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STRONG CONVERGENCE THEOREMS BY VISCOSITY
APPROXIMATION METHODS FOR ACCRETIVE MAPPINGS
AND NONEXPANSIVE MAPPINGS
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ABSTRACT. In this paper we present an iterative scheme for finding a com-
mon element of the set of zero points of accretive mappings and the set of
fixed points of nonexpansive mappings in Banach spaces. By using viscos-
ity approximation methods and under suitable conditions, some strong con-
vergence theorems for approximating to this common elements are proved.
The results presented in the paper improve and extend the corresponding
results of Kim and Xu [Nonlinear Anal. TMA 61 (2005), 51-60], Xu [J.
Math. Anal. Appl., 814 (2006), 631-643] and some others.
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1. Introduction and preliminaries

Throughout this paper, we always assume that F is a real Banach space, C is
a nonempty closed convex subset of E and S : C — C is a mapping. We denote
by F(S) = {z € C : Sz = z} the set of fixed points of mapping S. In the sequel,
we use — to stands for the strong convergence and — to stands for the weak
convergence.

Recall that S : C — C is nonexpansive, if
ISz — Syl| < |lz—yll, Vz,yeC.

Recall that a (possibly multivalued) mapping 4 with domain D(A) and range
R(A) in E is said to be accretive, if for any z; € D(A) and y; € Az; (i =1,2),
there exists a j(z2 — z1) € J(z2 — z1) such that

(y2 — y1, j(x2 — 1)) >0,
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where J : E — 2F7 is the normalized duality mapping defined by

J(z) = {z* € 2% : (z,2%) = ||a||* = ||s*|’}, z € E.

A mapping A : E — E is said to be m—accretive, if R(I +rA) = E, Vr>0.
Throughout this paper we always assume that A : E — FE is m—accretive and
has a zero point (i.e., the inclusion 0 € A(z) is solvable). The set of zero points
of A is denoted by

A7H0) = {z € D(A) : 0 € A(2)}.
For each r > 0, denote by J, the resolvent of A, i.e.,
Jp= (I +rA)~. (1.1)

It is well-known that if A is & m—accretive, then J, : F — E is nonexpansive
and

F(J,) = A"Y0), Vr>0. (1.2)

For each r > 0 we also denote by A, the Yosida approzimation of A, ie.,
A= %(I - Jp)

Recently, Domingucz et al [4], Kim and Xu [7] and Xu [9] introduced and
studied the following iterative sequence {x,} :

Totr = Qptt+ (1 —ap)dr,Zpn, n=>0 (1.3)

and proved some strong convergence theorems for the sequence (1.3) in the
framework of uniformly smooth Banach spaces and reflexive Banach space with
a weak continuous duality mapping, respectively, where u € C is a given point.

Inspired and motivated by the works given in [4, 5, 7, 8, 9], the purpose of
this paper is to introduce the following composite iteration schemes:

Tnt1 = onf(zn) + (1~ an)yn, .
{ Un = Buon + (1= Bn)STr(zn) "2 (1.4)

for finding a common element of the set of zero points of accretive mapping A
and the set of fixed points of nonexpansive mapping S in Banach spaces, where
{an} is a sequence in (0, 1), {8,} is a sequence in [0, 1], f is a contractive
mapping, r is any given positive number, z¢ is a given point in ¥ and J, =
(I+rA)~" is the resolvent of A. By using viscosity approximation methods and
under suitable conditions, some strong convergence theorems to this common
elements are proved. The results presented in the paper improve and extend the
corresponding results of Domingucz et al [4], Kim and Xu [7], Xu [9] and [5, 8].

In order to prove our main results we need the following definitions and con-
clusions: ‘
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Definition 1.1 (Barbu [1]). The norm || - || of E is said to be Gateauz differ-
entiable (and E is said to be smooth), if the limit

e+t~
t—0 t

exists for each z,y in the unit sphere U = {z € E : ||z|| = 1}.

(1.5)

It is said to be uniformly Fréchet differentiable (and E is said to be uniformly
smooth, if the limit in (1.5) is attached uniformly for z,y € U.

Definition 1.2. Following Browder [2], we say that a Banach space E has
a weakly continuous normalized duality mapping J : E — E*, if J is single-
valued and weak-to-weak* sequentially continuous (i.e., if {z} is a sequence in

E weakly convergent to a point z, then the sequence {J(z,)} converges weak*ly
to J(z)).

Lemma 1.1. A Banach space E is uniformly smooth if and only if the normal-
ized duality mapping J is single-valued and norm-to-norm uniformly continuous
on any bounded subset of E.

