• 제목/요약/키워드: Non-Manifold

검색결과 269건 처리시간 0.028초

교환법칙을 만족하는 비다양체 모델의 선택적 불리안 작업의 개발 (Development of the Selective Boolean Operations on Non-Manifold Models)

  • 이상헌;이강수;박상근
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.836-839
    • /
    • 2002
  • This paper describes the selective Boolean operations on non-manifold geometric models whose union and subtraction operations are communicative. These operations guarantee the same resulting shape in spite of change of the order of Boolean operations, and the integrity of the model for omission of some features. In addition, a B-rep model for a modified modeling history is obtained in a short time, as no boundary evaluation is necessary. These features enable easy implementation of multi-resolution representation of B-rep models.

  • PDF

SOME RESULTS OF EXPONENTIALLY BIHARMONIC MAPS INTO A NON-POSITIVELY CURVED MANIFOLD

  • Han, Yingbo
    • 대한수학회보
    • /
    • 제53권6호
    • /
    • pp.1651-1670
    • /
    • 2016
  • In this paper, we investigate exponentially biharmonic maps u : (M, g) ${\rightarrow}$ (N, h) from a Riemannian manifold into a Riemannian manifold with non-positive sectional curvature. We obtain that if $\int_{M}e^{\frac{p{\mid}r(u){\mid}^2}{2}{\mid}{\tau}(u){\mid}^pdv_g$ < ${\infty}$ ($p{\geq}2$), $\int_{M}{\mid}{\tau}(u){\mid}^2dv_g$ < ${\infty}$ and $\int_{M}{\mid}d(u){\mid}^2dv_g$ < ${\infty}$, then u is harmonic. When u is an isometric immersion, we get that if $\int_{M}e^{\frac{pm^2{\mid}H{\mid}^2}{2}}{\mid}H{\mid}^qdv_g$ < ${\infty}$ for 2 ${\leq}$ p < ${\infty}$ and 0 < q ${\leq}$ p < ${\infty}$, then u is minimal. We also obtain that any weakly convex exponentially biharmonic hypersurface in space form N(c) with $c{\leq}0$ is minimal. These results give affirmative partial answer to conjecture 3 (generalized Chen's conjecture for exponentially biharmonic submanifolds).

SOME RESULTS OF f-BIHARMONIC MAPS INTO A RIEMANNIAN MANIFOLD OF NON-POSITIVE SECTIONAL CURVATURE

  • He, Guoqing;Li, Jing;Zhao, Peibiao
    • 대한수학회보
    • /
    • 제54권6호
    • /
    • pp.2091-2106
    • /
    • 2017
  • The authors investigate f-biharmonic maps u : (M, g) ${\rightarrow}$ (N, h) from a Riemannian manifold into a Riemannian manifold with non-positive sectional curvature, and derive that if $\int_{M}f^p{\mid}{\tau}(u){\mid}^pdv_g$ < ${\infty}$, $\int_{M}{\mid}{\tau}(u){\mid}^2dv_g$ < ${\infty}$ and $\int_{M}{\mid}du{\mid}^2dv_g$ < ${\infty}$, then u is harmonic. When u is an isometric immersion, the authors also get that if u satisfies some integral conditions, then it is minimal. These results give an affirmative partial answer to conjecture 4 (generalized Chen's conjecture for f-biharmonic submanifolds).

SOME RESULTS OF p-BIHARMONIC MAPS INTO A NON-POSITIVELY CURVED MANIFOLD

  • HAN, YINGBO;ZHANG, WEI
    • 대한수학회지
    • /
    • 제52권5호
    • /
    • pp.1097-1108
    • /
    • 2015
  • In this paper, we investigate p-biharmonic maps u : (M, g) $\rightarrow$ (N, h) from a Riemannian manifold into a Riemannian manifold with non-positive sectional curvature. We obtain that if ${\int}_M|{\tau}(u)|^{{\alpha}+p}dv_g$ < ${\infty}$ and ${\int}_M|d(u)|^2dv_g$ < ${\infty}$, then u is harmonic, where ${\alpha}{\geq}0$ is a nonnegative constant and $p{\geq}2$. We also obtain that any weakly convex p-biharmonic hypersurfaces in space formN(c) with $c{\leq}0$ is minimal. These results give affirmative partial answer to Conjecture 2 (generalized Chen's conjecture for p-biharmonic submanifolds).

