# A HYBRID ITERATIVE METHOD OF SOLUTION FOR MIXED EQUILIBRIUM AND OPTIMIZATION PROBLEMS 

Lijuan Zhang and Junmin Chen


#### Abstract

In this paper, we introduce a hybrid iterative method for finding a common element of the set of solutions of a mixed equilibrium problem, the set of common fixed points of finitely many nonexpansive mappings and the set of solutions of the variational inequality for an inverse strongly monotone mapping in a Hilbert space. We show that the iterative sequences converge strongly to a common element of the three sets. The results extended and improved the corresponding results of L.-C.Ceng and J.-C.Yao.


## 1. Introduction

Let $H$ be a Hilbert space and let $C$ be a nonempty closed convex subset of $H$ and let $P_{C}$ be the metric projection of $H$ onto $C$. Let $\varphi: C \rightarrow R$ be a real-valued function and $\Theta: C \times C \rightarrow R$ be an equilibrium bifunction, i.e., $\Theta(u, u)=0$ for each $u \in C$. We consider the mixed equilibrium problem $M E P$ which is to find $x^{*} \in C$ such that

$$
M E P: \Theta\left(x^{*}, y\right)+\varphi(y)-\varphi\left(x^{*}\right) \geq 0, \quad \forall y \in C
$$

In particular, if $\varphi \equiv 0$, this problem reduces to the equilibrium problem $E P$, which is to find $x^{*} \in C$ such that

$$
E P: \Theta\left(x^{*}, y\right) \geq 0, \quad \forall y \in C
$$

Denote the set of solution of $M E P$ by $\Omega$, some methods have been proposed to solve the MEP.

A mapping $T: C \rightarrow H$ is said to be nonexpansive if $\|T x-T y\| \leq \| x-$ $y \|, \forall x, y \in C$. Denote the set of fixed points of $T$ by $F(T)$. Recall that if $C$ is a nonempty bounded closed convex subset of $H$ and $T: C \rightarrow C$ is nonexpansive,

[^0]then $F(T) \neq \emptyset$. Also, recall that a mapping $f: H \rightarrow H$ is contractive if there exists a constant $\alpha \in[0,1)$ such that $\|f(x)-f(y)\| \leq \alpha\|x-y\|, \forall x, y \in H$.

A mapping $A$ of $C$ into $H$ is called monotone if $\langle A u-A v, u-v\rangle \geq 0$, for all $u, v \in C$. The variational inequality problem is to find $u \in C$ such that $\langle A u, v-u\rangle \geq 0$ for all $v \in C$. The set of solutions of the variational inequality is denoted by $V I(C, A)$. A mapping $A$ of $C$ into $H$ is called inverse-strongly monotone if there exists a positive real number $\alpha$ such that

$$
\langle x-y, A x-A y\rangle \geq \alpha\|A x-A y\|^{2}
$$

for all $x, y \in C[1]$. For such a case, $A$ is called $\alpha$-inverse-strongly monotone. If $A$ is $\alpha$-inverse-strongly monotone mapping of $C$ into $H$, then $A$ is $\frac{1}{\alpha}$-Lipschitz continuous.

Let $\lambda_{n 1}, \lambda_{n 2}, \ldots, \lambda_{n N} \in(0,1], n \in \mathbf{N}$. Given the mappings $T_{1}, T_{2}, \ldots, T_{N}$ of $C$ into itself, as in Ref [4] one can define, for each $n \in \mathbf{N}$, mappings $U_{n 1}, U_{n 2}, \ldots, U_{n N}$ by

$$
\begin{align*}
& U_{n 1}=\lambda_{n 1} T_{1}+\left(1-\lambda_{n 1}\right) I \\
& U_{n 2}=\lambda_{n 2} T_{2} U_{n 1}+\left(1-\lambda_{n 2}\right) I \\
& \vdots  \tag{1}\\
& U_{n, N-1}=\lambda_{n, N-1} T_{N-1} U_{n, N-2}+\left(1-\lambda_{n, N-1}\right) I, \\
& W_{n}:=U_{n, N}=\lambda_{n, N} T_{N} U_{n, N-1}+\left(1-\lambda_{n, N}\right) I .
\end{align*}
$$

Such a mapping $W_{n}$ is called the $W$-mapping generated by $T_{1}, T_{2}, \ldots, T_{n}$ and $\lambda_{n 1}, \lambda_{n 2}, \ldots, \lambda_{n N}$.

For finding an element of $F(S) \cap V I(C, A)$, Iiduka and Takahishi [2] proposed a new iterative scheme: $x_{1}=x \in C$ and

$$
x_{n+1}=\alpha_{n} x+\left(1-\alpha_{n}\right) S P_{C}\left(x_{n}-\lambda_{n} A x_{n}\right), n \geq 1
$$

and obtained a strong convergence theorem in a Hilbert space.
Very recently Ceng et al [4] introduced a hybrid iterative scheme: $x_{0} \in C$ and

$$
\left\{\begin{array}{l}
\Theta\left(y_{n}, x\right)+\varphi(x)-\varphi\left(y_{n}\right)+\frac{1}{r}\left\langle K^{\prime}\left(y_{n}\right)-K^{\prime}\left(x_{n}\right), \eta\left(x, y_{n}\right)\right\rangle \geq 0, \forall x \in C  \tag{2}\\
x_{n+1}=\alpha_{n} f\left(W_{n} x_{n}\right)+\beta_{n} x_{n}+\gamma_{n} W_{n} y_{n}
\end{array}\right.
$$

They prove the sequences generated by the hybrid iterative scheme converge strongly to a common element of the set of solution of $M E P$ and the set of common fixed points of finitely many nonexpansive mappings.

Motivated and inspired by the above results, we introduce a new iterative scheme given as follow: $x_{0} \in C$ and

$$
\left\{\begin{array}{l}
\Theta\left(u_{n}, x\right)+\varphi(x)-\varphi\left(u_{n}\right)+\frac{1}{r_{n}}\left\langle K^{\prime}\left(u_{n}\right)-K^{\prime}\left(x_{n}\right), \eta\left(x, u_{n}\right)\right\rangle \geq 0, \forall x \in C  \tag{3}\\
x_{n+1}=\alpha_{n} f\left(W_{n} x_{n}\right)+\beta_{n} x_{n}+\gamma_{n} W_{n} P_{C}\left(u_{n}-\lambda_{n} A u_{n}\right)
\end{array}\right.
$$

for finding a common element of the set of fixed points of finitely many nonexpansive mappings, the set of solutions of a variational inequality for an $\alpha$ -inverse-strongly monotone mapping and the set of solutions of an equilibrium problem in a real Hilbert space. Furthermore, we will prove the sequences $\left\{x_{n}\right\}$ and $\left\{u_{n}\right\}$ converge strongly to the unique solution of the variational inequality

$$
\left\langle(f-I) x^{*}, x-x^{*}\right\rangle \leq 0, x \in \cap_{i=1}^{N} F\left(T_{i}\right) \cap \Omega \cap V I(C, A) .
$$

## 2. Preliminaries

Let $C$ be a nonempty closed convex subset of $H$. Then, for any $x \in H$, there exists a unique nearest point $u \in C$ such that

$$
\|x-u\| \leq\|x-y\|, \forall y \in C
$$

The mapping $P_{C}: x \rightarrow u$ is called the metric projection of $H$ onto $C$. It is known that $P_{C}$ is nonexpansive. Furthermore, for $x \in H$ and $u \in C$,

$$
u=P_{C}(x) \Leftrightarrow\langle x-u, u-y\rangle \geq 0, \forall y \in C
$$

In this paper we assume that an equilibrium bifunction $\Theta: C \times C \rightarrow R$ satisfies the following condition:
(H1) $\Theta$ is monotone, i.e., $\Theta(x, y)+\Theta(y, x) \leq 0$ for all $x, y \in C$ :
(H2) for each fixed $y \in C, x \mapsto \Theta(x, y)$ is concave and upper semicontinuous;
(H3) for each $x \in C, y \mapsto \Theta(x, y)$ is convex.
Let $F: C \rightarrow H$ and $\eta: C \times C \rightarrow H$ be two mappings. Then $F$ is called;
(i) $\eta$-monotone if $\langle F(x)-F(y), \eta(x, y)\rangle \geq 0, \quad \forall x, y \in C$;
(ii) $\eta$-strongly monotone if there exists a constant $\alpha>0$ such that

$$
\langle F(x)-F(y), \eta(x, y)\rangle \geq \alpha\|x-y\|^{2}, \quad \forall x, y \in C
$$

(iii) Lipschitz continuous if there exists a constant $\beta>0$ such that

$$
\|F(x)-F(y)\| \leq \beta\|x-y\|, \quad \forall x, y \in C .
$$

When $\eta(x, y)=x-y, \forall x, y \in C$, then the definition (i) and (ii) reduce to the definition of monotone and strong monotone, respectively.