Lemma 1.2 [10]. Let {a,} be a nonnegative real sequence such that:

ant1 < (1= Xp)an +6n, YN > ng,

where ng s some nonnegative integer, {\n} is a sequence in (0, 1) with o — 0
and Yo"y an =00 and {6,} is a sequence in R such that

: 6 o
hrgzlp)\—z <0 OTT;]&”] < o0,

then lim, o an, = 0.

Lemma 1.3 [3]. Let E be a real Banach space, J : E — 2E" be the normalized
duality mapping, then for any z,y € E, the following conclusion holds:

Nz +yl? < ||zl + 2{y, jz+v)), Vilz+y) € J(z+y)

Recall that if E is a real Banach space, C is a nonempty closed convez subset
of E, T : C — C is a nonexpansive mapping with F(T) # 0 and f: C — C isa
contractive mapping. For any given t € (0,1), let z; be the unique fized point of
the contraction z — tf(z) + (1 —t)Tz on C, i.e.,

Zt = tf(2t> + (]. — t)TZt. (16)

Concerning the convergence of sequence {z:}, Xu [11] proved the following
result.

Lemma 1.4 (Xu [11]). Let E be a uniformly smooth Banach space, C be a
nonempty closed conver subset of E, T : C — C be a nonezrpansive mapping
with F(T) # 0 and f € Ilg (where ¢ is the collection of all contractions on
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C). Then the sequence {2} defined by {1.6) converges strongly to a point in
F(T). If we define Q : llo — F(T) by

QU =limz, feT, 17
then Q(f) solves the variational inequality
(- DR, Jp—-Q(N) =0, felle, pe F(T). (1.8)

In particular, if f = u € C is a constant, then the mapping Q defined by (1.7)
is reduced to the sunny nonezpansive retraction of Reich from C onto F(T'):

(Qu) —u, J(p—Q(u))) >0, ueC, pe F(T). (1.9)

Lemma 1.5 (Xu [10]). Let E be a reflexive Banach space with a weakly contin-
wous normalized duality mopping J : E — E*, C be o nonempty closed convex
subset of E and T : C — C be a nonexpansive mapping. Fizu € C andt € (0,1).
Let x; € C be the unique solution in C to the equation:

Tz =1tu+ (1 - t)T:Bt. (110)

Then T has a fized point if only if x4 remains bounded as t — 0+, and in the
case, {z1} converges as t — 0+ strongly to z € F(T). If we define a mapping
Q:C— F(T) by ,

Qu) := tE»%I—E— e =2, u€C, (1.11)

then @ is the sunny nonerpansive retraction from C onto F(T), i.e., Q(u) sat-

isfies (1.9).
2. Main results

Theorem 2.1. Let E be a real uniformly smooth Banach space, v > 0 be
any given number, A : E — E be an m—accretive mapping, S : £ — E be a
nonexpansive mapping such that F(S)F(J,) = F(SoJ;)# 9. Let f: E— E
be a contractive mapping with a contractive constant o € (0,1). Let r > 0 be
any given positive number, {an} C (0,1) and {B,} C [0,1] be two sequences
satisfying the following conditions:

(i) an—0; Y00, =o00;

(ii) Bn €]0,a), for some a € {0,1).

(iii) Zf.-.o lan+1 - ant < 00 Z:;,o iﬂn-ﬁ—l - ,Bnl < 0.
Then the sequence {zn} defined by (1.4) converges strongly to some common
element z € F(S) N A=(0) which is a solution of the following variational in-
equality
| (f =Dz J(z—y)) 20, ¥y € F(S)[)A7(0).
Proof. We divide the proof of Theorem 2.1 into five steps:

(I) First prove that the sequences {z,} and {yn} defined by (1.4) are bounded
and

Zn+1 — ¥all = anllf(@n) = yall = 0 (asn — o0). (2.1)
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In fact, for any given p € F(S)( A~1(0), from (1.2) we know that

p=S(p) = SH(p), Vk >0. (2.2)
From (1.4)
Hyn —plI < ﬂonn _pH +(1- ﬁn)”s‘]rxn - p{i
< Ballzn = pl| 4+ (1 = B)||STrzn — SJrp|| (2.3)
S Hl'n —p{i'

By using (1.4) again we have

[|zn+1 = 2l < anl|f(zn) = pll + (1 = an)llyn — pl|
< anl[f(zn) = F@)|| + anllf(p) — pl| + (1 — an)llzn — pl|
< apaljzn = pll + anllf(p) — || + (1 — an)llzn — p|

an(1 — a)||f(p) — pl|
11—«

il

(1 —an(l—a))llzn —pl| +
1f(p) — pl|
1~ }

max{||z, — pl|,

IA A

D=l s

IA

max{||zo — p

This implies that {z,} is a bounded sequence in E, and so {yn}, {f(z,)} and
{SJrz,} all are bounded sequences in E. By the assumption that {o,} — 0,
this implies that the conclusion (2.1) is true.

