for such a nonholonomic robot. A tracking control problem is demonstrated by some simulations for a nonholonomic mobile
robot with two-independent driving wheels.

Keywords: Neurointerface, Neural networks, Nonholonomic mobile robots, Online feedback-error learning

1. Introduction

Up to now, there have been a lot of efforts to solve a trajectory
tracking problem using a geometrical model of mobile robots un-
der nonholonomic condition. Widrow and Lamego [1] proposed a
neurointerface approach, whose method is composed mainly of two
parts: one is an inverse system realized by neural network (NN) to
generate a feedforward control input according to a reference value
or the output of a reference model and the other is a feedback mech-
anism to suppress the effect of disturbance due to the change of
initial state, mapping errors of NN, etc.

Mobile robot navigation can be classified into three basic problems:
tracking a reference trajectory, following a path, and point stabiliza-
tion. Fierro and Lewis [2],[3] proposed a control of a nonholonomic
mobile robot, in which a control structure that makes the integration
of a kinematic controller and an NN computed-torque controller
possible is presented for a nonholonomic mobile robot. A combined
kinematic/torque control law is developed using backstepping and
its stability is guaranteed by Lyapunov theory. That control algo-
rithm can be applied to the above three basic nonholonomic nav-
igation problems. Moreover, the NN controller proposed in their
work can deal with unmodeled bounded disturbances and unstruc-
tured unmodeled dynamics in the vehicle. Online NN weight tuning
algorithm need not require any offline learning, yet guarantee small
tracking errors and bounded control signals were utilized.

Syam et al. [4] have already proposed a method for constructing a
feedforward part in the framework of neurointerface for a nonholo-
nomic mobile robot by applying a concept of virtual master-slave
system. Note however that the method proposed by Syam et al. was
impossible to deal with a trajectory tracking for a suddenly changed
mass by using an NN trained offline, even though a PD feedback
compensator was introduced.

Therefore, in this research, a new method of designing a neurointer-
face using an NN is proposed for controlling nonholonomic mobile
robots. According to the concept of virtual master-slave robots, in
particular, a partially stable inverse dynamic model of the master
robot is acquired online through the NN by applying a feedback-
error learning method, in which the feedback controller is assumed

to be based on a PD compensator for such a nonholonomic robot.
Topalov et al. [5] studied a similar control system to Fierro and
Lewis by using a feedback-error learning method. However, their
fuzzy NN was very complicated compared to the present NN.

2. Structure of Mobile Robot

A nonholonomic mobile robot system attaching two-independent
driving wheels in the rear and a caster adjustable to any free direc-
tion in the front is assumed as Fig. 1. In the figure, C point shows
the mass center of the robot, and P point shows the center of two
rear wheel axle. The offset distance between P point and C point is
denoted byd and the distance between two rear wheels, i.e., tread
is given by2R, and the radius of the rear wheel is shown byr. A
nonholonomic mobile robot can be described by

M(q)q̈ + V (q, q̇)q̇ = B(q)fi − AT (q)– (1)

whereq is the generalized coordinates,q = [xc yc θ]T , (xc, yc)

is the robot position of the center of gravity,θ is the azimuth,M
is an inertia matrix,V is the centrifugal and Coriolis matrix,B is
the input distribution matrix,A is the matrix associated with the
constraints, and– is the vector of constraint forces [3],[6].

��

��

�

� ��
��

θ
�

	
�

�

Fig. 1. The schematic diagram of nonholonomic mobile robot.

330

3. Torque Conversion Model
Generally, Eq. (1) can be shown in steering model of the mobile
robot:

fi (t) = gM (v̇(t)) (2)

= gM ([v(t) − v(t − 1)]/∆t)

Here,v(t) = [v(t) θ̇(t)]T shows the forward speed of the robot at
time t, andgM is a function that converts the forward acceleration
to the input torquefi (t). ∆t is the sampling time. Moreover,v(t)

of the robot can be shown in the kinematic relation through Fig. 1:

q̇(t) = J(θ(t))v(t), J(θ(t)) =

2

6

4

cos θ −d sin θ

sin θ d cos θ

0 1

3

7

5

(3)

or

v(t) = J+(θ(t))

»

q(t) − q(t − 1)