A map $\eta: C \times C \rightarrow H$ is called Lipschitz continuous, if there exists a constant $\lambda>0$ such that $\|\eta(x, y)\| \leq \lambda\|x-y\|, \quad \forall x, y \in C$.

A differentiable function $K: C \rightarrow R$ on a convex set $C$ is called:
(i) $\eta$-convex if $K(y)-K(x) \geq\left\langle K^{\prime}(x), \eta(y, x)\right\rangle, \quad \forall x, y \in C$, where $K^{\prime}(x)$ is the Fréchet derivative of $K$ at $x$;
(ii) $\eta$-strongly convex if there exists a constant $\mu>0$ such that

$$
K(y)-K(x)-\left\langle K^{\prime}(x), \eta(y, x)\right\rangle \geq \frac{\mu}{2}\|x-y\|^{2}, \quad \forall x, y \in C
$$

A mapping $F: C \rightarrow R$ is called sequentially continuous at $x_{0}$, if $F\left(x_{n}\right) \rightarrow$ $F\left(x_{0}\right)$ for each sequence $x_{n}$ satisfying $x_{n} \rightarrow x_{0}$. A mapping $F$ is called sequentially continuous on $C$ if it is sequentially continuous at each point of $C$.

Let $S_{r}: C \rightarrow C$ be the mapping such that for each $x \in C, S_{r}(x)$ is the solution set of $\operatorname{MEP}(x, r)$, i.e.,

$$
\begin{gathered}
S_{r}(x)=\left\{y \in C: \Theta(y, z)+\varphi(z)-\varphi(y)+\frac{1}{r}\left\langle K^{\prime}(y)-K^{\prime}(x), \eta(z, y)\right\rangle \geq 0\right. \\
\forall z \in C, \forall x \in C\}
\end{gathered}
$$

A set-valued mapping $T: H \rightarrow 2^{H}$ is called monotone if for all $x, y \in H, f \in$ $T x$ and $g \in T y$ imply $\langle x-y, f-g\rangle \geq 0$. A monotone mapping $T: H \rightarrow 2^{H}$ is maximal if graph $G(T)$ of $T$ is not properly contained in the graph of any other monotone mapping. It is known that a monotone mapping $T$ is maximal if and only if for $(x, f) \in H \times H,\langle x-y, f-g\rangle \geq 0$ for every $(y, g) \in G(T)$ implies $f \in T x$. Let $A$ is an inverse-strongly monotone mapping of $C$ into $H$ and let $N_{C} v$ be normal cone to $C$ at $v \in C$, i.e., $N_{C} v=\{w \in H:\langle v-u, w\rangle \geq$ $0, \forall u \in C\}$, and define

$$
T v= \begin{cases}A v+N_{C} v, & v \in C, \\ \emptyset, & v \notin C .\end{cases}
$$

Then $T$ is maximal monotone and $0 \in T v$ if and only if $v \in V I(C, A),[5]$.
Lemma 2.1. [4] Let $C$ be a nonempty closed convex subset of a real Hilbert space $H$, and $\varphi: C \rightarrow R$ be a lower semicontinuous and convex functional. Let $\Theta: C \times C \rightarrow R$ be an equilibrium bifunction satisfying conditions (H1)-(H3). Assume that
(i) $\eta: C \times C \rightarrow H$ is a Lipschitz continuous with constant $\lambda>0$ such that
(a) $\eta(x, y)+\eta(y, x)=0, \quad \forall x, y \in C$,
(b) $\eta(.,$.$) is affine in the first variable,$
(c) for each fixed $y \in C, x \mapsto \eta(y, x)$ is sequentially continuous from the weak topology to the weak topology;
(ii) $K: C \rightarrow R$ is $\eta$-strongly convex with constant $\mu>0$ and its derivative $K^{\prime}$ is sequentially continuous from the weak topology to the strong topology;
(iii) for each $x \in C$, there exists a bounded subset $D_{x} \subseteq C$ and $z_{x} \in C$ such that for any $y \in C \backslash D_{x}$,

$$
\Theta\left(y, z_{x}\right)+\varphi\left(z_{x}\right)-\varphi(y)+\frac{1}{r}\left\langle K^{\prime}(y)-K^{\prime}(x), \eta\left(z_{x}, y\right)\right\rangle<0 .
$$

Then the following results hold:
(i) $S_{r}$ is single-valued;
(ii)(a)

$$
\begin{aligned}
\left\langle K^{\prime}\left(x_{1}\right)-K^{\prime}\left(x_{2}\right), \eta\left(u_{1}, u_{2}\right) \geq\langle \right. & \left.K^{\prime}\left(u_{1}\right)-K^{\prime}\left(u_{2}\right), \eta\left(u_{1}, u_{2}\right)\right\rangle \\
& \forall\left(x_{1}, x_{2}\right) \in C \times C,
\end{aligned}
$$

where $u_{i}=S_{r} x_{i}, \quad i=1,2$;
(b) $S_{r}$ is a nonexpansive if $K^{\prime}$ is Lipschitz continuous with constant $\nu>0$ such that $\mu \geq \lambda \nu$;
(iii) $F\left(S_{r}\right)=\Omega$;
(iv) $\Omega$ is closed and convex.

We remark that from Lemma 2.1 in particular, whenever $K(x)=\frac{\|x\|^{2}}{2}$ and $\eta(x, y)=x-y$ for each $(x, y) \in C \times C$, Then $S_{r}$ is firmly nonexpanxive, i.e.,

$$
\left\langle x_{1}-x_{2}, S_{r}\left(x_{1}\right)-S_{r}\left(x_{2}\right)\right\rangle \geq\left\|S_{r}\left(x_{1}\right)-S_{r}\left(x_{2}\right)\right\|^{2}, \forall\left(x_{1}, x_{2}\right) \in C \times C .
$$

Lemma 2.2. [7] Let $C$ be a nonempty closed convex subset of a Banach space $X$, Let $T_{1}, T_{2}, \ldots, T_{N}$ be a finite family of nonexpansive mappings of $C$ into itself such that $\cap_{i=1}^{N} F\left(T_{i}\right)$ is nonempty, and let $\lambda_{n_{1}}, \lambda_{n_{2}}, \ldots, \lambda_{n_{N}}$ be real numbers such that $0<\lambda_{n_{i}} \leq b<1$ for any $i \in \boldsymbol{N}$. For any $n \in \boldsymbol{N}$, let $W_{n}$ the be $W$-mapping of $C$ into itself generated by $\lambda_{n_{1}}, \lambda_{n_{2}}, \ldots, \lambda_{n_{N}}$ and $T_{1}, T_{2}, \ldots, T_{N}$. Then $W_{n}$ is nonexpansive. Further if $X$ is strictly convex, then $F\left(W_{n}\right)=\cap_{i=1}^{N} F\left(T_{i}\right)$.