Now we denote

M= ig%{iirnll + IS Trmn|| +[1f (@n)l] + [lgn][} < 00 (2.4)

(II) Next prove that
Hyn — Yn-1ll = 0 and ||Tpt1 — zn|| — 0 (asn — oo). (2.5)
In fact, it follows from (1.4) and (2.2) that
Un = Yn—1 = (L= Bn)(SrTn = SJrTn—1) + Pn(Tn — Tn-1)
+ (@n-1 = 8T Zn-1)(Bn — Bn-1)-

This implies that

Hyn = yn-1ll < (1 = Bu)ISTrn — STrxn1l|+ BallZn — Tn-1ll
+18n — Bn-1ll|zn-1 — SJrzn-1]|
< (1= Ba)llzn — Tn-all + Ballzn — Tn-1l| (2.6)
+1Bn — Bn1|M
< Mzn = Zn-1ll + [Ba ~ Bp—1|M.
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On the other hand, from (1.4) we have
1Znt1 = znll = lanf(@n) — anf(@n-1) + anf(Zn-1)
— an-1f(@n-1) + (1 — an)yn = (1 — on)yn-1
+ (1 - an)yn—-l - (1 - an-—-l)?/n-—l”
< ant|[Zn = Tn-1]] + |on — an—1]|[f(@n-1l]
+ (1 = an)llyn — yn-1ll + lon — an-1lllgn-1ll
< an@|[zn = Tp-1]| + 2M|an — an-1| + (1 = on)llyn — yn_12[{7
Substituting (2.6) into (2.7) and simplifying we have &0
Znt1 = Zn|l < (1 - an(l — a))|jen = Tn-1]
+{2lan — an_1| +18s = Ba-1|}M
By virtue of Lemma 1.2, we know that [|zn4+1 — Zn|| = 0 (as n — oco). Hence

it follows from (2.6) that ||yn — yn-1]] — 0 (as n — o).
(III) Nezxt we prove that

|SJrzn — zp|| = 0 (as n — o0). (2.9)

(2.8)

In fact, it follows from (1.4) that
18Irzn — @al| < fl&n ~ Tntall + {|2nt1 = Ynll + [lgn — STrzall
< Hwn - xn+1” + H-Tn+1 - ynH + 5nnwn - SernHy
ie.,
(1 = Bu)ISTrzn — Zn|| < |l2n — Tnaa|l + [lEns1 — ynll.
Since gy, € [0,a), a € (0,1), from (2.1) and (2.5) we have

[|STp&pn — zpl] — 0 (as n — 00).

Since E is a uniformly smooth real Banach space, SJ, : E — E is a non-
expansive mapping with F(SJ,) = F(S)NF(J,) = F(S)(NA™*(0) # 0 and
f: E — E is a contraction, by Lemma 1.4, the sequence {2} defined by

2y = Zp = tf(zt) + (1 - t)SJth. (210)

converges strongly to a point z € F(So J;) = F(S)(\F(J.). If we define
Q:Ilg — F(Sc F(S)) by

Q(f) = %{%zta f € HE
then Q(f) = z solves the variational inequality:
(= Dz Jy—2) 20, Vye FS)[AT0).
(IV} Next we prove that
limsup(z — f(2), J(z —z,)) < 0. (2.11)

kL oadv o
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Indeed, it follows from (2.10) and Lemma 1.3 that for any n > 0 and ¢ > 0,

122 = al P = 11— (ST — 22) + HF(z) — )]

< (L= 18Tz — zal|* + 26(f(2(t) — T, J (20 — 2n))

< (1= 0)2{)|1STp2 — STrzp|| + |[STrzn — zn|[}?
+2t(f(2(¢)) — 2 + 2 — Tn, J(2t — Tn))

< (1= )*{|lz — zall + [|STrzn — zal}?
+2t(F(2(t) — 200 J (2 — Tn)) + 21| 2 — 2l

< (1= {||2 — zal[* + 2l|2% — 2al[[|S Ty — Tl + [|STr2n — z0|[*}
+ 2 f(2(t) — 2, J(2 — T0)) + 28|20 — 2]

= (1= )*{llz — zal” + 0u(t)}
+ 26 f(2(1) — 21, I (2 — z0)) + 28|z — @l %,

Simplifying it we have

t 1
(20— S0, Iz — ) < llze = 2l + ot
. 1 (2.12)
<M+ o
< 5V + 27 (t)
where M1 = sup;q n>0 |12t — zn||* and
on(t) = 2llz — all - [|1STrTn — Tnl| + [[STrzr — zal[® (2.13)
< 2M||STrxn — || + | STrzn — xn|l2, Yn >0 andt > 0. '
Therefore by (2.9) we know that
lim o,(t) =0 uniformlyint € (0,1).
Letting n — oo and taking the lim sup in (2.12), we have
t
limsup(zt — f(Zt), J(Zt - .’L'n)> < ‘2‘M, Vt € (0, 1) (214)
n—oo

Taking the limsup as ¢ — 0 in (2.14) and noting the fact that the two limits
are interchangeable due to the fact the normalized duality mapping J is norm-
to-norm uniformly continuous on bounded subsets of E, the conclusion (2.11) is
obtained.

