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A HYBRID ITERATIVE METHOD OF SOLUTION FOR
MIXED EQUILIBRIUM AND OPTIMIZATION PROBLEMS

Lijuan Zhang and Junmin Chen

Abstract. In this paper, we introduce a hybrid iterative method for

finding a common element of the set of solutions of a mixed equilibrium

problem, the set of common fixed points of finitely many nonexpansive
mappings and the set of solutions of the variational inequality for an

inverse strongly monotone mapping in a Hilbert space. We show that the
iterative sequences converge strongly to a common element of the three

sets. The results extended and improved the corresponding results of

L.-C.Ceng and J.-C.Yao.

1. Introduction

Let H be a Hilbert space and let C be a nonempty closed convex subset
of H and let PC be the metric projection of H onto C. Let ϕ : C → R be
a real-valued function and Θ : C × C → R be an equilibrium bifunction, i.e.,
Θ(u, u) = 0 for each u ∈ C. We consider the mixed equilibrium problem MEP
which is to find x∗ ∈ C such that

MEP : Θ(x∗, y) + ϕ(y)− ϕ(x∗) ≥ 0, ∀ y ∈ C.
In particular, if ϕ ≡ 0, this problem reduces to the equilibrium problem EP ,
which is to find x∗ ∈ C such that

EP : Θ(x∗, y) ≥ 0, ∀ y ∈ C.
Denote the set of solution of MEP by Ω, some methods have been proposed
to solve the MEP .

A mapping T : C → H is said to be nonexpansive if ‖Tx − Ty‖ ≤ ‖x −
y‖,∀x, y ∈ C. Denote the set of fixed points of T by F (T ). Recall that if C is a
nonempty bounded closed convex subset of H and T : C → C is nonexpansive,
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then F (T ) 6= ∅. Also, recall that a mapping f : H → H is contractive if there
exists a constant α ∈ [0, 1) such that ‖f(x)− f(y)‖ ≤ α‖x− y‖,∀x, y ∈ H.

A mapping A of C into H is called monotone if 〈Au − Av, u − v〉 ≥ 0, for
all u, v ∈ C. The variational inequality problem is to find u ∈ C such that
〈Au, v − u〉 ≥ 0 for all v ∈ C. The set of solutions of the variational inequality
is denoted by V I(C,A). A mapping A of C into H is called inverse-strongly
monotone if there exists a positive real number α such that

〈x− y,Ax−Ay〉 ≥ α‖Ax−Ay‖2

for all x, y ∈ C[1]. For such a case, A is called α-inverse-strongly monotone. If
A is α-inverse-strongly monotone mapping of C into H, then A is 1

α -Lipschitz
continuous.

Let λn1, λn2, ..., λnN ∈ (0, 1], n ∈ N. Given the mappings T1, T2, ..., TN
of C into itself, as in Ref [4] one can define, for each n ∈ N, mappings
Un1, Un2, ..., UnN by

Un1 = λn1T1 + (1− λn1)I,

Un2 = λn2T2Un1 + (1− λn2)I,
...

Un,N−1 = λn,N−1TN−1Un,N−2 + (1− λn,N−1)I,

Wn := Un,N = λn,NTNUn,N−1 + (1− λn,N )I.

(1)

Such a mapping Wn is called the W -mapping generated by T1, T2, ..., Tn and
λn1, λn2, ..., λnN .

For finding an element of F (S)∩V I(C,A), Iiduka and Takahishi [2] proposed
a new iterative scheme: x1 = x ∈ C and

xn+1 = αnx+ (1− αn)SPC(xn − λnAxn), n ≥ 1

and obtained a strong convergence theorem in a Hilbert space.
Very recently Ceng et al [4] introduced a hybrid iterative scheme:x0 ∈ C

andΘ(yn, x) + ϕ(x)− ϕ(yn) +
1
r
〈K ′(yn)−K ′(xn), η(x, yn)〉 ≥ 0,∀x ∈ C,

xn+1 = αnf(Wnxn) + βnxn + γnWnyn.
(2)

They prove the sequences generated by the hybrid iterative scheme converge
strongly to a common element of the set of solution of MEP and the set of
common fixed points of finitely many nonexpansive mappings.