Lemma 2.3. [4] If the sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ generated iteratively by (1) are bounded, then the following estimates hold:

$$
\begin{equation*}
\left\|W_{n+1} x_{n+1}-W_{n} x_{n}\right\| \leq\left\|x_{n+1}-x_{n}\right\|+2 M \Sigma_{i=1}^{N}\left|\lambda_{n+1, i}-\lambda_{n, i}\right|, \quad \forall n \geq 0 \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|W_{n+1} y_{n+1}-W_{n} y_{n}\right\| \leq\left\|y_{n+1}-y_{n}\right\|+2 M \Sigma_{i=1}^{N}\left|\lambda_{n+1, i}-\lambda_{n, i}\right|, \quad \forall n \geq 0 \tag{5}
\end{equation*}
$$

for some constant $M>0$.
Lemma 2.4. [6] Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be bounded sequences in a Banach space $X$ and $\beta_{n}$ be a sequence in [0,1] with

$$
0<\liminf _{n \rightarrow \infty} \beta_{n} \leq \limsup _{n \rightarrow \infty} \beta_{n}<1
$$

Suppose that $x_{n+1}=\left(1-\beta_{n}\right) y_{n}+\beta_{n} x_{n}$ for all $n \geq 0$ and $\limsup _{n \rightarrow \infty}\left(\| y_{n+1}-\right.$ $\left.y_{n}\|-\| x_{n+1}-x_{n} \|\right) \leq 0$. Then $\lim _{n \rightarrow \infty}\left\|y_{n}-x_{n}\right\|=0$.
Lemma 2.5. [3] Let $\left\{s_{n}\right\}$ be a sequence of nonnegative real numbers such that

$$
s_{n+1} \leq\left(1-\lambda_{n}\right) s_{n}+\beta_{n}, n \geq 0
$$

where $\left\{\lambda_{n}\right\}$ is a sequence in $(0,1)$, and $\left\{\beta_{n}\right\}$ is a sequence in $\boldsymbol{R}$ such that
(i) $\sum_{n=1}^{\infty} \lambda_{n}=\infty$,
(ii) $\lim \sup _{n \rightarrow \infty} \frac{\beta_{n}}{\lambda_{n}} \leq 0$ or $\sum_{n=1}^{\infty}\left|\beta_{n}\right|<\infty$. Then $\lim _{n \rightarrow \infty} s_{n}=0$.

## 3. Main result

Theorem 3.1. Let $H$ be a real Hilbert space, let $C$ be a nonempty closed convex subset of $H$, and $\varphi: C \rightarrow R$ be a lower semicontinuous and convex functional. Let $\Theta: C \times C \rightarrow R$ be an equilibrium bifunction satisfying conditions (H1)-(H3) and let $\left\{T_{i}\right\}_{i=1}^{N}$ be a finite family of nonexpansive mappings of $C$ into itself. Let $\lambda_{n_{1}}, \lambda_{n_{2}}, \ldots, \lambda_{n_{N}}$ be real numbers such that $\lim _{n \rightarrow \infty}\left(\lambda_{n+1, i}-\lambda_{n, i}\right)=0$ for all $i=1,2 \ldots, N$. Let $A$ is $\alpha$-inverse-strongly monotone mapping of $C$ into $H$ such that $\cap_{i=1}^{N} F\left(T_{i}\right) \cap \Omega \cap V I(C A) \neq \emptyset$. let $f$ be a contraction of $C$ into itself with $\alpha \in[0,1)$. Suppose that $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ and $\left\{\gamma_{n}\right\}$ are three sequences in $[0,1)$ with $\alpha_{n}+\beta_{n}+\gamma_{n}=1, \forall n$. Assume that
(1) Let $\eta: C \times C \rightarrow H$ is Lipschitz continuous with constant $\lambda>0$ such that (a) $\eta(x, y)+\eta(y, x)=0, \quad \forall x, y \in C$,
(b) $\eta(.,$.$) is affine in the first variable,$
(c) for each fixed $y \in C, x \mapsto \eta(y, x)$ is sequentially continuous from the weak topology to the weak topology;
(2) $K: C \rightarrow R$ is $\eta$-strongly convex with constant $\mu>0$ and its derivative $K^{\prime}$ is not only sequentially continuous from the weak topology to the strong topology but also Lipschitz continuous with constant $\nu>0$ such that $\mu \geq \lambda \nu$;
(3) for each $x \in C$, there exists a bounded subset $D_{x} \subseteq C$ and $z_{x} \in C$ such that for any $y \in C \backslash D_{x}$,

$$
\Theta\left(y, z_{x}\right)+\varphi\left(z_{x}\right)-\varphi(y)+\frac{1}{r_{n}}\left\langle K^{\prime}(y)-K^{\prime}(x), \eta\left(z_{x}, y\right)\right\rangle<0 .
$$

(4) $\lambda_{n} \subset[a, b]$ for some $a, b \in(0,2 \alpha)$ and $\lim _{n \rightarrow \infty}\left|\lambda_{n}-\lambda_{n+1}\right|=0$;
(5) $\lim _{n \rightarrow \infty} \alpha_{n}=0, \sum_{n=0}^{\infty} \alpha_{n}=\infty$, and $0<\liminf _{n \rightarrow \infty} \beta_{n} \leq \limsup \sin _{n \rightarrow \infty} \beta_{n}<$ 1;
(6) $\liminf _{n \rightarrow \infty} r_{n}>0$ and $\lim _{n \rightarrow \infty}\left|r_{n}-r_{n+1}\right|=0$. Then the sequences $\left\{x_{n}\right\}$ and $\left\{u_{n}\right\}$ generated by (3) converge strongly to the unique solution of the variational inequality:

$$
\left\langle(f-I) x^{*}, x-x^{*}\right\rangle \leq 0, x \in \bigcap_{i=1}^{N} F\left(T_{i}\right) \cap \Omega \cap V I(C A)=\Gamma
$$

provided $S_{r_{n}}$ is a firmly nonexpansive.
Proof. Let $Q=P_{\Gamma}$. Then $Q f$ is a contraction of $H$ into $C$. In fact, there exists a constant $\alpha \in[0,1)$ such that $\|f(x)-f(y)\| \leq \alpha\|x-y\|, \forall x, y \in H$. So, we have that

$$
\|Q f(x)-Q f(y)\| \leq\|f(x)-f(y)\| \leq \alpha\|x-y\|
$$

for all $x, y \in H$. So, $Q f$ is a contraction of $H$ into $C$. Since $H$ is complete, there exists a unique element of $C$, such that $x^{*}=Q f\left(x^{*}\right)$. Such a $x^{*} \in H$ is an element of $C$. For all $x, y \in C$ and $\lambda>0$,

$$
\begin{aligned}
\|(I-\lambda A) x-(I-\lambda A) y\|^{2} & =\|(x-y)-\lambda(A x-A y)\|^{2} \\
& =\|x-y\|^{2}-2 \lambda\langle x-y, A x-A y\rangle+\lambda^{2}\|A x-A y\|^{2} \\
& \leq\|x-y\|^{2}+\lambda(\lambda-2 \alpha)\|A x-A y\|^{2} .
\end{aligned}
$$

So, if $\lambda \leq 2 \alpha$, then $I-\lambda A$ is a nonexpansive mapping of $C$ into $H$.
Put $y_{n}=P_{C}\left(u_{n}-\lambda_{n} A u_{n}\right)$ for every $n \geq 1$. Let $p \in \Gamma$. We have

$$
\begin{aligned}
\left\|y_{n}-p\right\| & =\left\|P_{C}\left(u_{n}-\lambda_{n} A u_{n}\right)-P_{C}\left(v-\lambda_{n} A p\right)\right\| \\
& \leq\left\|\left(u_{n}-\lambda_{n} A u_{n}\right)-\left(p-\lambda_{n} A p\right)\right\| \\
& \leq\left\|u_{n}-p\right\| .
\end{aligned}
$$

