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STRONG CONVERGENCE OF AN ITERATIVE METHOD
FOR FINDING COMMON ZEROS OF A FINITE FAMILY OF

ACCRETIVE OPERATORS

Jong Soo Jung

Abstract. Strong convergence theorems on viscosity approximation me-
thods for finding a common zero of a finite family accretive operators are
established in a reflexive and strictly Banach space having a uniformly
Gâteaux differentiable norm. The main theorems supplement the recent
corresponding results of Wong et al. [29] and Zegeye and Shahzad [32]
to the viscosity method together with different control conditions. Our
results also improve the corresponding results of [9, 16, 18, 19, 25] for finite
nonexpansive mappings to the case of finite pseudocontractive mappings.

1. Introduction

Let E be a real Banach space and C be a nonempty closed convex subset
of E. Recall that a mapping f : C → C is a contraction on C if there exists
a constant k ∈ (0, 1) such that ‖f(x) − f(y)‖ ≤ k‖x − y‖, x, y ∈ C. We use
ΣC to denote the collection of mappings f verifying the above inequality. That
is, ΣC = {f : C → C | f is a contraction with constant k}. Note that each
f ∈ ΣC has a unique fixed point in C.

Now let T : C → C be a nonexpansive mapping (recall that a mapping
T : C → C is nonexpansive if ‖Tx − Ty‖ ≤ ‖x − y‖, x, y ∈ C), and F (T )
denote the set of fixed points of T ; that is, F (T ) = {x ∈ C : x = Tx}. T is
called pseudocontractive if there exists j(x− y) ∈ J(x− y) such that

〈Tx− Ty, j(x− y)〉 ≤ ‖x− y‖2 for all x, y ∈ C,

where J is the normalized duality mapping from E to 2E∗ . Clearly the class of
nonexpansive mappings is a subset of the class of pseudocontractive mappings.

Received November 11, 2008; Revised January 21, 2009.
2000 Mathematics Subject Classification. 47H06, 47H10, 47J25, 49M05.
Key words and phrases. strong convergence, variational inequalities, nonexpansive map-

ping, fixed points, accretive operator, resolvent, sunny and nonexpansive retraction, strictly
convex, uniformly Gâteaux differentiable norm.

This work was supported by the Korea Research Foundation Grant funded by the Korean
Government (MOEHRD, Basic Research Promotion Fund) (KRF-2007-313-C00042).

c©2009 The Korean Mathematical Society

381



382 JONG SOO JUNG

Closely related to the class of pseudocontractive mappings is the class of
accretive operators. Recall that a (possibly multivalued) operator A ⊂ E ×
E with the domain D(A) and the range R(A) in E is accretive if, for each
xi ∈ D(A) and yi ∈ Axi (i = 1, 2), there exists a j ∈ J(x1 − x2) such that
〈y1 − y2, j〉 ≥ 0. (Here J is the duality mapping.) An accretive operator A

is said to satisfy the range condition if D(A) ⊂ R(I + rA) for all r > 0. An
accretive operator A is m-accretive if R(I + rA) = E for each r > 0. If A is
an accretive operator which satisfies the range condition, then we can define,
for each r > 0 a mapping Jr : R(I + rA) → D(A) defined by Jr = (I + rA)−1,
which is called the resolvent of A. We know that Jr is nonexpansive single-
valued mapping and F (Jr) = A−10 for all r > 0. The set of zero of A is denoted
by N(A), that is,

N(A) := {x ∈ D(A) : 0 ∈ Ax} = A−10.

If A−10 6= ∅, then the inclusion 0 ∈ Ax is solvable. We also observe that x
is a zero of the accretive operator A if and only if it is a fixed point of the
pseudocontractive mapping T = I −A. It is well known that if A is accretive,
then the solutions of the equation 0 ∈ Ax correspond to the equilibrium points
of some evolution systems. For this reason, iterative methods for approximating
the zeros of accretive operator A have extensively been studies over the last
forty years (see, e.g., [1, 2, 3, 4, 5, 6, 13, 14, 15, 20, 22, 23, 24, 31]).