Motivated and inspired by the above results, we introduce a new iterative
scheme given as follow: x0 ∈ C andΘ(un, x) + ϕ(x)− ϕ(un) +

1
rn
〈K ′(un)−K ′(xn), η(x, un)〉 ≥ 0,∀x ∈ C,

xn+1 = αnf(Wnxn) + βnxn + γnWnPC(un − λnAun),
(3)
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for finding a common element of the set of fixed points of finitely many non-
expansive mappings, the set of solutions of a variational inequality for an α-
inverse-strongly monotone mapping and the set of solutions of an equilibrium
problem in a real Hilbert space. Furthermore, we will prove the sequences {xn}
and {un} converge strongly to the unique solution of the variational inequality

〈(f − I)x∗, x− x∗〉 ≤ 0, x ∈ ∩Ni=1F (Ti) ∩ Ω ∩ V I(C,A).

2. Preliminaries

Let C be a nonempty closed convex subset of H. Then, for any x ∈ H, there
exists a unique nearest point u ∈ C such that

‖x− u‖ ≤ ‖x− y‖,∀y ∈ C.

The mapping PC : x → u is called the metric projection of H onto C. It is
known that PC is nonexpansive. Furthermore, for x ∈ H and u ∈ C,

u = PC(x)⇔ 〈x− u, u− y〉 ≥ 0,∀y ∈ C.

In this paper we assume that an equilibrium bifunction Θ : C × C → R
satisfies the following condition:

(H1) Θ is monotone, i.e.,Θ(x, y) + Θ(y, x) ≤ 0 for all x, y ∈ C:
(H2) for each fixed y ∈ C, x 7→ Θ(x, y) is concave and upper semicontinuous;
(H3) for each x ∈ C, y 7→ Θ(x, y) is convex.

Let F : C → H and η : C × C → H be two mappings. Then F is called;
(i) η-monotone if 〈F (x)− F (y), η(x, y)〉 ≥ 0, ∀x, y ∈ C;
(ii) η-strongly monotone if there exists a constant α > 0 such that

〈F (x)− F (y), η(x, y)〉 ≥ α‖x− y‖2, ∀x, y ∈ C;

(iii) Lipschitz continuous if there exists a constant β > 0 such that

‖F (x)− F (y)‖ ≤ β‖x− y‖, ∀x, y ∈ C.

When η(x, y) = x− y, ∀x, y ∈ C, then the definition (i) and (ii) reduce to the
definition of monotone and strong monotone, respectively.

A map η : C × C → H is called Lipschitz continuous, if there exists a
constant λ > 0 such that ‖η(x, y)‖ ≤ λ‖x− y‖, ∀x, y ∈ C.

A differentiable function K : C → R on a convex set C is called:
(i) η-convex if K(y) −K(x) ≥ 〈K ′(x), η(y, x)〉, ∀x, y ∈ C, where K ′(x) is

the Fréchet derivative of K at x;
(ii) η-strongly convex if there exists a constant µ > 0 such that

K(y)−K(x)− 〈K ′(x), η(y, x)〉 ≥ µ

2
‖x− y‖2, ∀x, y ∈ C.

A mapping F : C → R is called sequentially continuous at x0, if F (xn) →
F (x0) for each sequence xn satisfying xn → x0. A mapping F is called sequen-
tially continuous on C if it is sequentially continuous at each point of C.
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Let Sr : C → C be the mapping such that for each x ∈ C, Sr(x) is the
solution set of MEP(x, r), i.e.,

Sr(x) = {y ∈ C :Θ(y, z) + ϕ(z)− ϕ(y) +
1
r
〈K ′(y)−K ′(x), η(z, y)〉 ≥ 0,

∀z ∈ C, ∀x ∈ C}

A set-valued mapping T : H → 2H is called monotone if for all x, y ∈ H, f ∈
Tx and g ∈ Ty imply 〈x − y, f − g〉 ≥ 0. A monotone mapping T : H → 2H

is maximal if graph G(T ) of T is not properly contained in the graph of any
other monotone mapping. It is known that a monotone mapping T is maximal
if and only if for (x, f) ∈ H × H, 〈x − y, f − g〉 ≥ 0 for every (y, g) ∈ G(T )
implies f ∈ Tx. Let A is an inverse-strongly monotone mapping of C into H
and let NCv be normal cone to C at v ∈ C, i.e., NCv = {w ∈ H : 〈v − u,w〉 ≥
0,∀u ∈ C}, and define

Tv =
{
Av +NCv, v ∈ C,
∅, v /∈ C.

Then T is maximal monotone and 0 ∈ Tv if and only if v ∈ V I(C,A),[5].