From $u_{n}=S_{r_{n}} x_{n}$, we have

$$
\left\|u_{n}-p\right\|=\left\|S_{r_{n}} x_{n}-S_{r_{n}} p\right\| \leq\left\|x_{n}-p\right\|
$$

for every $n \geq 1$. Then we compute that

$$
\begin{aligned}
\left\|x_{n+1}-p\right\| & =\left\|\alpha_{n}\left(f\left(W_{n} x_{n}\right)-p\right)+\beta_{n}\left(x_{n}-p\right)+\gamma_{n}\left(W_{n} y_{n}-p\right)\right\| \\
& \leq \alpha_{n}\left\|f\left(W_{n} x_{n}\right)-f(p)\right\|+\alpha_{n}\|f(p)-p\|+\beta_{n}\left\|x_{n}-p\right\|+\gamma_{n}\left\|y_{n}-p\right\| \\
& \leq \alpha_{n} \alpha\left\|x_{n}-p\right\|+\left(1-\alpha_{n}\right)\left\|x_{n}-p\right\|+\alpha_{n}\|f(p)-p\| \\
& =\left(1-(1-\alpha) \alpha_{n}\right)\left\|x_{n}-p\right\|+\alpha_{n}\|f(p)-p\| \\
& \leq \max \left\{\left\|x_{n}-p\right\|, \frac{1}{1-\alpha}\|f(p)-p\|\right\} .
\end{aligned}
$$

Therefore $\left\{x_{n}\right\}$ is bounded, $\left\{y_{n}\right\},\left\{u_{n}\right\},\left\{W_{n} y_{n}\right\},\left\{W_{n} x_{n}\right\}$ and $\left\{f\left(W_{n} x_{n}\right)\right\}$ are also bounded. Let $M$ denote the possible different constants appearing in the following argument.

Since $I-\lambda_{n} A$ is nonexpansive and $p=P_{C}\left(p-\lambda_{n} A p\right)$, we also have

$$
\begin{aligned}
\left\|y_{n+1}-y_{n}\right\| & \leq\left\|\left(u_{n+1}-\lambda_{n+1} A u_{n+1}\right)-\left(u_{n}-\lambda_{n} A u_{n}\right)\right\| \\
& \leq\left\|\left(u_{n+1}-\lambda_{n+1} A u_{n+1}\right)-\left(u_{n}-\lambda_{n+1} A u_{n}\right)\right\|+\left|\lambda_{n}-\lambda_{n+1}\right|\left\|A u_{n}\right\| \\
& \leq\left\|u_{n+1}-u_{n}\right\|+\left|\lambda_{n}-\lambda_{n+1}\right|\left\|A u_{n}\right\| .
\end{aligned}
$$

Let $x_{n+1}=\beta_{n} x_{n}+\left(1-\beta_{n}\right) z_{n}$ for all $n \geq 0$. It follows that

$$
\begin{aligned}
z_{n+1}-z_{n}= & \frac{x_{n+2}-\beta_{n+1} x_{n+1}}{1-\beta_{n+1}}-\frac{x_{n+1}-\beta_{n} x_{n}}{1-\beta_{n}} \\
= & \frac{\alpha_{n+1} f\left(W_{n+1} x_{n+1}\right)+\gamma_{n+1} W_{n+1} y_{n+1}}{1-\beta_{n+1}}-\frac{\alpha_{n} f\left(W_{n} x_{n}\right)+\gamma_{n} W_{n} y_{n}}{1-\beta_{n}} \\
= & \frac{\alpha_{n+1}}{1-\beta_{n+1}}\left(f\left(W_{n+1} x_{n+1}\right)-f\left(W_{n} x_{n}\right)\right) \\
& +\left(\frac{\alpha_{n+1}}{1-\beta_{n+1}}-\frac{\alpha_{n}}{1-\beta_{n}}\right)\left(f\left(W_{n} x_{n}\right)-W_{n} y_{n}\right) \\
& +\frac{\gamma_{n+1}}{1-\beta_{n+1}}\left(W_{n+1} y_{n+1}-W_{n} y_{n}\right) .
\end{aligned}
$$

Then we have

$$
\begin{aligned}
\left\|z_{n+1}-z_{n}\right\| \leq & \frac{\alpha_{n+1} \alpha}{1-\beta_{n+1}}\left\|W_{n+1} x_{n+1}-W_{n} x_{n}\right\| \\
& +\left(\frac{\alpha_{n+1}}{1-\beta_{n+1}}-\frac{\alpha_{n}}{1-\beta_{n}}\right)\left(\left\|f\left(W_{n} x_{n}\right)\right\|+\left\|W_{n} y_{n}\right\|\right) \\
& +\frac{\gamma_{n+1}}{1-\beta_{n+1}}\left\|W_{n+1} y_{n+1}-W_{n} y_{n}\right\|
\end{aligned}
$$

Substituting (4) and (5), we have

$$
\begin{aligned}
\left\|z_{n+1}-z_{n}\right\| \leq & \frac{\alpha_{n+1} \alpha}{1-\beta_{n+1}}\left[\left\|x_{n+1}-x_{n}\right\|+2 M \Sigma_{i=1}^{N}\left|\lambda_{n+1, i}-\lambda_{n, i}\right|\right] \\
& +\left(\frac{\alpha_{n+1}}{1-\beta_{n+1}}-\frac{\alpha_{n}}{1-\beta_{n}}\right)\left(\left\|f\left(W_{n} x_{n}\right)\right\|+\left\|W_{n} y_{n}\right\|\right) \\
& +\frac{\gamma_{n+1}}{1-\beta_{n+1}}\left[\left\|y_{n+1}-y_{n}\right\|+2 M \Sigma_{i=1}^{N}\left|\lambda_{n+1, i}-\lambda_{n, i}\right|\right] .
\end{aligned}
$$

On the other hand $u_{n}=S_{r_{n}} x_{n}$ and $u_{n+1}=S_{r_{n+1}} x_{n+1}$, we have

$$
\begin{equation*}
\Theta\left(u_{n}, x\right)+\varphi(x)-\varphi\left(u_{n}\right)+\frac{1}{r_{n}}\left\langle K^{\prime}\left(u_{n}\right)-K^{\prime}\left(x_{n}\right), \eta\left(x, u_{n}\right)\right\rangle \geq 0 \tag{6}
\end{equation*}
$$

for all $x \in C$, and

$$
\begin{equation*}
\Theta\left(u_{n+1}, x\right)+\varphi(x)-\varphi\left(u_{n+1}\right)+\frac{1}{r_{n+1}}\left\langle K^{\prime}\left(u_{n+1}\right)-K^{\prime}\left(x_{n+1}\right), \eta\left(x, u_{n+1}\right)\right\rangle \geq 0 \tag{7}
\end{equation*}
$$

for all $x \in C$. Putting $x=u_{n+1}$ in (6) and $x=u_{n}$ in (7), we have

$$
\Theta\left(u_{n}, u_{n+1}\right)+\varphi\left(u_{n+1}\right)-\varphi\left(u_{n}\right)+\frac{1}{r_{n}}\left\langle K^{\prime}\left(u_{n}\right)-K^{\prime}\left(x_{n}\right), \eta\left(u_{n+1}, u_{n}\right)\right\rangle \geq 0
$$

and
$\Theta\left(u_{n+1}, u_{n}\right)+\varphi\left(u_{n}\right)-\varphi\left(u_{n+1}\right)+\frac{1}{r_{n+1}}\left\langle K^{\prime}\left(u_{n+1}\right)-K^{\prime}\left(x_{n+1}\right), \eta\left(u_{n}, u_{n+1}\right)\right\rangle \geq 0$.
So we have

$$
\left\langle\eta\left(u_{n+1}, u_{n}\right), K^{\prime}\left(u_{n}\right)-K^{\prime}\left(x_{n}\right)-\frac{r_{n}}{r_{n+1}} K^{\prime}\left(u_{n+1}\right)-K^{\prime}\left(x_{n+1}\right)\right\rangle \geq 0
$$

and hence

$$
\begin{aligned}
& \left\langle\eta\left(u_{n+1}, u_{n}\right), K^{\prime}\left(u_{n}\right)-K^{\prime}\left(u_{n+1}\right)+K^{\prime}\left(x_{n+1}\right)-K^{\prime}\left(x_{n}\right)+\left(1-\frac{r_{n}}{r_{n+1}}\right)\right. \\
& \left(K^{\prime}\left(u_{n+1}\right)-K^{\prime}\left(x_{n+1}\right)\right\rangle \geq 0
\end{aligned}
$$