Let C be a closed convex subset of E and T : C → C a nonexpansive
mapping. In [16], Kirk studied the iterative scheme given by

xn+1 = a0xn + a1Txn + a2T
2xn + · · ·+ akT kxn, n ≥ 0,

where x0 ∈ C, ai ≥ 0, a0 > 0 and
∑k

i=0 ai = 1 for approximating fixed points
of nonexpansive mappings. Liu et al. [18] introduced the following iterative
scheme for finite nonexpansive mappings Ti : C → C (i = 1, . . . , k):

(1.1) xn+1 = a0xn + a1T1xn + a2T2xn + · · ·+ akTkxn, n ≥ 0,

where x0 ∈ C, ai ≥ 0, a0 > 0 and
∑k

i=0 ai = 1, and showed that {xn}
generated by (1.1) converges to a common fixed point of Ti (i = 1, 2, . . . , k), in a
Banach space with a certain property, say, condition A. The result improved the
corresponding result of Kirk [16], Maiti and Saha [19] and Senter and Doston
[25]. In 2002, Jung [9] established the weak convergence of {xn} generated
by (1.1) in a reflexive and strictly convex Banach space having a uniformly
Gâteaux differentiable norm.

Recently, Zegeye and Shahzad [32] considered the following iterative scheme
for a finite family of m-accretive operators Ai : C → E (i = 1, . . . , k):

(1.2) xn+1 = αnu + (1− αn)Skxn, n ≥ 0,

where Sk := a0I + a1JA1 + a2JA2 + · · · + akJAk
with JAi : (I + Ai)−1 for

0 < ai < 1 (i = 0, 1, . . . , k),
∑k

i=0 ai = 1, and under the control conditions:
(i) limn→∞ αn = 0,
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(ii)
∑∞

n=0 αn = ∞, or, equivalently,
∏∞

n=0(1− αn) = 0,
(iii)

∑∞
n=0 |αn+1 − αn| < ∞, or (iii)∗ limn→∞

|αn+1−αn|
αn+1

= 0,

showed that the sequence {xn} generated by (1.2) converges strongly to a
common solution of the equation Aix 3 0 for i = 1, . . . , k in a reflexive and
strictly convex Banach space having a uniformly Gâteaux differentiable norm
and satisfying that every weakly compact convex subset of E has the fixed
point property for nonexpansive mapping. On the other hand, as the viscos-
ity approximation method, Moudafi [21] and Xu [30] considered the iterative
scheme: for T a nonexpansive mapping, f ∈ ΣC and αn ∈ (0, 1),

(1.3) xn+1 = αnf(xn) + (1− αn)Txn, n ≥ 0.

Under the conditions (i), (ii) and (iii) on {αn}, Xu [30] showed in a uniformly
smooth Banach space that the sequence {xn} generated by (1.3) converges
strongly to a fixed point of T , which solves a certain variational inequality. The
results of Xu [30] extended the results of Moudafi [21] to a Banach space setting.
In 2006, Jung [10] considered the iterative scheme: for N > 1, T1, T2, . . . , Tk

nonexpansive mappings, f ∈ ΣC and αn ∈ (0, 1),

(1.4) xn+1 = αnf(xn) + (1− αn)Tn+1xn, n ≥ 0,

where Tn := Tn mod k, and extended results of Xu [30] (and Moudafi [21]) to
the case of a family of finite nonexpansive mappings. In particular, under the
conditions (i), (ii) and the perturbed control condition on {αn}

(iv) |αn+k − αn| ≤ o(αn+k) + σn,
∑∞

n=0 σn < ∞,

he obtained the strong convergence of the sequence {xn} generated by (1.4) to a
solution in

⋂k
i=1 Fix(Ti) of a certain variational inequality in a reflexive Banach

space having a uniformly Gâteaux differentiable norm with the assumption
that every weakly compact convex subset of E has the fixed point property for
nonexpansive mapping, and gave an example which satisfies the conditions (i),
(ii) and (iv), but fails to satisfy the condition (iii) for k > 1;