Lemma 2.1. [4] Let C be a nonempty closed convex subset of a real Hilbert
space H, and ϕ : C → R be a lower semicontinuous and convex functional. Let
Θ : C × C → R be an equilibrium bifunction satisfying conditions (H1)-(H3).
Assume that
(i) η : C × C → H is a Lipschitz continuous with constant λ > 0 such that

(a) η(x, y) + η(y, x) = 0, ∀ x, y ∈ C,
(b) η(., .) is affine in the first variable,
(c) for each fixed y ∈ C, x 7→ η(y, x) is sequentially continuous from the weak

topology to the weak topology;
(ii) K : C → R is η-strongly convex with constant µ > 0 and its derivative K ′

is sequentially continuous from the weak topology to the strong topology;
(iii) for each x ∈ C, there exists a bounded subset Dx ⊆ C and zx ∈ C such
that for any y ∈ C\Dx,

Θ(y, zx) + ϕ(zx)− ϕ(y) +
1
r
〈K ′(y)−K ′(x), η(zx, y)〉 < 0.

Then the following results hold:
(i) Sr is single-valued;
(ii)(a)

〈K ′(x1)−K ′(x2), η(u1, u2) ≥ 〈K ′(u1)−K ′(u2), η(u1, u2)〉
∀ (x1, x2) ∈ C × C,

where ui = Srxi, i = 1, 2;
(b) Sr is a nonexpansive if K ′ is Lipschitz continuous with constant ν > 0

such that µ ≥ λν;
(iii) F (Sr) = Ω;
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(iv) Ω is closed and convex.

We remark that from Lemma 2.1 in particular, whenever K(x) = ‖x‖2
2 and

η(x, y) = x− y for each (x, y) ∈ C × C, Then Sr is firmly nonexpanxive, i.e.,

〈x1 − x2, Sr(x1)− Sr(x2)〉 ≥ ‖Sr(x1)− Sr(x2)‖2,∀(x1, x2) ∈ C × C.

Lemma 2.2. [7] Let C be a nonempty closed convex subset of a Banach space
X, Let T1, T2, ..., TN be a finite family of nonexpansive mappings of C into itself
such that ∩Ni=1F (Ti) is nonempty, and let λn1 , λn2 , ..., λnN

be real numbers such
that 0 < λni

≤ b < 1 for any i ∈ N. For any n ∈ N, let Wn the be W-mapping
of C into itself generated by λn1 , λn2 , ..., λnN

and T1, T2, ..., TN . Then Wn is
nonexpansive. Further if X is strictly convex, then F (Wn) = ∩Ni=1F (Ti).

Lemma 2.3. [4] If the sequences {xn} and {yn} generated iteratively by (1)
are bounded, then the following estimates hold:

‖Wn+1xn+1 −Wnxn‖ ≤ ‖xn+1 − xn‖+ 2MΣNi=1|λn+1,i − λn,i|, ∀n ≥ 0 (4)

and

‖Wn+1yn+1 −Wnyn‖ ≤ ‖yn+1 − yn‖+ 2MΣNi=1|λn+1,i − λn,i|, ∀n ≥ 0 (5)

for some constant M > 0.

Lemma 2.4. [6] Let {xn} and {yn} be bounded sequences in a Banach space
X and βn be a sequence in [0,1] with

0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1.

Suppose that xn+1 = (1− βn)yn + βnxnfor all n ≥ 0 and lim supn→∞(‖yn+1 −
yn‖ − ‖xn+1 − xn‖) ≤ 0. Then limn→∞ ‖yn − xn‖ = 0.

Lemma 2.5. [3] Let {sn} be a sequence of nonnegative real numbers such that

sn+1 ≤ (1− λn)sn + βn, n ≥ 0,

where {λn} is a sequence in (0, 1), and {βn} is a sequence in R such that
(i)
∑∞
n=1 λn =∞,

(ii) lim supn→∞
βn

λn
≤ 0 or

∑∞
n=1 |βn| <∞. Then limn→∞ sn = 0.