Then, by Lemma 2.1 we have

$$
\begin{aligned}
& \left\langle\eta\left(u_{n+1}, u_{n}\right), K^{\prime}\left(x_{n+1}\right)-K^{\prime}\left(x_{n}\right)+\left(1-\frac{r_{n}}{r_{n+1}}\right)\left(K^{\prime}\left(u_{n+1}\right)-K^{\prime}\left(x_{n+1}\right)\right\rangle\right. \\
& \geq\left\langle\eta\left(u_{n}, u_{n+1}\right), K^{\prime}\left(u_{n}\right)-K^{\prime}\left(u_{n+1}\right)\right\rangle \\
& \geq \mu\left\|u_{n}-u_{n+1}\right\|^{2},
\end{aligned}
$$

and hence

$$
\begin{aligned}
& \mu\left\|u_{n}-u_{n+1}\right\|^{2} \\
& \leq\left\|\eta\left(u_{n+1}, u_{n}\right)\right\|\left[\left\|K^{\prime}\left(x_{n+1}\right)-K^{\prime}\left(x_{n}\right)\right\|+\left(1-\frac{r_{n}}{r_{n+1}}\right)\left\|K^{\prime}\left(u_{n+1}\right)-K^{\prime}\left(x_{n+1}\right)\right\|\right] \\
& \leq \lambda\left\|u_{n}-u_{n+1}\right\|\left(\nu\left\|x_{n}-x_{n+1}\right\|+\left(1-\frac{r_{n}}{r_{n+1}}\right) M\right) .
\end{aligned}
$$

Without loss of generality, we assume that there exists a real number $b$ such that $r_{n}>b>0$ for all $n \in \mathbf{N}$, we have

$$
\begin{aligned}
\left\|u_{n}-u_{n+1}\right\| & \leq \frac{\lambda \nu}{\mu}\left\|x_{n}-x_{n+1}\right\|+\frac{\lambda}{\mu} \frac{1}{b}\left|r_{n}-r_{n+1}\right| M \\
& \leq\left\|x_{n}-x_{n+1}\right\|+\frac{\lambda}{b \mu}\left|r_{n}-r_{n+1}\right| M
\end{aligned}
$$

Hence, we have that

$$
\begin{aligned}
&\left\|z_{n+1}-z_{n}\right\| \\
& \leq \frac{\alpha_{n+1} \alpha}{1-\beta_{n+1}}\left[\left\|x_{n+1}-x_{n}\right\|+2 M \Sigma_{i=1}^{N}\left|\lambda_{n+1, i}-\lambda_{n, i}\right|\right] \\
&+\left(\frac{\alpha_{n+1}}{1-\beta_{n+1}}-\frac{\alpha_{n}}{1-\beta_{n}}\right)\left(\left\|f\left(W_{n} x_{n}\right)\right\|+\left\|W_{n} y_{n}\right\|\right) \\
&+\frac{\gamma_{n+1}}{1-\beta_{n+1}}\left[\left\|u_{n+1}-u_{n}\right\|+\left|\lambda_{n}-\lambda_{n+1}\right|\left\|A u_{n}\right\|+2 M \Sigma_{i=1}^{N}\left|\lambda_{n+1, i}-\lambda_{n, i}\right|\right] \\
& \leq \frac{\alpha_{n+1} \alpha}{1-\beta_{n+1}}\left[\left\|x_{n+1}-x_{n}\right\|+2 M \Sigma_{i=1}^{N}\left|\lambda_{n+1, i}-\lambda_{n, i}\right|\right] \\
&+\left(\frac{\alpha_{n+1}}{1-\beta_{n+1}}-\frac{\alpha_{n}}{1-\beta_{n}}\right)\left(\left\|f\left(W_{n} x_{n}\right)\right\|+\left\|W_{n} y_{n}\right\|\right) \\
&+\frac{\gamma_{n+1}}{1-\beta_{n+1}}\left[\left\|x_{n}-x_{n+1}\right\|+\frac{\lambda}{b \mu}\left|r_{n}-r_{n+1}\right| M+\left|\lambda_{n}-\lambda_{n+1}\right|\left\|A u_{n}\right\|\right. \\
&\left.+2 M \Sigma_{i=1}^{N}\left|\lambda_{n+1, i}-\lambda_{n, i}\right|\right] \\
& \leq\left\|x_{n+1}-x_{n}\right\|+2 M \Sigma_{i=1}^{N}\left|\lambda_{n+1, i}-\lambda_{n, i}\right| \\
&+\left(\frac{\alpha_{n+1}}{1-\beta_{n+1}}-\frac{\alpha_{n}}{1-\beta_{n}}\right)\left(\left\|f\left(W_{n} x_{n}\right)\right\|+\left\|W_{n} y_{n}\right\|\right) \\
&+\frac{\lambda}{b \mu}\left|r_{n}-r_{n+1}\right| M+\left|\lambda_{n}-\lambda_{n+1}\right|\left\|A u_{n}\right\| .
\end{aligned}
$$

This together $\alpha_{n} \rightarrow 0$ and $\lambda_{n+1, i}-\lambda_{n, i} \rightarrow 0, r_{n}-r_{n+1} \rightarrow 0$ and $\lambda_{n}-\lambda_{n+1} \rightarrow 0$ implies that

$$
\limsup _{n \rightarrow \infty}\left(\left\|z_{n+1}-z_{n}\right\|-\left\|x_{n+1}-x_{n}\right\|\right) \leq 0
$$

Hence by lemma 2.4, we obtain $\left\|z_{n}-x_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$. Consequently,
$\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=0, \lim _{n \rightarrow \infty}\left\|u_{n+1}-u_{n}\right\|=0$ and $\lim _{n \rightarrow \infty} \| u_{n+1}-$ $u_{n} \|=0$.

Since $x_{n+1}=\alpha_{n} f\left(W_{n} x_{n}\right)+\beta_{n} x_{n}+\gamma_{n} W_{n} y_{n}$, we have

$$
\begin{aligned}
\left\|x_{n}-W_{n} y_{n}\right\| & \leq\left\|x_{n+1}-x_{n}\right\|+\left\|x_{n+1}-W_{n} y_{n}\right\| \\
& \leq\left\|x_{n+1}-x_{n}\right\|+\alpha_{n}\left\|f\left(W_{n} x_{n}\right)-W_{n} y_{n}\right\|+\beta_{n}\left\|x_{n}-W_{n} y_{n}\right\|
\end{aligned}
$$

and thus

$$
\left\|x_{n}-W_{n} y_{n}\right\| \leq \frac{1}{1-\beta_{n}}\left\|x_{n+1}-x_{n}\right\|+\frac{\alpha_{n}}{1-\beta_{n}}\left\|f\left(W_{n} x_{n}\right)-W_{n} y_{n}\right\|
$$

which it follows that $\lim _{n \rightarrow \infty}\left\|x_{n}-W_{n} y_{n}\right\|=0$.
For $p \in \Gamma$, noting that $S_{r_{n}}$ is firmly nonexpansive, we have

$$
\begin{aligned}
\left\|u_{n}-p\right\|^{2} & =\left\|S_{r_{n}} x_{n}-S_{r_{n}} p\right\|^{2} \leq\left\langle S_{r_{n}} x_{n}-S_{r_{n}} p, x_{n}-p\right\rangle \\
& =\left\langle u_{n}-p, x_{n}-p\right\rangle=\frac{1}{2}\left(\left\|u_{n}-p\right\|^{2}+\left\|x_{n}-p\right\|^{2}-\left\|u_{n}-x_{n}\right\|^{2}\right)
\end{aligned}
$$

and hence

$$
\left\|u_{n}-p\right\|^{2} \leq\left\|x_{n}-p\right\|^{2}-\left\|u_{n}-x_{n}\right\|^{2}
$$