∆t

–

where,J+(θ(t)) denotes the pseudo-inverse matrix ofJ(θ(t)). The
steering model can be dominated by a dynamic property accord-
ing to the forward speed change and the angular acceleration of the
robot. If I is the moment of inertia around the P point andm is the
mass of the robot, then the relation of the torque of the drive wheels
and the acceleration of the robot is given by [6]

"

m 0

0 I − md2

#"

v̇

θ̈

#

=
1

r

"

1 1

R −R

#"

τr

τl

#

(4)

Therefore, Eq. (4) is reduced to

fi (t) =

"

τr

τl

#

= r

"

1 1

R −R

#−1 "

m 0

0 I − md2

#

v̇(t) (5)

4. Construction of Neurointerface
4.1. PD feedback controller
The PD feedback controller is used so thatq(t) = [xc yc θ]T

tracksqr(t) = [xr yr θr]
T , which is the reference trajectory of

the robot. If a positional error of the robot is defined ase(t), the
input velocity q̇PD(t) in the coordinate system of the slave robot
can be given by

q̇PD(t) = Kpe(t) + Kdė(t) (6)

with
e(t) = qr(t) − q(t), ė(t) = q̇r(t) − q̇(t)

whereKp andKd are the proportional and derivative gain matrices,
respectively.
Using Eq. (3), the input velocity in the coordinate system of the
master robot (or steering model) can be obtained by

vPD(t) = J+(θr(t))q̇PD(t) (7)

Finally, using Eq. (5) and Eq. (7) yields

fi PD(t) = TI v̇PD(t) (8)

where it is assumed thatv̇PD(t) = [vPD(t) − vPD(t − 1)]/∆t

and TI is a formal torque transformation matrix whose diagonal
element represents any fictitious moment of inertia or mass, e.g.,
TI = diag(1, 1) for the simplicity.

4.2. Online feedback-error learning
The block diagram to which the position and azimuth of a real-time
robot can track the reference trajectory is shown in Fig. 2.
The desired torque vectorfi r(t) can be obtained by using the de-
sired velocity vectorsvr(t) andvr(t − 1), in which thevr(t) is
obtained by using the static transformationJ+(θr(t)) and q̇r(t).
Here, if the velocity of Eq. (2) is assumed to be constant, then the
value offi (t) becomes 0. However, the torque is impossible to be-
come 0 because any disturbance of friction etc. actually exists in
the fields, so that it needs to include a disturbance torquefi d(t).
The feedforward desired torquefi r(t) is now generated by using
NN learned by the online feedback-error learning. After calculating
the Eq. (8) to generate the valuefi PD(t) provided by the PD con-
troller, the NN should be learned by usingfi (t) value. Ultimately
the NN is learned so that the value offi PD(t) becomes 0.
The actual coordinateq(t) is simulated by using Eq. (1) so that the
input torquefi (t) to the robot is given by

fi (t) = fi r(t) + fi PD(t) (9)

4.3. Design of neural network
If the disturbance torquefi d(t), as a non-zero torque, is considered,
then Eqs. (2), (4) and (5) are rewritten as follows:

fi r(t) = gM ([vr(t) − vr(t − 1)]/∆t, fi d(t)) (10)

"

m 0

0 I − md2

#"

v̇r

θ̈r

#

+ fi d =
1

r

"

1 1

R −R

#"

τr

τl

#

(11)

fi r(t) =

"

τrr

τlr

#

= r

"

1 1

R −R

#−1 "

m 0

0 I − md2

#

v̇r(t) + fi d

!

=

2

4

1
2
mrv̇r(t) + 1

2
rτrd + r

2R
(I − md2)θ̈r(t) + r

2R
τld

1
2
mrv̇r(t) + 1

2
rτrd − r

2R
(I − md2)θ̈r(t) − r

2R
τld

3

5

(12)

Using Eq. (12), the NN for the online feedback-error learning can
be composed as shown in Fig. 3. The input layer consists of six
units for the inputsxi, i = 1, ..., 6, the hidden layer consists of two
hidden units for the hidden outputsoj , j = 1, 2, and the output
layer consists of two units for the outputs,τk, k = 1, 2.
To train the NN online, we consider the minimization of a squared
output error such as,