3. Main result

Theorem 3.1. Let H be a real Hilbert space, let C be a nonempty closed convex
subset of H, and ϕ : C → R be a lower semicontinuous and convex functional.
Let Θ : C×C → R be an equilibrium bifunction satisfying conditions (H1)-(H3)
and let {Ti}Ni=1 be a finite family of nonexpansive mappings of C into itself.
Let λn1 , λn2 , ..., λnN

be real numbers such that limn→∞(λn+1,i − λn,i) = 0 for
all i = 1, 2..., N . Let A is α-inverse-strongly monotone mapping of C into H
such that ∩Ni=1F (Ti) ∩ Ω ∩ V I(CA) 6= ∅. let f be a contraction of C into itself
with α ∈ [0, 1). Suppose that {αn}, {βn} and {γn} are three sequences in [0, 1)
with αn + βn + γn = 1,∀n. Assume that
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(1) Let η : C ×C → H is Lipschitz continuous with constant λ > 0 such that
(a) η(x, y) + η(y, x) = 0, ∀ x, y ∈ C,
(b)η(., .) is affine in the first variable,
(c) for each fixed y ∈ C, x 7→ η(y, x) is sequentially continuous from the weak

topology to the weak topology;
(2) K : C → R is η-strongly convex with constant µ > 0 and its derivative K ′ is
not only sequentially continuous from the weak topology to the strong topology
but also Lipschitz continuous with constant ν > 0 such that µ ≥ λν;
(3) for each x ∈ C, there exists a bounded subset Dx ⊆ C and zx ∈ C such that
for any y ∈ C\Dx,

Θ(y, zx) + ϕ(zx)− ϕ(y) +
1
rn
〈K ′(y)−K ′(x), η(zx, y)〉 < 0.

(4) λn ⊂ [a, b] for some a, b ∈ (0, 2α) and limn→∞ |λn − λn+1| = 0;
(5) limn→∞ αn = 0,

∑∞
n=0 αn =∞, and 0 < lim infn→∞ βn ≤ lim supn→∞ βn <

1;
(6) lim infn→∞ rn > 0 and limn→∞ |rn − rn+1| = 0. Then the sequences {xn}
and {un} generated by (3) converge strongly to the unique solution of the vari-
ational inequality:

〈(f − I)x∗, x− x∗〉 ≤ 0, x ∈
N⋂
i=1

F (Ti) ∩ Ω ∩ V I(CA) = Γ

provided Srn
is a firmly nonexpansive.

Proof. Let Q = PΓ. Then Qf is a contraction of H into C. In fact, there exists
a constant α ∈ [0, 1) such that ‖f(x) − f(y)‖ ≤ α‖x − y‖,∀x, y ∈ H. So, we
have that

‖Qf(x)−Qf(y)‖ ≤ ‖f(x)− f(y)‖ ≤ α‖x− y‖
for all x, y ∈ H. So, Qf is a contraction of H into C. Since H is complete,
there exists a unique element of C, such that x∗ = Qf(x∗). Such a x∗ ∈ H is
an element of C. For all x, y ∈ C and λ > 0,

‖(I − λA)x− (I − λA)y‖2 = ‖(x− y)− λ(Ax−Ay)‖2

= ‖x− y‖2 − 2λ〈x− y,Ax−Ay〉+ λ2‖Ax−Ay‖2

≤ ‖x− y‖2 + λ(λ− 2α)‖Ax−Ay‖2.
So, if λ ≤ 2α, then I − λA is a nonexpansive mapping of C into H.

Put yn = PC(un − λnAun) for every n ≥ 1. Let p ∈ Γ. We have

‖yn − p‖ = ‖PC(un − λnAun)− PC(v − λnAp)‖
≤ ‖(un − λnAun)− (p− λnAp)‖
≤ ‖un − p‖.

From un = Srn
xn, we have

‖un − p‖ = ‖Srnxn − Srnp‖ ≤ ‖xn − p‖
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for every n ≥ 1. Then we compute that
‖xn+1 − p‖ = ‖αn(f(Wnxn)− p) + βn(xn − p) + γn(Wnyn − p)‖

≤ αn‖f(Wnxn)− f(p)‖+ αn‖f(p)− p‖+ βn‖xn − p‖+ γn‖yn − p‖
≤ αnα‖xn − p‖+ (1− αn)‖xn − p‖+ αn‖f(p)− p‖
= (1− (1− α)αn)‖xn − p‖+ αn‖f(p)− p‖

≤ max{‖xn − p‖,
1

1− α
‖f(p)− p‖}.

Therefore {xn} is bounded, {yn}, {un}, {Wnyn}, {Wnxn} and {f(Wnxn)} are
also bounded. Let M denote the possible different constants appearing in the
following argument.

Since I − λnA is nonexpansive and p = PC(p− λnAp), we also have

‖yn+1 − yn‖ ≤ ‖(un+1 − λn+1Aun+1)− (un − λnAun)‖
≤ ‖(un+1 − λn+1Aun+1)− (un − λn+1Aun)‖+ |λn − λn+1|‖Aun‖
≤ ‖un+1 − un‖+ |λn − λn+1|‖Aun‖.