Therefore, we have

$$
\begin{aligned}
\left\|x_{n+1}-p\right\|^{2} \leq & \alpha_{n}\left\|f\left(W_{n} x_{n}\right)-p\right\|^{2}+\beta_{n}\left\|x_{n}-p\right\|^{2}+\gamma_{n}\left\|W_{n} y_{n}-p\right\|^{2} \\
\leq & \alpha_{n}\left\|f\left(W_{n} x_{n}\right)-v\right\|^{2}+\beta_{n}\left\|x_{n}-p\right\|^{2}+\gamma_{n}\left\|y_{n}-p\right\|^{2} \\
\leq & \alpha_{n}\left\|f\left(W_{n} x_{n}\right)-p\right\|^{2}+\beta_{n}\left\|x_{n}-p\right\|^{2}+\gamma_{n}\left\|u_{n}-p\right\|^{2} \\
\leq & \alpha_{n}\left\|f\left(W_{n} x_{n}\right)-p\right\|^{2}+\beta_{n}\left\|x_{n}-p\right\|^{2} \\
& +\gamma_{n}\left(\left\|x_{n}-p\right\|^{2}-\left\|u_{n}-x_{n}\right\|^{2}\right) \\
\leq & \alpha_{n}\left\|f\left(W_{n} x_{n}\right)-p\right\|^{2}+\left\|x_{n}-p\right\|^{2}-\gamma_{n}\left\|u_{n}-x_{n}\right\|^{2} .
\end{aligned}
$$

Consequently, we have

$$
\begin{aligned}
\gamma_{n}\left\|u_{n}-x_{n}\right\|^{2} & \left.\leq \alpha_{n} \| f\left(W_{n} x_{n}\right)-p\right)\left\|^{2}+\right\| x_{n}-p\left\|^{2}-\right\| x_{n+1}-p \|^{2} \\
& \left.\leq \alpha_{n} \| f\left(W_{n} x_{n}\right)-p\right)\left\|^{2}+\right\| x_{n+1}-x_{n} \|\left(\left\|x_{n}-p\right\|+\left\|x_{n+1}-p\right\|\right)
\end{aligned}
$$

Thus we have $\lim _{n \rightarrow \infty}\left\|u_{n}-x_{n}\right\|=0$. From

$$
\begin{aligned}
\left\|x_{n+1}-p\right\|^{2} \leq & \alpha_{n}\left\|f\left(W_{n} x_{n}\right)-p\right\|^{2}+\beta_{n}\left\|x_{n}-p\right\|^{2}+\gamma_{n}\left\|W_{n} y_{n}-p\right\|^{2} \\
\leq & \alpha_{n}\left\|f\left(W_{n} x_{n}\right)-v\right\|^{2}+\beta_{n}\left\|x_{n}-p\right\|^{2}+\gamma_{n}\left\|y_{n}-p\right\|^{2} \\
\leq & \alpha_{n}\left\|f\left(W_{n} x_{n}\right)-p\right\|^{2}+\beta_{n}\left\|x_{n}-p\right\|^{2} \\
& +\gamma_{n}\left\|\left(u_{n}-\lambda_{n} A u_{n}\right)-\left(p-\lambda_{n} A p\right)\right\|^{2} \\
\leq & \alpha_{n}\left\|f\left(W_{n} x_{n}\right)-p\right\|^{2}+\beta_{n}\left\|x_{n}-p\right\|^{2} \\
& +\gamma_{n}\left[\left\|u_{n}-p\right\|^{2}+\lambda_{n}\left(\lambda_{n}-2 \alpha\right)\left\|A u_{n}-A p\right\|^{2}\right] \\
\leq & \alpha_{n}\left\|f\left(W_{n} x_{n}\right)-p\right\|^{2}+\left\|x_{n}-p\right\|^{2}+\gamma_{n} a(b-2 \alpha)\left\|A u_{n}-A p\right\|^{2} .
\end{aligned}
$$

Therefore, we have

$$
\begin{aligned}
& -\gamma_{n} a(b-2 \alpha)\left\|A u_{n}-A p\right\|^{2} \\
& \left.\leq \alpha_{n} \| f\left(W_{n} x_{n}\right)-p\right)\left\|^{2}+\right\| x_{n}-p\left\|^{2}-\right\| x_{n+1}-p \|^{2} \\
& \left.\leq \alpha_{n} \| f\left(W_{n} x_{n}\right)-p\right)\left\|^{2}+\right\| x_{n+1}-x_{n} \|\left(\left\|x_{n}-p\right\|+\left\|x_{n+1}-p\right\|\right)
\end{aligned}
$$

Since $\alpha_{n} \rightarrow 0(n \rightarrow \infty), a, b \in(0,2 \alpha)$, and $\lim _{n \rightarrow \infty}\left\|x_{n}-x_{n+1}\right\|=0$, we have

$$
\left\|A u_{n}-A p\right\| \rightarrow 0,(n \rightarrow \infty)
$$

From (3), we have

$$
\begin{aligned}
\left\|y_{n}-p\right\|^{2}= & \left\|P_{C}\left(u_{n}-\lambda_{n} A u_{n}\right)-P_{C}\left(p-\lambda_{n} A p\right)\right\|^{2} \\
\leq & \left\langle\left(u_{n}-\lambda_{n} A u_{n}\right)-\left(p-\lambda_{n} A p\right), y_{n}-p\right\rangle \\
= & \frac{1}{2}\left(\left\|\left(u_{n}-\lambda_{n} A u_{n}\right)-\left(p-\lambda_{n} A p\right)\right\|^{2}+\left\|y_{n}-p\right\|^{2}\right. \\
& \left.-\left\|\left(u_{n}-\lambda_{n} A u_{n}\right)-\left(p-\lambda_{n} A p\right)-\left(y_{n}-p\right)\right\|^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
\leq & \frac{1}{2}\left(\left\|u_{n}-p\right\|^{2}+\left\|y_{n}-p\right\|^{2}-\left\|\left(u_{n}-y_{n}\right)-\lambda_{n}\left(A u_{n}-A p\right)\right\|^{2}\right) \\
= & \frac{1}{2}\left(\left\|u_{n}-p\right\|^{2}+\left\|y_{n}-p\right\|^{2}-\left\|u_{n}-y_{n}\right\|^{2}\right. \\
& \left.+2 \lambda_{n}\left\langle u_{n}-y_{n}, A u_{n}-A p\right\rangle-\lambda_{n}^{2}\left\|A u_{n}-A p\right\|^{2}\right)
\end{aligned}
$$

So, we have
$\left\|y_{n}-p\right\|^{2} \leq\left\|u_{n}-p\right\|^{2}-\left\|u_{n}-y_{n}\right\|^{2}+2 \lambda_{n}\left\langle u_{n}-y_{n}, A u_{n}-A p\right\rangle-\lambda_{n}^{2}\left\|A u_{n}-A p\right\|^{2}$.
Hence we have

$$
\begin{aligned}
\left\|x_{n+1}-p\right\|^{2} \leq & \alpha_{n}\left\|f\left(W_{n} x_{n}\right)-p\right\|^{2}+\beta_{n}\left\|x_{n}-p\right\|^{2}+\gamma_{n}\left\|W_{n} y_{n}-p\right\|^{2} \\
\leq & \alpha_{n}\left\|f\left(W_{n} x_{n}\right)-p\right\|^{2}+\beta_{n}\left\|x_{n}-p\right\|^{2}+\gamma_{n}\left\|y_{n}-p\right\|^{2} \\
\leq & \alpha_{n}\left\|f\left(W_{n} x_{n}\right)-p\right\|^{2}+\left\|x_{n}-p\right\|^{2}-\left\|u_{n}-y_{n}\right\|^{2} \\
& +2 \lambda_{n}\left\langle u_{n}-y_{n}, A u_{n}-A p\right\rangle-\lambda_{n}^{2}\left\|A u_{n}-A p\right\|^{2} .
\end{aligned}
$$

