• Title/Summary/Keyword: Nonexpansive mapping

Search Result 168, Processing Time 0.021 seconds

Noor Iterations with Error for Non-Lipschitzian Mappings in Banach Spaces

  • Plubtieng, Somyot;Wangkeeree, Rabian
    • Kyungpook Mathematical Journal
    • /
    • v.46 no.2
    • /
    • pp.201-209
    • /
    • 2006
  • Suppose C is a nonempty closed convex subset of a real uniformly convex Banach space X. Let T : $C{\rightarrow}C$ be an asymptotically nonexpansive in the intermediate sense mapping. In this paper we introduced the three-step iterative sequence for such map with error members. Moreover, we prove that, if T is completely continuous then the our iterative sequence converges strongly to a fixed point of T.

  • PDF

CONVERGENCE OF MODIFIED VISCOSITY INEXACT MANN ITERATION FOR A FAMILY OF NONLINEAR MAPPINGS FOR VARIATIONAL INEQUALITY IN CAT(0) SPACES

  • Kyung Soo Kim
    • Nonlinear Functional Analysis and Applications
    • /
    • v.28 no.4
    • /
    • pp.1127-1143
    • /
    • 2023
  • The purpose of this paper, we prove convergence theorems of the modified viscosity inexact Mann iteration process for a family of asymptotically quasi-nonexpansive type mappings in CAT(0) spaces. We also show that the limit of the modified viscosity inexact Mann iteration {xn} solves the solution of some variational inequality.

STRONG CONVERGENCE THEOREMS BY VISCOSITY APPROXIMATION METHODS FOR ACCRETIVE MAPPINGS AND NONEXPANSIVE MAPPINGS

  • Chang, Shih-Sen;Lee, H.W. Joseph;Chan, Chi Kin
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.1_2
    • /
    • pp.59-68
    • /
    • 2009
  • In this paper we present an iterative scheme for finding a common element of the set of zero points of accretive mappings and the set of fixed points of nonexpansive mappings in Banach spaces. By using viscosity approximation methods and under suitable conditions, some strong convergence theorems for approximating to this common elements are proved. The results presented in the paper improve and extend the corresponding results of Kim and Xu [Nonlinear Anal. TMA 61 (2005), 51-60], Xu [J. Math. Anal. Appl., 314 (2006), 631-643] and some others.

  • PDF

STRONG CONVERGENCE OF HYBRID ITERATIVE SCHEMES WITH ERRORS FOR EQUILIBRIUM PROBLEMS AND FIXED POINT PROBLEMS

  • Kim, Seung-Hyun;Kang, Mee-Kwang
    • The Pure and Applied Mathematics
    • /
    • v.25 no.2
    • /
    • pp.149-160
    • /
    • 2018
  • In this paper, we prove a strong convergence result under an iterative scheme for N finite asymptotically $k_i-strictly$ pseudo-contractive mappings and a firmly nonexpansive mappings $S_r$. Then, we modify this algorithm to obtain a strong convergence result by hybrid methods. Our results extend and unify the corresponding ones in [1, 2, 3, 8]. In particular, some necessary and sufficient conditions for strong convergence under Algorithm 1.1 are obtained.

A HYBRID ITERATIVE METHOD OF SOLUTION FOR MIXED EQUILIBRIUM AND OPTIMIZATION PROBLEMS

  • Zhang, Lijuan;Chen, Jun-Min
    • East Asian mathematical journal
    • /
    • v.26 no.1
    • /
    • pp.25-38
    • /
    • 2010
  • In this paper, we introduce a hybrid iterative method for finding a common element of the set of solutions of a mixed equilibrium problem, the set of common mixed points of finitely many nonexpansive mappings and the set of solutions of the variational inequality for an inverse strongly monotone mapping in a Hilbert space. We show that the iterative sequences converge strongly to a common element of the three sets. The results extended and improved the corresponding results of L.-C.Ceng and J.-C.Yao.