Let xn+1 = βnxn + (1− βn)zn for all n ≥ 0. It follows that

zn+1 − zn =
xn+2 − βn+1xn+1

1− βn+1
− xn+1 − βnxn

1− βn

=
αn+1f(Wn+1xn+1) + γn+1Wn+1yn+1

1− βn+1
− αnf(Wnxn) + γnWnyn

1− βn
=

αn+1

1− βn+1
(f(Wn+1xn+1)− f(Wnxn))

+
(

αn+1

1− βn+1
− αn

1− βn

)
(f(Wnxn)−Wnyn)

+
γn+1

1− βn+1
(Wn+1yn+1 −Wnyn).

Then we have

‖zn+1 − zn‖ ≤
αn+1α

1− βn+1
‖Wn+1xn+1 −Wnxn‖

+
(

αn+1

1− βn+1
− αn

1− βn

)
(‖f(Wnxn)‖+ ‖Wnyn‖)

+
γn+1

1− βn+1
‖Wn+1yn+1 −Wnyn‖.

Substituting (4) and (5), we have

‖zn+1 − zn‖ ≤
αn+1α

1− βn+1

[
‖xn+1 − xn‖+ 2MΣNi=1|λn+1,i − λn,i|

]
+
(

αn+1

1− βn+1
− αn

1− βn

)
(‖f(Wnxn)‖+ ‖Wnyn‖)

+
γn+1

1− βn+1

[
‖yn+1 − yn‖+ 2MΣNi=1|λn+1,i − λn,i|

]
.
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On the other hand un = Srnxn and un+1 = Srn+1xn+1, we have

Θ(un, x) + ϕ(x)− ϕ(un) +
1
rn
〈K ′(un)−K ′(xn), η(x, un)〉 ≥ 0 (6)

for all x ∈ C, and

Θ(un+1, x)+ϕ(x)−ϕ(un+1)+
1

rn+1
〈K ′(un+1)−K ′(xn+1), η(x, un+1)〉 ≥ 0 (7)

for all x ∈ C. Putting x = un+1 in (6) and x = un in (7), we have

Θ(un, un+1) + ϕ(un+1)− ϕ(un) +
1
rn
〈K ′(un)−K ′(xn), η(un+1, un)〉 ≥ 0,

and

Θ(un+1, un)+ϕ(un)−ϕ(un+1)+
1

rn+1
〈K ′(un+1)−K ′(xn+1), η(un, un+1)〉 ≥ 0.

So we have

〈η(un+1, un),K ′(un)−K ′(xn)− rn
rn+1

K ′(un+1)−K ′(xn+1)〉 ≥ 0,

and hence

〈η(un+1, un),K ′(un)−K ′(un+1) +K ′(xn+1)−K ′(xn) +
(

1− rn
rn+1

)
(K ′(un+1)−K ′(xn+1)〉 ≥ 0.

Then, by Lemma 2.1 we have

〈η(un+1, un),K ′(xn+1)−K ′(xn) +
(

1− rn
rn+1

)
(K ′(un+1)−K ′(xn+1)〉

≥ 〈η(un, un+1),K ′(un)−K ′(un+1)〉
≥ µ‖un − un+1‖2,

and hence

µ‖un − un+1‖2

≤ ‖η(un+1, un)‖[‖K ′(xn+1)−K ′(xn)‖+
(

1− rn
rn+1

)
‖K ′(un+1)−K ′(xn+1)‖]

≤ λ‖un − un+1‖(ν‖xn − xn+1‖+
(

1− rn
rn+1

)
M).

Without loss of generality, we assume that there exists a real number b such
that rn > b > 0 for all n ∈ N, we have

‖un − un+1‖ ≤
λν

µ
‖xn − xn+1‖+

λ

µ

1
b
|rn − rn+1|M

≤ ‖xn − xn+1‖+
λ

bµ
|rn − rn+1|M.
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Hence, we have that

‖zn+1 − zn‖

≤ αn+1α

1− βn+1
[ ‖xn+1 − xn‖+ 2MΣNi=1|λn+1,i − λn,i| ]

+
(

αn+1

1− βn+1
− αn

1− βn

)
(‖f(Wnxn)‖+ ‖Wnyn‖)

+
γn+1

1− βn+1
[‖un+1 − un‖+ |λn − λn+1|‖Aun‖+ 2MΣNi=1|λn+1,i − λn,i| ]

≤ αn+1α

1− βn+1
[ ‖xn+1 − xn‖+ 2MΣNi=1|λn+1,i − λn,i| ]