Since $\alpha_{n} \rightarrow 0,\left\|x_{n+1}-x_{n}\right\| \rightarrow 0,\left\|A u_{n}-A p\right\| \rightarrow 0$, we obtain

$$
\left\|u_{n}-y_{n}\right\| \rightarrow 0
$$

Since $\left\|W_{n} y_{n}-y_{n}\right\| \leq\left\|u_{n}-y_{n}\right\|+\left\|u_{n}-x_{n}\right\|+\left\|W_{n} y_{n}-x_{n}\right\|$, we obtain

$$
\left\|W_{n} y_{n}-y_{n}\right\| \rightarrow 0
$$

Next we show that

$$
\limsup _{n \rightarrow \infty}\left\langle f\left(x^{*}\right)-x^{*}, x_{n}-x^{*}\right\rangle \leq 0
$$

where $x^{*}=P_{\Gamma} f\left(x^{*}\right)$. To show this we can choose a subsequence $\left\{y_{n_{j}}\right\}$ of $\left\{y_{n}\right\}$ such that

$$
\lim _{n \rightarrow \infty}\left\langle f\left(x^{*}\right)-x^{*}, y_{n_{j}}-x^{*}\right\rangle=\underset{n \rightarrow \infty}{\limsup }\left\langle f\left(x^{*}\right)-x^{*}, y_{n}-x^{*}\right\rangle
$$

Since $\left\{y_{n_{j}}\right\}$ is bounded, there exists a subsequence $\left\{y_{n_{j_{j}}}\right\}$ of $\left\{y_{n_{j}}\right\}$ which converges weakly to $w$. Without loss of generality, we can assume that $y_{n_{j}} \rightarrow w$ weakly. From $\left\|W_{n} y_{n}-y_{n}\right\| \rightarrow 0$, we have $W_{n} y_{n_{j}} \rightarrow w$ weakly, Next we show that $w \in \Omega$. Since $u_{n}=S_{r_{n}} x_{n}$, we derive

$$
\Theta\left(u_{n}, x\right)+\varphi(x)-\varphi\left(u_{n}\right)+\frac{1}{r_{n}}\left\langle K^{\prime}\left(u_{n}\right)-K^{\prime}\left(x_{n}\right), \eta\left(x, u_{n}\right)\right\rangle \geq 0, \quad \forall x \in C .
$$

From the monotonicity of $\Theta$, we have

$$
\varphi(x)-\varphi\left(u_{n}\right)+\frac{1}{r}\left\langle K^{\prime}\left(u_{n}\right)-K^{\prime}\left(x_{n}\right), \eta\left(x, u_{n}\right)\right\rangle \geq-\Theta\left(u_{n}, x\right) \geq \Theta\left(x, u_{n}\right)
$$

and hence

$$
\varphi(x)-\varphi\left(u_{n_{j}}\right)+\left\langle\frac{K^{\prime}\left(u_{n_{j}}\right)-K^{\prime}\left(x_{n_{j}}\right)}{r_{n}}, \eta\left(x, u_{n_{j}}\right)\right\rangle \geq \Theta\left(x, u_{n_{j}}\right)
$$

Since $\frac{K^{\prime}\left(u_{n_{j}}\right)-K^{\prime}\left(x_{n_{j}}\right)}{r_{n_{j}}} \rightarrow 0$, and $\left\{u_{n_{j}}\right\} \rightarrow w$ weakly, from the weak lower semicontinuity of $\varphi$ and $\Theta(x, y)$ in the second variable $y$, we have $\Theta(x, w)+\varphi(w)-$
$\varphi(x) \leq 0$, for all $x \in C$. For $0<t \leq 1$ and $x \in H$, let $x_{t}=t x+(1-t) w$. Since $x \in C$ and $w \in C$, we have $x_{t} \in C$ and hence $\Theta\left(x_{t}, w\right)+\varphi(w)-\varphi\left(x_{t}\right) \leq 0$ From the convexity of equilibrium bifunction $\Theta(x, y)$ in the second variable $y$, we have

$$
\begin{aligned}
0 & =\Theta\left(x_{t}, x_{t}\right)+\varphi\left(x_{t}\right)-\varphi\left(x_{t}\right) \\
& \leq t \Theta\left(x_{t}, x\right)+(1-t) \Theta\left(x_{t}, w\right)+t \varphi(x)+(1-t) \varphi(w)-\varphi\left(x_{t}\right) \\
& \leq t\left[\Theta\left(x_{t}, x\right)+\varphi(x)-\varphi\left(x_{t}\right)\right]
\end{aligned}
$$

and hence $\Theta\left(x_{t}, x\right)+\varphi(x)-\varphi\left(x_{t}\right) \geq 0$. Then, we have $\Theta(w, x)+\varphi(x)-\varphi(w) \geq 0$ for all $x \in C$ and hence $w \in \Omega$.

We shall prove that $w \in F\left(W_{n}\right)$. Assume that $\left\{y_{n_{j}}\right\} \rightarrow w$ weakly and $w \neq W_{n} w$, by Opial's condition, we have

$$
\begin{aligned}
\liminf _{j \rightarrow \infty}\left\|y_{n_{j}}-w\right\| & <\liminf _{j \rightarrow \infty}\left\|y_{n_{j}}-W_{n} w\right\| \\
& \leq \liminf _{j \rightarrow \infty}\left(\left\|y_{n_{j}}-W_{n} y_{n_{j}}\right\|+\left\|W_{n} y_{n_{j}}-W_{n} w\right\|\right) \\
& \leq \liminf _{j \rightarrow \infty}\left\|y_{n_{j}}-w\right\|
\end{aligned}
$$

which is a contradiction. Hence, we get $w \in F\left(W_{n}\right)$.
let us show that $w \in V I(C, A)$. Let

$$
T v= \begin{cases}A v+N_{C} v, & v \in C \\ \emptyset, & v \notin C\end{cases}
$$

Then $T$ is maximal monotone. Let $(v, u) \in G(T)$. Since $u-A v \in N_{C} v$ and $y_{n} \in C$ we have

$$
\left\langle v-y_{n}, u-A v\right\rangle \geq 0 .
$$

On the other hand, from $y_{n}=P_{C}\left(u_{n}-\lambda_{n} A u_{n}\right)$, we have $\left\langle v-y_{n}, y_{n}-\left(u_{n}-\right.\right.$ $\left.\left.\lambda_{n} A u_{n}\right)\right\rangle \geq 0$ and hence

$$
\left\langle v-y_{n}, \frac{y_{n}-u_{n}}{\lambda_{n}}+A u_{n}\right\rangle \geq 0
$$