HYBRID MONOTONE PROJECTION ALGORITHMS FOR ASYMPTOTICALLY QUASI-PSEUDOCONTRACTIVE MAPPINGS

  • Wu, Changqun;Cho, Sun-Young
    • East Asian mathematical journal
    • /
    • v.25 no.4
    • /
    • pp.415-423
    • /
    • 2009
  • In this paper, we consider the hybrid monotone projection algorithm for asymptotically quasi-pseudocontractive mappings. A strong convergence theorem is established in the framework of Hilbert spaces. Our results mainly improve the corresponding results announced by [H. Zhou, Demiclosedness principle with applications for asymptotically pseudo-contractions in Hilbert spaces, Nonlinear Anal. 70 (2009) 3140-3145] and also include Kim and Xu [T.H. Kim, H.K. Xu, Strong convergence of modified Mann iterations for asymptotically nonexpansive mappings and semigroups, Nonlinear Anal. 64 (2006) 1140-1152; Convergence of the modified Mann's iteration method for asymptotically strict pseudo-contractions, Nonlinear Anal. 68 (2008) 2828-2836] as special cases.

PARALLEL SHRINKING PROJECTION METHOD FOR FIXED POINT AND GENERALIZED EQUILIBRIUM PROBLEMS ON HADAMARD MANIFOLD

  • Hammed Anuoluwapo Abass;Olawale Kazeem Oyewole
    • Communications of the Korean Mathematical Society
    • /
    • v.39 no.2
    • /
    • pp.421-436
    • /
    • 2024
  • In this article, we propose a shrinking projection algorithm for solving a finite family of generalized equilibrium problem which is also a fixed point of a nonexpansive mapping in the setting of Hadamard manifolds. Under some mild conditions, we prove that the sequence generated by the proposed algorithm converges to a common solution of a finite family of generalized equilibrium problem and fixed point problem of a nonexpansive mapping. Lastly, we present some numerical examples to illustrate the performance of our iterative method. Our results extends and improve many related results on generalized equilibrium problem from linear spaces to Hadamard manifolds. The result discuss in this article extends and complements many related results in the literature.

ON THE CONVERGENCE OF HYBRID PROJECTION METHODS FOR ASYMPTOTICALLY PSEUDOCONTRACTIVE MAPPINGS IN THE INTERMEDIATE SENSE

  • Cho, Sun-Young;Kang, Shin-Min;Qin, Xiaolong
    • Communications of the Korean Mathematical Society
    • /
    • v.26 no.3
    • /
    • pp.473-482
    • /
    • 2011
  • In this paper, mappings which are asymptotically pseudo-contractive in the intermediate sense are considered based on a hybrid projection method. Strong convergence theorems of fixed points are established in the framework of Hilbert spaces.

MODIFIED ISHIKAWA ITERATIVE SEQUENCES WITH ERRORS FOR ASYMPTOTICALLY SET-VALUED PSEUCOCONTRACTIVE MAPPINGS IN BANACH SPACES

  • Kim, Jong-Kyu;Nam, Young-Man
    • Bulletin of the Korean Mathematical Society
    • /
    • v.43 no.4
    • /
    • pp.847-860
    • /
    • 2006
  • In this paper, some new convergence theorems of the modified Ishikawa and Mann iterative sequences with errors for asymptotically set-valued pseudocontractive mappings in uniformly smooth Banach spaces are given.

STRONG CONVERGENCE OF AN ITERATIVE METHOD FOR FINDING COMMON ZEROS OF A FINITE FAMILY OF ACCRETIVE OPERATORS

  • Jung, Jong-Soo
    • Communications of the Korean Mathematical Society
    • /
    • v.24 no.3
    • /
    • pp.381-393
    • /
    • 2009
  • Strong convergence theorems on viscosity approximation methods for finding a common zero of a finite family accretive operators are established in a reflexive and strictly Banach space having a uniformly G$\hat{a}$teaux differentiable norm. The main theorems supplement the recent corresponding results of Wong et al. [29] and Zegeye and Shahzad [32] to the viscosity method together with different control conditions. Our results also improve the corresponding results of [9, 16, 18, 19, 25] for finite nonexpansive mappings to the case of finite pseudocontractive mappings.