(V) Finally we prove that {x,} converges strongly to z.
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Indeed, it follows from Lemma 1.3 and (2.3) that

llzn41 = 21 = [[(1 = an)(yn — 2) + an(F(2n) - 2)II?

<(1- an)2||yn - sz + 2an(f(zn) — 2, J(Zn41 — 2))

< (1= an)?|jzg — 2|7
+ 2an(f(@n) — f(2) + f(2) — 2, J(@n41 — 2))

< (1= an)?llzn — 2[* + 20n{al[zn ~ 2| - [|Ens1 — 2|
+ 200 (f(2) — 2, J(Tp41 — 2))

< (1= an)?llzn — 2 + anc{llen — 2|° + ||Znt1 — 2”2}
+ 20, (f(2) sz J(@nt1 — 2})

Simplifying it we have

e (- allen A HalM

+ 20 (2 = f(2), J(z = Znra))}-

‘Since o, — 0, there exists a positive integer ng such that

llznss = 2% <

1
1—-oaa, > 3 Vn > ny. (2.16)

Again since
1— —a))=1-220
[ “aa, 1 @) =1- ==~ (2.17)
< (1 - 2a,(1 - a)), Yn >ng.

Using (2.16) and (2.17), (2.15) can be written as follows:
zns1 = 2l* < (1= 2a0(1 — @))||25 — 2[|* + 205M
+4dan(z — f(2), J(z— znt1)), VR >ng.

Teking a, = ||zn — 2||?, A = 4o (1 — @), 0p = 202 M + 4oz — f(2), J(z -
Zp+1)), by Lemma 1.2 we know that the sequence z,, — 2z as n — oo. This
completes the proof. 0

(2.18)

If E is a reflexive Banach space, then we have the following result.

Theorem 2.2. Let E be a real reflexive Banach space with a weakly continuous
normalized duality mapping J : E — E*. Let A: E — E be an m—accretive
mapping such that A=1(0) # 0 and D(A) is conver. Letr > 0 be a given positive
number, {a,} C (0,1) and {Br} C [0, 1] be two sequences satisfying the following
conditions:
Q) an—0; Yoo, =00;
(il Pn€(0,a), for some a € (0,1).
(iii) Z;.;o lotn 41 — anl| < 00 Ez,o:o |Brs1 — Bn] < co.
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Then for any given point u and zo € E, the sequence {x,} defined by
Tnt+1 = aptt + (1 — ap)yn,
#1 =t o n>0; (2.19)
Yn = ﬁnxn + (1 - Bn)Jr(xn)

converges strongly to some common element z € A71(0) which is a solution of
the following variational inequality

((w—2z, J(z—1y)) >0, Vy e A7(0).

Proof. We only include the differences. By the same methods as given in the
proof of Theorem 2.1, we can prove that {z,} and {y,} both are bounded and

l|Zn4+1 — 2nl] = 0 and |||z — Jrzp]l — 0 (as n — o).
Next we prove that

limsup(u — Q(u), J(z, — Q(u))) <0, (2.20)

n—000

where  : E — F(T) is a sunny nonexpansive retraction defined by

Qu) := tE%l-f— 2=z, u€C,

and z; is the unique solution of the equation:
z=tu+ (1 —t)Jr2, t€(0,1)
Take a subsequence {zy,} of {z,} such that
limsup(u ~ Q(u), J(an ~ Q) = lim_(u—Qu), J(an, —Qw). (221)

lim
Ngp—00
Since E is reflexive we may assume that z,, — z* . Moreover, since ||z, —
Jrzy || — 0. this implies that J.z,, — z*. By the definition of the resolvent J,
of m—accretive mapping A,

1
This implies that
1
[Jrn, A(Jrzn,)] = [JrZn,, ;(I — Jr)(%ny )] € Graph(A). (2.22)

Taking the limit as ¥ — oo in (2.22), we know that [z*,0] € Graph(4A), i.e.,
z* € A71(0). By (2.21), Lemma 1.5 we have

limsup(u — Q(w), J(za — Q) = (u= Q), J(=" ~ QW) <0

The conclusion (2.22) is proved.
By the same way as given in the proof of Theorem 2.1 we can prove that
Tp — 2.

This completes the proof of Theorem 2.2. O
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