∑∞
n=0 |αn+k−αn| <

∞.
In this paper, motivated by above-mentioned results, we introduce the vis-

cosity approximation method for a finite family of accretive operators: for
resolvent Jri of accretive operator Ai such that

⋂k
i=1 N(Ai) 6= ∅ and D(A) ⊂

C ⊂ ⋂
r>0 R(I + rAi) (i = 1, . . . , k), f ∈ ΣC and {αn}, {βn} ⊂ (0, 1),

(IS)





x0 = x ∈ C,

yn = βnxn + (1− βn)Skxn,

xn+1 = αnf(xn) + (1− αn)yn, n ≥ 0,

where Sk := a0I + a1J
A1
r1

+ a2J
A2
r2

+ · · · + akJAk
rk

with JAi
ri

:= (I + riAi)−1

for ri > 0, and 0 < ai < 1 (i = 0, 1, . . . , k) and
∑k

i=0 ai = 1, and establish
the strong convergence of the sequence {xn} generated by (IS) to a common
solution of the equations Aix 3 0 for i = 1, . . . , k, in a reflexive and strictly
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convex Banach space having a uniformly Gâteaux differentiable norm under
certain different control conditions on sequences {αn} and {βn}. The main
results improve the recent results of Wong et al. [29] and Zegeye and Shahzad
[32]. Our results also improve the corresponding results of [9, 16, 18, 19, 25] for
finite nonexpansive mappings to the case of finite pseudocontractive mappings.

2. Preliminaries and lemmas

Let E be a real Banach space with norm ‖ · ‖ and let E∗ be its dual. The
value of f ∈ E∗ at x ∈ E will be denoted by 〈x, f〉. When {xn} is a sequence
in E, then xn → x (resp., xn ⇀ x, xn

∗
⇀ x) will denote strong (resp., weak,

weak∗) convergence of the sequence {xn} to x.
The norm of E is said to be Gâteaux differentiable if

(2.1) lim
t→0

‖x + ty‖ − ‖x‖
t

exists for each x, y in its unit sphere U = {x ∈ E : ‖x‖ = 1}. Such an E
is called a smooth Banach space. The norm is said to be uniformly Gâteaux
differentiable if for y ∈ U , the limit is attained uniformly for x ∈ U . The space
E is said to have a uniformly Fréchet differentiable norm (and E is said to be
uniformly smooth) if the limit in (2.1) is attained uniformly for (x, y) ∈ U ×U .
It is well known that if E has a uniformly Gâteaux differentiable norm, J is
uniformly norm to weak∗ continuous on each bounded subsets of E ([7, 28]).

The (normalized) duality mapping J from E into the family of nonempty
(by Hahn-Banach theorem) weak∗ compact subsets of its dual E∗ is defined by

J(x) = {f ∈ E∗ : 〈x, f〉 = ‖x‖2 = ‖f‖2}
for each x ∈ E. It is single valued if and only if E is smooth.

A Banach space E is said to be strictly convex if ‖a1x1+a2x2+· · ·+akxk‖ < 1
for xi ∈ E (i = 1, 2, . . . , k) with ‖xi‖ = 1 (i = 1, 2, . . . , k) and xi 6= xj for some
i 6= j, and for ai ∈ (0, 1) (i = 1, 2, . . . , k) such that

∑k
i=1 ai = 1.

Let D be a subset of C. Then Q : C → D is called a retraction from C onto
D if Qx = x for all x ∈ D. A retraction Q : C → D is said to be sunny if
Q(Qx + t(x−Qx)) = Qx for all x ∈ C and t ≥ 0 whenever x + t(x−Qx) ∈ C.
A subset D of C is said to be a sunny nonexpansive retract of C if there exists
a sunny nonexpansive retraction of C onto D for more details, see [8]. In a
smooth Banach space E, it is known [8, p. 48]) that Q : C → D is a sunny
nonexpansive retraction if and only if the following condition holds:

(2.2) 〈x−Qx, J(z −Qx)〉 ≤ 0, x ∈ C, z ∈ D.