J =
1

2

l(=2)
X

k=1

ε2
k(t), εk(t) = τk(t) − τkr(t) (13)

whereτk can be regarded as the teaching signal for thekth output
of the NN.
It is further assumed that the weightswij in general form between
the input and hidden layers are unknown, and the weightssjk in
general form between the hidden and output layers are known, fixed
values. Also it is easy to find that

τkr(t) =

m(=2)
X

j=1

sjkoj , oj =

n(=6)
X

i=1

wijxi (14)

331

�−�

�−�

�−�

�∆
�

�∆
�

�∆
�

�−�

��

���� �� �θ+

���� �� �θ+

�����

�����

������

������

��� −���

�����

��� −���

	τ

����τ ���τ ����

����

�����

���

���
�
������� ������ ������� �����τ

��

�
�

�

�

�

�

�

�

�
�

�

�

��� −����

��� −�� ������	
��������������

�
�
�

�
�
�

�������������

�����

Fig. 2. The neurointerface using online feedback-error learning algorithm.

Then, the gradient of the cost functionJ with respect to the weight
wij to be learned is derived as

∂J

∂wij
=

l
X

k=1

∂J

∂εk

∂εk

∂wij
=

l
X

k=1

εk
∂εk

∂wij
(15)

On the other hand, we can find that

∂εk

∂wij
=

∂εk

∂τkr

∂τkr

∂wij
= − ∂τkr

∂wij
(16)

= −∂τkr

∂oj

∂oj

∂wij
= −sjkxi

Therefore, the incremental value of learning weights can be defined
as

∆wij(t + 1) = −η
∂J

∂wij
= ηxi

l
X

k=1

sjkεk (17)

or

wij(t + 1) = wij(t) + ηxi

l
X

k=1

sjk[τk(t) − τkr(t)] (18)

whereη denotes the small learning rate.

Note here thatw11 = w1, w22 = w2, w31 = w3, w42 = w4,
w51 = w5, w62 = w6, s11 = s1, s12 = s2, s21 = s3, and
s22 = s4 to simplify the notations.

�−
�

�−
�

��
τ

��
τ

����
�

��� −��
�

���
�

θ�

��� −�
�

θ�

��

��

��

��

��−

��−

��

��

��

��

���
��

τ

���
��

τ

�

�

�

�

Fig. 3. Neural network structure for the steering model.

5. Simulations
Thefi (t) given by virtual master robot can be provided to the actual
(slave) robot:

q̈ = M(q)−1[B(q)fi − AT (q)– − V (q, q̇)q̇] (19)

Moreover, the acceleration function obtained by Eq. (19) is substi-
tuted for the Runge-Kutta-Gill method to generate the robot position
and azimuth, and their rate vector.
To obtain the inverse mapping of the virtual master robot, the neu-
rointerface was executed as shown in Fig. 2. The physical parame-
ters used for the robot simulated here are shown in Table 1, where
Kp = diag(kp, kp, kp) andKd = diag(kd, kd, kd).
When the NN was learned, the initial values ofwi (i = 1, 2, ..., 6)

are set as random values. The connection weightswi (i =

1, 2, ..., 6) connecting the input layer and the hidden layer have their
ideal values ofw1 = r/2, w2 = r/2R, w3 = w5 = mr/2∆t,
w4 = w6 = r(I − md2)/2R∆t and the connection weights
sn (n = 1, 2, ..., 4) connecting the hidden layer and the output
layer have all 1 except thats4 = −1.
Fig. 4 shows the learning history of connection weights forη = 0.3,
where the corresponding learned connection weights are tabulated
in Table 2.
In this simulation, the velocity of the robot was restricted within 5
[m/s], and the torque of the driving wheel was also restricted within
5 [kgm].
Fig. 5 shows the result of the running simulation through a linear
trajectory (case 1). The initialq value was set to[0.3, 0.5, π/4].
When the value of connection weights appeared as Table 2, the
fi PD(t) was close to 0 such asτrPD = 8.14 × 10−6 [kgm] and
τlPD = 5.55 × 10−6 [kgm] in the simulation result, which is suit-
able for the purpose of the algorithm. Moreover, the final trajectory
errors of the robot appeared withex(= xr−xc) = 5.16×10−3 [m],
ey(= yr−yc) = 6.53×10−3 [m], andeθ(= θr−θ) = 3.94×10−3