+
(

αn+1

1− βn+1
− αn

1− βn

)
(‖f(Wnxn)‖+ ‖Wnyn‖)

+
γn+1

1− βn+1
[‖xn − xn+1‖+

λ

bµ
|rn − rn+1|M + |λn − λn+1|‖Aun‖

+ 2MΣNi=1|λn+1,i − λn,i| ]

≤ ‖xn+1 − xn‖+ 2MΣNi=1|λn+1,i − λn,i|

+
(

αn+1

1− βn+1
− αn

1− βn

)
(‖f(Wnxn)‖+ ‖Wnyn‖)

+
λ

bµ
|rn − rn+1|M + |λn − λn+1|‖Aun‖.

This together αn → 0 and λn+1,i−λn,i → 0, rn−rn+1 → 0 and λn−λn+1 → 0
implies that

lim sup
n→∞

(‖zn+1 − zn‖ − ‖xn+1 − xn‖) ≤ 0.

Hence by lemma 2.4, we obtain ‖zn − xn‖ → 0 as n→∞. Consequently,
limn→∞ ‖xn+1 − xn‖ = 0 , limn→∞ ‖un+1 − un‖ = 0 and limn→∞ ‖un+1 −

un‖ = 0.
Since xn+1 = αnf(Wnxn) + βnxn + γnWnyn, we have

‖xn −Wnyn‖ ≤ ‖xn+1 − xn‖+ ‖xn+1 −Wnyn‖
≤ ‖xn+1 − xn‖+ αn‖f(Wnxn)−Wnyn‖+ βn‖xn −Wnyn‖,

and thus

‖xn −Wnyn‖ ≤
1

1− βn
‖xn+1 − xn‖+

αn
1− βn

‖f(Wnxn)−Wnyn‖,

which it follows that limn→∞ ‖xn −Wnyn‖ = 0.
For p ∈ Γ, noting that Srn

is firmly nonexpansive, we have

‖un − p‖2 = ‖Srnxn − Srnp‖2 ≤ 〈Srnxn − Srnp, xn − p〉

= 〈un − p, xn − p〉 =
1
2

(‖un − p‖2 + ‖xn − p‖2 − ‖un − xn‖2),
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and hence
‖un − p‖2 ≤ ‖xn − p‖2 − ‖un − xn‖2.

Therefore, we have

‖xn+1 − p‖2 ≤ αn‖f(Wnxn)− p‖2 + βn‖xn − p‖2 + γn‖Wnyn − p‖2

≤ αn‖f(Wnxn)− v‖2 + βn‖xn − p‖2 + γn‖yn − p‖2

≤ αn‖f(Wnxn)− p‖2 + βn‖xn − p‖2 + γn‖un − p‖2

≤ αn‖f(Wnxn)− p‖2 + βn‖xn − p‖2

+ γn(‖xn − p‖2 − ‖un − xn‖2)

≤ αn‖f(Wnxn)− p‖2 + ‖xn − p‖2 − γn‖un − xn‖2.

Consequently, we have

γn‖un − xn‖2 ≤ αn‖f(Wnxn)− p)‖2 + ‖xn − p‖2 − ‖xn+1 − p‖2

≤ αn‖f(Wnxn)− p)‖2 + ‖xn+1 − xn‖(‖xn − p‖+ ‖xn+1 − p‖).

Thus we have limn→∞ ‖un − xn‖ = 0. From

‖xn+1 − p‖2 ≤ αn‖f(Wnxn)− p‖2 + βn‖xn − p‖2 + γn‖Wnyn − p‖2

≤ αn‖f(Wnxn)− v‖2 + βn‖xn − p‖2 + γn‖yn − p‖2

≤ αn‖f(Wnxn)− p‖2 + βn‖xn − p‖2

+ γn‖(un − λnAun)− (p− λnAp)‖2

≤ αn‖f(Wnxn)− p‖2 + βn‖xn − p‖2

+ γn[‖un − p‖2 + λn(λn − 2α)‖Aun −Ap‖2]

≤ αn‖f(Wnxn)− p‖2 + ‖xn − p‖2 + γna(b− 2α)‖Aun −Ap‖2.

Therefore, we have

− γna(b− 2α)‖Aun −Ap‖2

≤ αn‖f(Wnxn)− p)‖2 + ‖xn − p‖2 − ‖xn+1 − p‖2

≤ αn‖f(Wnxn)− p)‖2 + ‖xn+1 − xn‖(‖xn − p‖+ ‖xn+1 − p‖).