We need the following lemmas for the proof of our main results. Lemma 2.1
was also given in [11]. Lemma 2.2 is Lemma 2 of [27] and Lemma 2.3 is
essentially Lemma 2 of [17].
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Lemma 2.1. Let X be a real Banach space and J be the duality mapping.
Then, for any given x, y ∈ X, one has

‖x + y‖2 ≤ ‖x‖2 + 2〈y, j(x + y)〉
for all j(x + y) ∈ J(x + y).

Lemma 2.2. Let {xn} and {wn} be bounded sequences in a Banach space E
and let {γn} be a sequence in [0, 1] which satisfies the following condition:

0 < lim inf
n→∞

γn ≤ lim sup
n→∞

γn < 1.

Suppose that xn+1 = γnxn + (1− γn)wn, n ≥ 0, and

lim sup
n→∞

(‖wn+1 − wn‖ − ‖xn+1 − xn‖) ≤ 0.

Then limn→∞ ‖wn − xn‖ = 0.

Lemma 2.3. Let {sn} be a sequence of non-negative real numbers satisfying

sn+1 ≤ (1− λn)sn + λnδn + γn, n ≥ 0,

where {λn}, {δn} and {γn} satisfy the following conditions:
(i) {λn} ⊂ [0, 1] and

∑∞
n=0 λn = ∞;

(ii) lim supn→∞ δn ≤ 0 or
∑∞

n=1 λnδn < ∞;
(iii) γn ≥ 0 (n ≥ 0),

∑∞
n=0 γn < ∞.

Then limn→∞ sn = 0.

By using the same method as Lemma 3.1 in [32], we can prove the following
lemma. So we omit its proof.

Lemma 2.4. Let E be a strictly convex Banach space. Let C be a nonempty
closed convex subset of E and Ai ⊂ E ×E (i = 1, . . . , k) accretive operators in
E such that

⋂k
i=1 N(Ai) 6= ∅ and D(Ai) ⊂ C ⊂ ⋂

r>0 R(I + rAi). Let Sk :=
a0I + a1J

A1
r1

+ · · ·+ akJAk
rk

with JAi
ri

:= (I + riAi)−1 for ri > 0 (i = 1, . . . , k),
0 < ai < 1 (i = 0, 1, . . . , k) and

∑k
i=0 ai = 1. Then Sk is nonexpansive and

F (Sk) =
⋂k

i=1 N(Ai).

3. Main results

Now, we study the strong convergence results for the iterative scheme (IS)
in Banach spaces.

We need the following result for the existence of a solution of the variational
inequality

〈(I − f)(q), J(q − p)〉 ≤ 0, f ∈ ΣC , p ∈ F (T ),
which Jung and Sahu [12] established recently.

Theorem JS. ([12, Theorem 2]) Let E be a reflexive and strictly convex Ba-
nach space having a uniformly Gâteaux differentiable norm, C a nonempty
closed convex subset of E, A : C → C a continuous strongly pseudocontractive
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mapping with constant k ∈ [0, 1) and T : C → E a continuous pseudocontrac-
tive mapping satisfying the weakly inward condition. If T has a fixed point in
C, then the path {xt} defined by

xt = tAxt + (1− t)Txt, t ∈ (0, 1)

converges strongly to a fixed point q of T , which is the unique solution of a
variational inequality:

〈(I −A)q, J(q − p)〉 ≤ 0 for all p ∈ F (T ).

Remark 3.1. (1) Theorem JS generalizes Theorem 3.1 of Song and Chen [26] to
a more general class of mappings. In fact, in Theorem 3.1 of [26], T : C → C
is a nonexpansive self-mapping and A = f is a contraction.

(2) In Theorem JS, if A(x) = u, x ∈ C, is a constant and Qu = q =
limt→0 xt, then it follows from (2.2) that Q is reduced to the sunny nonexpan-
sive retraction from C onto F (T ),

〈Qu− u, J(Qu− p)〉 ≤ 0, u ∈ C, p ∈ F (T ).