[rad].
Fig. 6 is a result of simulation for a curved trajectory (case 2).
The initial q value was set to[0.5, 0.5, π/2]. In the simulation, the
fi PD(t) was almost close to 0 such asτrPD(t) = 8.14 × 10−6

[kgm] and τlPD(t) = 5.55 × 10−6 [kgm] and the connection
weights converged as Table 3. The final trajectory errors of the

332

Table 1. The design and physical parameters for simulations.

Item NN Physical parameters PD

parameter η τrd [kgm] τld [kgm] m [kg] I [kgm2] R [m] r [m] d [m] s.time [s] kp kd

value 0.3 0.5 0.5 10 5 0.5 0.05 0.2 0.02 2 0.4

��

�

�

�

�

�

��

��

��

��

�	
����

�
�
�
�
��
�	
�
�
��
�	
�
�
�� � ���� �

� ���� �

� �

� �

� � �

�
�
�
�
��
�	
�
�
��
�	
�
�
��

Fig. 4. Learning history of connection weightswi for η = 0.3.

Table 2. Connection weights learned for case 1.

w1 w2 w3, w5 w4, w6

Ideal 0.025 0.05 12.5 11.5

Learned 0.001 0.55 13.62 9.05

robot appeared withex = 6.74 × 10−2 [m], ey = 5.19 × 10−2

[m], andeθ = 7.38 × 10−3 [rad].
For the accuracy of the trajectory tracking, the linear trajectory (case
1) is superior to the curved trajectory (case 2).

6. Conclusions
This research has devoted to develop a control algorithm that can
track the trajectory of a nonholonomic mobile robot with two-
independent driving wheels.
The method of neurointerface based on a virtual master-slave robot
was adopted and an online feedback-error learning based neural net-
work was used in this study to reduce the trajectory errors of the
robot. The validity of constructing the NN and the performance of
the algorithm were verified by simulations.

References
[1] B. Widrow and M. M. Lamego, “Neurointerfaces,”IEEE

Trans. on Control Systems Tech., vol. 10, no. 2, pp. 221–228,
2002.

[2] R. Fierro and F. L. Lewis, “Control of a nonholonomic mobile
robot: Backstepping kinematics into dynamics,”Journal of
Robotic Systems, vol. 14, no. 3, pp. 149–163, 1997.

[3] R. Fierro and F. L. Lewis, “Control of a nonholonomic mo-
bile robot using neural networks,”IEEE Trans. on Neural Net-
works, vol. 9, no. 4, pp. 589–600, 1998.

[4] R. Syam, K. Watanabe, and K. Izumi, “Concept of virtual
master-slave system and its application to the design of neuro-
interface,” inProc. Intl. SICE Annual Conf., Sapporo, Japan,
August 4–6, 2004, pp. 1108–1113, 2004.

[5] A. V. Topalov, J. H. Kim, and T. P. Proychev, “Fuzzy-net
control of non-holonomic mobile robot using evolutionary

Table 3. Connection weights learned for case 2.

w1 w2 w3, w5 w4, w6

Ideal 0.025 0.05 12.5 11.5

Learned 0.001 0.54 13.44 10.71

feedback-error-learning,”Robotics and Autonomous Systems,
vol. 23, pp. 187–200, 1998.

[6] K. Izumi, R. Syam, and K. Watanabe, “Neural network based
disturbance canceller with feedback error learning for non-
holonomic mobile robots,” inProc. of the 4th Int. Symposium
on Advanced Intelligent Systems (ISIS 2003), pp. 443–446,
2003.

�����

����

� 	
 �

	

�

�

�������������

�
�
�
��
��
�
�
��
�
�

���������������

Fig. 5. The simulation result of nonholonomic mobile robot for
case 1.

�����

����

� 	
 �

	

�

�

�������������

�
�
�
��
��
�
�
��
�
�

���������������

Fig. 6. The simulation result of nonholonomic mobile robot for
case 2.

333

	Main Menu
	Previous Menu
	===============
	Search CD-ROM
	Print