Since αn → 0(n→∞), a, b ∈ (0, 2α), and limn→∞ ‖xn − xn+1‖ = 0, we have

‖Aun −Ap‖ → 0, (n→∞).

From (3), we have

‖yn − p‖2 = ‖PC(un − λnAun)− PC(p− λnAp)‖2

≤ 〈(un − λnAun)− (p− λnAp), yn − p〉

=
1
2

(‖(un − λnAun)− (p− λnAp)‖2 + ‖yn − p‖2

− ‖(un − λnAun)− (p− λnAp)− (yn − p)‖2)
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≤ 1
2

(‖un − p‖2 + ‖yn − p‖2 − ‖(un − yn)− λn(Aun −Ap)‖2)

=
1
2

(‖un − p‖2 + ‖yn − p‖2 − ‖un − yn‖2

+ 2λn〈un − yn, Aun −Ap〉 − λ2
n‖Aun −Ap‖2).

So, we have

‖yn−p‖2 ≤ ‖un−p‖2−‖un−yn‖2 +2λn〈un−yn, Aun−Ap〉−λ2
n‖Aun−Ap‖2.

Hence we have

‖xn+1 − p‖2 ≤ αn‖f(Wnxn)− p‖2 + βn‖xn − p‖2 + γn‖Wnyn − p‖2

≤ αn‖f(Wnxn)− p‖2 + βn‖xn − p‖2 + γn‖yn − p‖2

≤ αn‖f(Wnxn)− p‖2 + ‖xn − p‖2 − ‖un − yn‖2

+ 2λn〈un − yn, Aun −Ap〉 − λ2
n‖Aun −Ap‖2.

Since αn → 0, ‖xn+1 − xn‖ → 0, ‖Aun −Ap‖ → 0, we obtain

‖un − yn‖ → 0.

Since ‖Wnyn − yn‖ ≤ ‖un − yn‖+ ‖un − xn‖+ ‖Wnyn − xn‖, we obtain

‖Wnyn − yn‖ → 0.

Next we show that

lim sup
n→∞

〈f(x∗)− x∗, xn − x∗〉 ≤ 0,

where x∗ = PΓf(x∗). To show this we can choose a subsequence {ynj
} of {yn}

such that

lim
n→∞

〈f(x∗)− x∗, ynj
− x∗〉 = lim sup

n→∞
〈f(x∗)− x∗, yn − x∗〉.

Since {ynj
} is bounded, there exists a subsequence {ynji

}of {ynj
} which con-

verges weakly to w. Without loss of generality, we can assume that ynj
→ w

weakly. From ‖Wnyn − yn‖ → 0, we have Wnynj
→ w weakly, Next we show

that w ∈ Ω. Since un = Srn
xn, we derive

Θ(un, x) + ϕ(x)− ϕ(un) +
1
rn
〈K ′(un)−K ′(xn), η(x, un)〉 ≥ 0, ∀ x ∈ C.

From the monotonicity of Θ, we have

ϕ(x)− ϕ(un) +
1
r
〈K ′(un)−K ′(xn), η(x, un)〉 ≥ −Θ(un, x) ≥ Θ(x, un),

and hence

ϕ(x)− ϕ(unj
) + 〈

K ′(unj )−K ′(xnj )
rn

, η(x, unj
)〉 ≥ Θ(x, unj

).

Since
K′(unj

)−K′(xnj
)

rnj
→ 0, and {unj} → w weakly, from the weak lower semi-

continuity of ϕ and Θ(x, y) in the second variable y, we have Θ(x,w) +ϕ(w)−
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ϕ(x) ≤ 0, for all x ∈ C. For 0 < t ≤ 1 and x ∈ H, let xt = tx+ (1− t)w. Since
x ∈ C and w ∈ C, we have xt ∈ C and hence Θ(xt, w) + ϕ(w) − ϕ(xt) ≤ 0
From the convexity of equilibrium bifunction Θ(x, y) in the second variable y,
we have

0 = Θ(xt, xt) + ϕ(xt)− ϕ(xt)

≤ tΘ(xt, x) + (1− t)Θ(xt, w) + tϕ(x) + (1− t)ϕ(w)− ϕ(xt)

≤ t[Θ(xt, x) + ϕ(x)− ϕ(xt)],

and hence Θ(xt, x)+ϕ(x)−ϕ(xt) ≥ 0. Then, we have Θ(w, x)+ϕ(x)−ϕ(w) ≥ 0
for all x ∈ C and hence w ∈ Ω.