Using Theorem JS, we establish the following main result.

Theorem 3.1. Let E be a reflexive and strictly convex Banach space having
a uniformly Gâteaux differentiable norm. Let C be a nonempty closed convex
subset of E and Ai ⊂ E × E (i = 1, . . . , k) accretive operators in E such that⋂k

i=1 N(Ai) 6= ∅ and D(Ai) ⊂ C ⊂ ⋂
r>0 R(I + rAi). Let {αn} and {βn} be

sequences in (0, 1) which satisfy the conditions:

(C1) limn→∞ αn = 0;
(C2)

∑∞
n=0 αn = ∞;

(C3) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1.

Let f ∈ ΣC and x0 ∈ C be chosen arbitrarily. Let {xn} be a sequence generated
by

(IS)





x0 = x ∈ C,

yn = βnxn + (1− βn)Skxn,

xn+1 = αnf(xn) + (1− αn)yn,

where Sk := a0I + a1J
A1
r1

+ · · · + akJAk
rk

with JAi
ri

:= (I + riAi)−1 for ri > 0
(i = 1, . . . , k), 0 < ai < 1 (i = 0, 1, . . . , k) and

∑k
i=0 ai = 1. Then {xn}

converges strongly to q ∈ F (Sk) =
⋂k

i=1 N(Ai), where q is the unique solution
of the variational inequality

〈(I − f)(q), J(q − p)〉 ≤ 0, f ∈ ΣC , p ∈ F (Sk).
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Proof. First, we note that by Theorem JS and Lemma 2.4, there exists the
unique solution q ∈ F (Sk) =

⋂k
i=1 N(Ai) of the variational inequality

〈(I − f)(q), J(q − p)〉 ≤ 0, f ∈ ΣC , p ∈ F (Sk),

where q = limt→0 zt and zt is defined by zt = tf(zt)+ (1− t)Skzt for 0 < t < 1.
We proceed with the following steps:

Step 1. We show that ‖xn − p‖ ≤ max{‖x0 − p‖, 1
1−k‖f(p) − p‖} for all

n ≥ 0 and all p ∈ F and so {xn} is bounded. Indeed, let p ∈ F (Sk) and
d = max{‖x0 − p‖, 1

1−k‖f(p)− p‖}. Noting that

‖yn − p‖ ≤ βn‖xn − p‖+ (1− βn)‖Skxn − p‖ ≤ ‖xn − p‖,
we have

‖x1 − p‖ ≤ (1− α0)‖y0 − p‖+ α0‖f(x0)− p‖
≤ (1− α0)‖x0 − p‖+ α0(‖f(x0)− f(p)‖+ ‖f(p)− p‖)
≤ (1− (1− k)α0)‖x0 − p‖+ α0‖f(p)− p‖
≤ (1− (1− k)α0)d + α0(1− k)d = d.

Using an induction, we obtain ‖xn+1− p‖ ≤ d. Hence {xn} is bounded, and so
are {yn}, {Skxn} and {f(xn)}.

Step 2. We show that limn→∞ ‖xn+1 − xn‖. To this end, set γn = (1 −
αn)βn, n ≥ 0. Then it follow from (C1)and (C3) that

(3.1) 0 < lim inf
n→∞

γn ≤ lim sup
n→∞

γn < 1.

Define

(3.2) xn+1 = γnxn + (1− γn)wn.

Observe that

wn+1 − wn =
xn+2 − γn+1xn+1

1− γn+1
− xn+1 − γnxn

1− γn

=
αn+1f(xn+1) + (1− αn+1)yn+1 − γn+1xn+1

1− γn+1
(3.3)

− αnf(xn) + (1− αn)yn − γnxn

1− γn

=
(

αn+1f(xn+1)
1− γn+1

− αnf(xn)
1− γn

)

− (1− αn)[βnxn + (1− βn)Skxn]− γnxn

1− γn

+
(1− αn+1)[βn+1xn+1 + (1− βn+1)Skxn+1]− γn+1xn+1

1− γn+1

=
(

αn+1f(xn+1)
1− γn+1

− αnf(xn)
1− γn

)
+

(1− αn+1)(1− βn+1)Skxn+1

1− γn+1
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− (1− αn)(1− βn)Skxn

1− γn

=
(

αn+1f(xn+1)
1− γn+1

− αnf(xn)
1− γn

)
+ (Skxn+1 − Skxn)

− αn+1

1− γn+1
Skxn+1 +

αn

1− γn
Skxn.