Therefore, we have

$$
\begin{aligned}
\left\langle v-y_{n_{i}}, u\right\rangle \geq & \left\langle v-y_{n_{i}}, A v\right\rangle \\
\geq & \left\langle v-y_{n_{i}}, A v\right\rangle-\left\langle v-y_{n_{i}}, \frac{y_{n_{i}}-u_{n_{i}}}{\lambda_{n_{i}}}+A u_{n_{i}}\right\rangle \\
= & \left\langle v-y_{n_{i}}, A v-A u_{n_{i}}-\frac{y_{n_{i}}-u_{n_{i}}}{\lambda_{n_{i}}}\right\rangle \\
= & \left\langle v-y_{n_{i}}, A v-A y_{n_{i}}\right\rangle+\left\langle v-y_{n_{i}}, A y_{n_{i}}-A u_{n_{i}}\right\rangle \\
& -\left\langle v-y_{n_{i}}, \frac{y_{n_{i}}-u_{n_{i}}}{\lambda_{n_{i}}}\right\rangle \\
\geq & \left\langle v-y_{n_{i}}, A y_{n_{i}}-A u_{n_{i}}\right\rangle-\left\langle v-y_{n_{i}}, \frac{y_{n_{i}}-u_{n_{i}}}{\lambda_{n_{i}}}\right\rangle,
\end{aligned}
$$

which together with $\left\|u_{n}-y_{n}\right\| \rightarrow 0$ and $A$ is lipschitz continuous implies that $\langle v-w, u\rangle \geq 0$ as $i \rightarrow \infty$. Since $T$ is maximal monotone, we have $w \in T^{-1} 0$ and hence $w \in V I(C, A)$. Thus $w \in \Gamma$. Hence

$$
\begin{aligned}
\limsup _{n \rightarrow \infty}\left\langle f\left(x^{*}\right)-x^{*}, x_{n}-x^{*}\right\rangle & =\lim _{j \rightarrow \infty}\left\langle f\left(x^{*}\right)-x^{*}, x_{n_{j}}-x^{*}\right\rangle \\
& =\lim _{j \rightarrow \infty}\left\langle f\left(x^{*}\right)-x^{*}, y_{n_{j}}-x^{*}\right\rangle \\
& =\left\langle f\left(x^{*}\right)-x^{*}, w-x^{*}\right\rangle \leq 0 .
\end{aligned}
$$

Finally, we prove that $x_{n}$ and $u_{n}$ converges strongly to $x^{*}$.

$$
\begin{aligned}
& \| x_{n+1}-x^{*} \|^{2} \\
&=\left\|\alpha_{n}\left(f\left(W_{n} x_{n}\right)-x^{*}\right)+\beta_{n}\left(x_{n}-x^{*}\right)+\gamma_{n}\left(W_{n} y_{n}-x^{*}\right)\right\|^{2} \\
& \leq\left\|\beta_{n}\left(x_{n}-x^{*}\right)+\gamma_{n}\left(W_{n} y_{n}-x^{*}\right)\right\|^{2}+2 \alpha_{n}\left\langle f\left(W_{n} x_{n}\right)-x^{*}, x_{n+1}-x^{*}\right\rangle \\
& \leq\left(1-\alpha_{n}\right)^{2}\left\|x_{n}-x^{*}\right\|^{2}+2 \alpha_{n}\left\langle f\left(W_{n} x_{n}\right)-f\left(x^{*}\right), x_{n+1}-x^{*}\right\rangle \\
& \quad+2 \alpha_{n}\left\langle f\left(x^{*}\right)-x^{*}, x_{n+1}-x^{*}\right\rangle \\
& \leq\left(1-\alpha_{n}\right)^{2}\left\|x_{n}-x^{*}\right\|^{2}+2 \alpha_{n} \alpha\left\|x_{n+1}-x^{*}\right\|\left\|x_{n}-x^{*}\right\| \\
& \quad+2 \alpha_{n}\left\langle f\left(x^{*}\right)-x^{*}, x_{n+1}-x^{*}\right\rangle \\
& \leq\left(1-\alpha_{n}\right)^{2}\left\|x_{n}-x^{*}\right\|^{2}+\alpha_{n} \alpha\left(\left\|x_{n+1}-x^{*}\right\|^{2}+\left\|x_{n}-x^{*}\right\|^{2}\right) \\
& \quad+2 \alpha_{n}\left\langle f\left(x^{*}\right)-x^{*}, x_{n+1}-x^{*}\right\rangle
\end{aligned}
$$

which implies that

$$
\begin{aligned}
\| & x_{n+1}-x^{*} \|^{2} \\
\leq & \frac{\left(1-\alpha_{n}\right)^{2}+\alpha_{n} \alpha}{1-\alpha_{n} \alpha}\left\|x_{n+1}-x^{*}\right\|^{2}+\frac{2 \alpha_{n}}{1-\alpha_{n} \alpha}\left\langle f\left(x^{*}\right)-x^{*}, x_{n+1}-x^{*}\right\rangle \\
\leq & {\left[1-\frac{2 \alpha_{n}(1-\alpha)}{1-\alpha_{n} \alpha}\right]\left\|x_{n+1}-x^{*}\right\|^{2}+\frac{\alpha_{n}^{2}}{1-\alpha_{n} \alpha}\left\|x_{n+1}-x^{*}\right\|^{2} } \\
& +\frac{2 \alpha_{n}}{1-\alpha_{n} \alpha}\left\langle f\left(x^{*}\right)-x^{*}, x_{n+1}-x^{*}\right\rangle \\
\leq & {\left[1-\frac{2 \alpha_{n}(1-\alpha)}{1-\alpha_{n} \alpha}\right]\left\|x_{n+1}-x^{*}\right\|^{2} } \\
& +\frac{2 \alpha_{n}(1-\alpha)}{1-\alpha_{n} \alpha}\left[\frac{\alpha_{n} M}{2(1-\alpha)}+\frac{1}{1-\alpha}\left\langle f\left(x^{*}\right)-x^{*}, x_{n+1}-x^{*}\right\rangle\right] \\
= & \left(1-\delta_{n}\right)\left\|x_{n+1}-x^{*}\right\|^{2}+\delta_{n} \sigma_{n},
\end{aligned}
$$

where $\delta_{n}=\frac{2 \alpha_{n}(1-\alpha)}{1-\alpha_{n} \alpha}$ and $\sigma_{n}=\left[\frac{\alpha_{n} M}{2(1-\alpha)}+\frac{1}{1-\alpha}\left\langle f\left(x^{*}\right)-A x^{*}, x_{n+1}-x^{*}\right\rangle\right]$. It is easy to see that $\Sigma_{n=0}^{\infty}=\infty$ and $\lim \sup _{n \rightarrow \infty} \sigma_{n} \leq 0$. By Lemma 2.5 we conclude that $x_{n} \rightarrow x^{*}$ as $n \rightarrow \infty$.

## References

[1] F. E. Browder and W. V. Petryshyn, Construction of Fixed points of nonlinear mappings in Hilbert space, J. Math. Anal. Appl. (1967), no. 20, 197-228.
[2] H. Iiduka and W. Takahashi, Strong convergence theorems for nonexpansive mappings and inverse-strongly monotone mappings, Nonlinear Anal. (2005), no. 613, 341-350.
[3] H. K. Xu, An iterative approach to quadratic optimization, J. Optim. Theory Appl. (2003), no. 116, 659-678.
[4] L. C. Ceng and J. C. Yao, A hybrid iterative scheme for mixed equilibrium problems and fixed points problems, J. Comput. Appl. Math. (2008), no. 214 (1), 186-201.
[5] R. T. Rockafellar, On the maximality of sums of nonlinear monotone operators, Trans. Amer. Math. Soc. (1970), no. 149, 75-88.
[6] T. Suziki, Strong convergence of Krasnoselskii and Mann's type sequences for oneparameter nonexpansive semigroups without Bochner integrals, J. Math. Anal. Appl. (2005), no. 305, 227-239.
[7] W. Takahashi and K. Shimoji, Convergence theorems for nonexpansive mappings and feasibility problems, Math. Comput. Model. (2000), no. 32, 1463-1471.

Lijuan Zhang
College of Mathematics and Computer
Hebei University
Baoding, 071002, PR China
E-mail address: zhanglj@hbu.edu.cn
Junmin Chen
College of Mathematics and Computer
Hebei University
Baoding, 071002, PR China
E-mail address: chenjunm01@163.com


[^0]:    Received May 14, 2009; Accepted January 4, 2010.
    2000 Mathematics Subject Classification. 49J30;47H10.
    Key words and phrases. mixed equilibrium problems, nonexpansive mapping, hybrid iterative schemes, fixed points, inverse-strongly monotone.

    This work was financially supported by National Natural Science Foundation of China (No.10971045), Special Fund of Mathematics Research of Natural Science Foundation of Hebei Province (No. 07M003), The scientific Research Project of Department of Education of Hebei Province (No.Z2009111).