We shall prove that w ∈ F (Wn). Assume that {ynj
} → w weakly and

w 6= Wnw, by Opial’s condition, we have

lim inf
j→∞

‖ynj
− w‖ < lim inf

j→∞
‖ynj

−Wnw‖

≤ lim inf
j→∞

(‖ynj −Wnynj‖+ ‖Wnynj −Wnw‖)

≤ lim inf
j→∞

‖ynj
− w‖,

which is a contradiction. Hence, we get w ∈ F (Wn).
let us show that w ∈ V I(C,A). Let

Tv =
{
Av +NCv, v ∈ C,
∅, v /∈ C.

Then T is maximal monotone. Let (v, u) ∈ G(T ). Since u − Av ∈ NCv and
yn ∈ C we have

〈v − yn, u−Av〉 ≥ 0.

On the other hand, from yn = PC(un − λnAun), we have 〈v − yn, yn − (un −
λnAun)〉 ≥ 0 and hence

〈v − yn,
yn − un
λn

+Aun〉 ≥ 0.

Therefore, we have

〈v − yni
, u〉 ≥ 〈v − yni

, Av〉

≥ 〈v − yni
, Av〉 − 〈v − yni

,
yni − uni

λni

+Auni
〉

= 〈v − yni
, Av −Auni

− yni − uni

λni

〉

= 〈v − yni
, Av −Ayni

〉+ 〈v − yni
, Ayni

−Auni
〉

− 〈v − yni
,
yni
− uni

λni

〉

≥ 〈v − yni
, Ayni

−Auni
〉 − 〈v − yni

,
yni
− uni

λni

〉,
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which together with ‖un − yn‖ → 0 and A is lipschitz continuous implies that
〈v − w, u〉 ≥ 0 as i → ∞. Since T is maximal monotone, we have w ∈ T−10
and hence w ∈ V I(C,A). Thus w ∈ Γ. Hence

lim sup
n→∞

〈f(x∗)− x∗, xn − x∗〉 = lim
j→∞
〈f(x∗)− x∗, xnj

− x∗〉

= lim
j→∞
〈f(x∗)− x∗, ynj

− x∗〉

= 〈f(x∗)− x∗, w − x∗〉 ≤ 0.

Finally, we prove that xn and un converges strongly to x∗.

‖xn+1 − x∗‖2

= ‖αn(f(Wnxn)− x∗) + βn(xn − x∗) + γn(Wnyn − x∗)‖2

≤ ‖βn(xn − x∗) + γn(Wnyn − x∗)‖2 + 2αn〈f(Wnxn)− x∗, xn+1 − x∗〉
≤ (1− αn)2‖xn − x∗‖2 + 2αn〈f(Wnxn)− f(x∗), xn+1 − x∗〉

+ 2αn〈f(x∗)− x∗, xn+1 − x∗〉
≤ (1− αn)2‖xn − x∗‖2 + 2αnα‖xn+1 − x∗‖‖xn − x∗‖

+ 2αn〈f(x∗)− x∗, xn+1 − x∗〉
≤ (1− αn)2‖xn − x∗‖2 + αnα(‖xn+1 − x∗‖2 + ‖xn − x∗‖2)

+ 2αn〈f(x∗)− x∗, xn+1 − x∗〉,

which implies that

‖xn+1 − x∗‖2

≤ (1− αn)2 + αnα

1− αnα
‖xn+1 − x∗‖2 +

2αn
1− αnα

〈f(x∗)− x∗, xn+1 − x∗〉

≤
[
1− 2αn(1− α)

1− αnα

]
‖xn+1 − x∗‖2 +

α2
n

1− αnα
‖xn+1 − x∗‖2

+
2αn

1− αnα
〈f(x∗)− x∗, xn+1 − x∗〉

≤
[
1− 2αn(1− α)

1− αnα

]
‖xn+1 − x∗‖2

+
2αn(1− α)

1− αnα

[
αnM

2(1− α)
+

1
1− α

〈f(x∗)− x∗, xn+1 − x∗〉
]

= (1− δn)‖xn+1 − x∗‖2 + δnσn,

where δn = 2αn(1−α)
1−αnα

and σn = [ αnM
2(1−α) + 1

1−α 〈f(x∗) − Ax∗, xn+1 − x∗〉]. It
is easy to see that Σ∞n=0 = ∞ and lim supn→∞ σn ≤ 0. By Lemma 2.5 we
conclude that xn → x∗ as n→∞. �
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