It follows from (3.3) that

(3.4)
‖wn+1 − wn‖ − ‖xn+1 − xn‖

≤ αn+1

1− γn+1
(‖f(xn+1)‖+ ‖Skxn+1‖) +

αn

1− γn
(‖f(xn)‖+ ‖Skxn‖).

Since {f(xn)} and {Skxn} are bounded, by (C1), (3.1) and (3.4) we obtain
that

lim sup
n→∞

(‖wn+1 − wn‖ − ‖xn+1 − xn‖) ≤ 0.

Hence by Lemma 2.2, we have

(3.5) lim
n→∞

‖wn − xn‖ = 0.

It then follows from (3.1) and (3.2) that

lim
n→∞

‖xn+1 − xn‖ = 0.

Step 3. We show that limn→∞ ‖xn − Skxn‖ = 0. Indeed, as a consequence
with the control condition (C1), by Step 1, we get

(3.6) ‖xn+1 − yn‖ ≤ αn(‖f(xn)‖+ ‖yn‖) → 0 (n →∞).

Combining Step 2 and (3.6), we get

(3.7) lim
n→∞

‖xn − yn‖ = 0.

Observe that

(3.8) yn − xn = (1− βn)(Skxn − xn).

It follows from (C3), (3.7) and (3.8)

lim
n→∞

‖xn − Skxn‖ = 0.

Step 4. We show that lim supn→∞〈(I − f)(q), J(q − xn)〉 ≤ 0. To prove
this, let a subsequence {xnj} of {xn} be such that

lim sup
n→∞

〈(I − f)(q), J(q − xn)〉 = lim
j→∞

〈(I − f)(q), J(q − xnj )〉

and
xnj ⇀ p for some p ∈ E.

Now let zt be defined by zt = tf(zt) + (1− t)Skzt for 0 < t < 1. Then

zt − xn = (1− t)(Skzt − xn) + t(f(zt)− xn).
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Applying Lemma 2.1, we have

‖zt − xn‖2 ≤ (1− t)2‖Skzt − xn‖2 + 2t〈f(zt)− xn, J(zt − xn)〉.
Putting

aj(t) = (1− t)2‖Skxnj
− xnj

‖(2‖zt − xnj
‖+ ‖Skxnj

− xnj
‖) → 0 (j →∞)

by Step 3 and using Lemma 2.1, we obtain

‖zt − xnj
‖2 ≤ (1− t)2‖Skzt − xnj

‖2 + 2t〈f(zt)− xnj
, J(zt − xnj

)〉
≤ (1− t)2(‖Skzt − Skxnj‖+ ‖Skxnj − xnj‖)2

+ 2t〈f(zt)− zt, J(zt − xnj )〉+ 2t‖zt − xnj‖2
≤ (1− t)2‖zt − xnj

‖2 + aj(t)

+ 2t〈f(zt)− zt, J(zt − xnj )〉+ 2t‖zt − xnj‖2.
The last inequality implies

〈zt − f(zt), J(zt − xnj )〉 ≤
t

2
‖zt − xnj‖2 +

1
2t

aj(t).

It follows that

(3.9) lim
j→∞

〈zt − f(zt), J(zt − xnj )〉 ≤
t

2
M,

where M > 0 is a constant such that M ≥ ‖zt − xn‖2 for all n ≥ 0 and
t ∈ (0, 1). Taking the lim sup as t → 0 in (3.9) and noticing the fact that the
two limits are interchangeable due to the fact that the duality mapping J is
norm to weak∗ uniformly continuous on bounded subset of E, we have

lim sup
j→∞

〈(I − f)(q), J(q − xnj )〉 ≤ 0.