LIGHTLIKE SUBMANIFOLDS OF A SEMI-RIEMANNIAN MANIFOLD WITH A SEMI-SYMMETRIC NON-METRIC CONNECTION

  • Yucesan, Ahmet;Yasar, Erol
    • 대한수학회보
    • /
    • 제47권5호
    • /
    • pp.1089-1103
    • /
    • 2010
  • In this paper, we study lightlike submanifolds of a semi-Riemannian manifold admitting a semi-symmetric non-metric connection. We obtain a necessary and a sufficient condition for integrability of the screen distribution. Then we give the conditions under which the Ricci tensor of a lightlike submanifold with a semi-symmetric non-metric connection is symmetric. Finally, we show that the Ricci tensor of a lightlike submanifold of semi-Riemannian space form is not parallel with respect to the semi-symmetric non-metric connection.

특징형상기반 다중해상도 모델링에 관한 연구 - Part I: 특징형상의 유효영역 (A Study on Feature-Based Multi-Resolution Modelling - Part I: Effective Zones of Features)

  • 이규열;이상헌
    • 한국CDE학회논문집
    • /
    • 제10권6호
    • /
    • pp.432-443
    • /
    • 2005
  • Recent three-dimensional feature-based CAD systems based on solid or non-manifold modelling functionality have been widely used for product design in manufacturing companies. When product models associated with features are used in various downstream applications such as analysis, however, simplified and abstracted models at various levels of detail (LODs) are frequently more desirable and useful than the full detailed model. To provide multi-resolution models, the features need to be rearranged according to a criterion that measures the significance of the feature. However, if the features are rearranged, the resulting shape is possibly different from the original because union and subtraction Boolean operations are not commutative. To solve this problem, in this paper, the new concept of the effective zone of a feature is defined and identified using Boolean algebra. By introducing the effective zone, an arbitrary rearrangement of features becomes possible and arbitrary LOD criteria may be selected to suit various applications. Besides, because the effective zone of a feature is independent of the data structure of the model, the multi-resolution modelling algorithm based on the effective zone can be implemented on any 3D CAD system based on conventional solid representations as well as non-manifold topological (NMT) representations.

GRADIENT EINSTEIN-TYPE CONTACT METRIC MANIFOLDS

  • Kumara, Huchchappa Aruna;Venkatesha, Venkatesha
    • 대한수학회논문집
    • /
    • 제35권2호
    • /
    • pp.639-651
    • /
    • 2020
  • Consider a gradient Einstein-type metric in the setting of K-contact manifolds and (κ, µ)-contact manifolds. First, it is proved that, if a complete K-contact manifold admits a gradient Einstein-type metric, then M is compact, Einstein, Sasakian and isometric to the unit sphere 𝕊2n+1. Next, it is proved that, if a non-Sasakian (κ, µ)-contact manifolds admits a gradient Einstein-type metric, then it is flat in dimension 3, and for higher dimension, M is locally isometric to the product of a Euclidean space 𝔼n+1 and a sphere 𝕊n(4) of constant curvature +4.

THE SCHWARZIAN DERIVATIVE AND CONFORMAL TRANSFORMATION ON FINSLER MANIFOLDS

  • Bidabad, Behroz;Sedighi, Faranak
    • 대한수학회지
    • /
    • 제57권4호
    • /
    • pp.873-892
    • /
    • 2020
  • Thurston, in 1986, discovered that the Schwarzian derivative has mysterious properties similar to the curvature on a manifold. After his work, there are several approaches to develop this notion on Riemannian manifolds. Here, a tensor field is identified in the study of global conformal diffeomorphisms on Finsler manifolds as a natural generalization of the Schwarzian derivative. Then, a natural definition of a Mobius mapping on Finsler manifolds is given and its properties are studied. In particular, it is shown that Mobius mappings are mappings that preserve circles and vice versa. Therefore, if a forward geodesically complete Finsler manifold admits a Mobius mapping, then the indicatrix is conformally diffeomorphic to the Euclidean sphere Sn-1 in ℝn. In addition, if a forward geodesically complete absolutely homogeneous Finsler manifold of scalar flag curvature admits a non-trivial change of Mobius mapping, then it is a Riemannian manifold of constant sectional curvature.