Indeed, letting t → 0, from (3.9) we have

lim sup
t→0

lim sup
j→∞

〈zt − f(zt), J(zt − xnj )〉 ≤ 0.

So, for any ε > 0, there exists a positive number δ1 such that for any t ∈ (0, δ1),

lim sup
j→∞

〈zt − f(zt), J(zt − xnj )〉 ≤
ε

2
.

Moreover, since zt → q as t → 0, the set {zt− xnj} is bounded and the duality
mapping J is norm to weak∗ uniformly continuous on bounded subset of E,
there exists δ2 > 0 such that, for any t ∈ (0, δ2),

|〈q − f(q), J(q − xnj )〉 − 〈zt − f(zt), J(zt − xnj )〉|
= |〈q − f(q), J(q − xnj )− J(zt − xnj )〉+〈q − f(q)− (zt − f(zt)), J(zt − xnj )〉|
≤ |〈q − f(q), J(zt − xnj )− J(q − xnj )〉|+‖q − f(q)− (zt − f(zt))‖‖zt − xnj‖
<

ε

2
.
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Choose δ = min{δ1, δ2}, we have for all t ∈ (0, δ) and j ∈ N,

〈q − f(q), J(q − xnj
)〉 < 〈zt − f(zt), J(zt − xnj

)〉+
ε

2
,

which implies that

lim sup
j→∞

〈q − f(q), J(q − xnj
)〉 ≤ lim sup

j→∞
〈zt − f(zt), J(zt − xnj

)〉+
ε

2
.

Since lim supj→∞〈zt − f(zt), J(zt − xnj
)〉 ≤ ε

2 , we have

lim sup
j→∞

〈q − f(q), J(q − xnj
)〉 ≤ ε.

Since ε is arbitrary, we obtain that

lim sup
j→∞

〈(I − f)(q), J(q − xnj
)〉 ≤ 0.

Step 5. We show that limn→∞ ‖xn − q‖ = 0. By using (IS), we have

xn+1 − q = αn(f(xn)− q) + (1− αn)(yn − q).

Applying Lemma 2.1, we obtain

‖xn+1 − q‖2 ≤ (1− αn)2‖yn − q‖2 + 2αn〈f(xn)− q, J(xn+1 − q)〉
≤ (1− αn)2‖xn − q‖2 + 2αn〈f(xn)− f(q), J(xn+1 − q)〉

+ 2αn〈f(q)− q, J(xn+1 − q)〉
≤ (1− αn)2‖xn − q‖2 + 2kαn‖xn − q‖‖xn+1 − q‖

+ 2αn〈f(q)− q, J(xn+1 − q)〉
≤ (1− αn)2‖xn − q‖2 + kαn(‖xn − q‖2 + ‖xn+1 − q‖2)

+ 2αn〈f(q)− q, J(xn+1 − q)〉.
It then follows that

(3.10)

‖xn+1 − q‖2 ≤ 1− (2− k)αn + α2
n

1− kαn
‖xn − q‖2

+
2αn

1− kαn
〈f(q)− q, J(xn+1 − q)〉

≤ 1− (2− k)αn

1− kαn
‖xn − q‖2 +

α2
n

1− kαn
M

+
2αn

1− kαn
〈(I − f)(q), J(q − xn+1)〉,

where M = supn≥0 ‖xn − q‖2. Put

λn =
2(1− k)αn

1− kαn
and

δn =
Mαn

2(1− k)
+

1
1− k

〈(I − f)(q), J(q − xn+1)〉.
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From (C1), (C2) and Step 4, it follows that λn → 0,
∑∞

n=0 λn = ∞ and
lim supn→∞ δn ≤ 0. Since (3.10) reduces to

‖xn+1 − q‖2 ≤ (1− λn)‖xn − q‖2 + λnδn,

from Lemma 2.3, we conclude that limn→∞ ‖xn − q‖ = 0. ¤

Corollary 3.1. Let E be a uniformly convex and uniformly smooth Banach
space. Let Ai (i = 1, . . . , k) be m-accretive operators in E such that C = D(Ai)
is convex and

⋂k
i=1 N(Ai) 6= ∅. Let JAi

ri
(i = 1, . . . , k), Sk, {αn}, {βn}, f , x0

and {xn} be as in Theorem 3.1. Then the conclusion of Theorem 3.1 still holds.

Remark 3.2. (1) Theorem 3.1 supplements Theorem 3.3 of Zegeye and Shahzad
[32] in several aspects. In particular, Theorem 3.1 develops Theorem 3.3 of
Zegeye and Shahzad [32] to the viscosity method and removes the assumption
imposed in Theorem 3.3 of Zegeye and Shahzad [32] that every nonempty closed
bounded convex subset of E has the fixed point property for nonexpansive
mappings. Moreover, by using the iterative scheme (IS), Theorem 3.1 removes
the condition

∑∞
n=0 |αn+1−αn| < ∞ or limn→∞

|αn+1−αn|
αn+1

imposed on sequence
{αn} in Theorem 3.3 of Zegeye and Shahzad [32].

(2) Using the iterative scheme (IS), Theorem 3.1 also develops Theorem 6.3
of Wong et al. [29] without the condition limn→∞

|αn+1−αn|
αn+1

.
(3) In general, the conditions (C3) in Theorem 3.1 and the condition

∞∑
n=0

|βn+1 − βn| < ∞

are not comparable; neither of them implies other.
As a direct consequence of Theorem 3.1, we obtain strong convergence to a

common fixed point of a family of pseudocontractive mappings.

Theorem 3.2. Let E be a reflexive and strictly convex Banach space having
a uniformly Gâteaux differentiable norm. Let C be a nonempty closed convex
subset of E and Ti : C → E (i = 1, . . . , k) pseudocontractive mappings such that
(I − Ti) is m-accretive on C with

⋂k
i=1 F (Ti) 6= ∅. Let JTi := (I + (I − Ti))−1

= (2I − Ti)−1 for i = 1, . . . , k. Let {αn} and {βn} be sequences in (0, 1) which
satisfy the conditions:

(C1) limn→∞ αn = 0;
(C2)

∑∞
n=0 αn = ∞;

(C3) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1.
Let f ∈ ΣC and x0 ∈ C be chosen arbitrarily. Let {xn} be a sequence generated
by 




x0 = x ∈ C,

yn = βnxn + (1− βn)Skxn,

xn+1 = αnf(xn) + (1− αn)yn, n ≥ 0
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where Sk := a0I + a1JT1 + · · · + akJTk
for 0 < ai < 1 (i = 0, 1, . . . , k) and∑k

i=0 ai = 1. Then {xn} converges strongly to q ∈ F (Sk) =
⋂k

i=1 F (Ti), where
q is the unique solution of the variational inequality

〈(I − f)(q), J(q − p)〉 ≤ 0, f ∈ ΣC , p ∈ F (Sk).

Proof. Let Ai := (I − Ti) for each i = 1, . . . , k. Then clearly, F (Ti) = N(Ai)
and hence

⋂k
i=1 N(Ai) =

⋂k
i=1 F (Ti) 6= ∅. Moreover, each Ai for i = 1, . . . , k

is m-accretive. Thus the results follows from Theorem 3.2. ¤

Remark 3.3. (1) Theorem 3.2 complements Theorem 3.9 of Zegeye and Shahzad
[32] to the viscosity method together with certain different control conditions
in more general Banach space.

(2) Theorem 3.2 also develops the corresponding results of [9, 16, 18, 19,
25] for finite nonexpansive mappings to the case of finite pseudocontractive
mappings.

(3) We point out that our results are applicable to, in particular, in all Lp

spaces, 1 < p < ∞.

Acknowledgement. The author would like to thank the anonymous referee
for his valuable comments and careful reading of the paper.
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