LIGHTLIKE SUBMANIFOLDS OF A SEMI-RIEMANNIAN MANIFOLD WITH A SEMI-SYMMETRIC NON-METRIC CONNECTION

Ahmet Yücesan and Erol Yaşar

Abstract

In this paper, we study lightlike submanifolds of a semiRiemannian manifold admitting a semi-symmetric non-metric connection. We obtain a necessary and a sufficient condition for integrability of the screen distribution. Then we give the conditions under which the Ricci tensor of a lightlike submanifold with a semi-symmetric non-metric connection is symmetric. Finally, we show that the Ricci tensor of a lightlike submanifold of semi-Riemannian space form is not parallel with respect to the semi-symmetric non-metric connection.

1. Introduction

The idea of a semi-symmetric non-metric connection on a Riemannian manifold was introduced by Ageshe and Chafle [1]. They defined a linear connection on a Riemannian manifold admitting a semi-symmetric non-metric connection, and studied some properties of the curvature tensor of a Riemannian manifold with respect to the semi-symmetric non-metric connection. De and Kamilya [4] gave basic properties of a hypersurface of a Riemannian manifold with a semi-symmetric non-metric connection. Ageshe and Chafle [2] obtained the equations of Gauss, Codazzi and Ricci associated with a semi-symmetric nonmetric connection and studied some properties of the submanifold of a space of constant curvature admitting a semi-symmetric non-metric connection. In an earlier paper [14], we studied lightlike hypersurfaces of a semi-Riemannian manifold admitting a semi-symmetric non-metric connection.

In this paper, we study lightlike submanifolds of a semi-Riemannian manifold with respect to the semi-symmetric non-metric connection because of

[^0]the following motivation: It is well known that while the geometry of semiRiemannian manifold is fully developed, its counter part of lightlike submanifolds (for which the local geometry is completely different from the nondegenerate case) is relatively new and in a developing stage. When the need in general relativistic theories is considered, to study the general theory of lightlike submanifold for differential geometry is a very important topic. Several papers have been written on lightlike submanifolds in recent years (see [3], [7], [9] for instance) but the use of semi-symmetric non-metric connections has not been handled widely.

In the present paper, we have proved that on lightlike submanifold the connection induced from semi-symmetric non-metric connection is semi-symmetric non-metric, and also on screen distribution the connection induced from that connection is semi-symmetric non-metric connection. We have defined the induced geometrical objects with respect to the semi-symmetric non-metric connection on the triplet $\left(S(T M), S\left(T M^{\perp}\right), \operatorname{tr}(T M)\right)$. Then we have investigated the integrability condition of the screen distribution with respect to the semisymmetric non-metric connection. Also, we have given the conditions under which the Ricci tensor of a lightlike submanifold with respect to the semisymmetric non-metric connection is symmetric. Moreover, we have shown that the Ricci tensor of a lightlike submanifold of semi-Riemannian space form is not parallel with respect to the semi-symmetric non-metric connection.

2. Preliminaries

Let $(\widetilde{M}, \widetilde{g})$ be a real $(m+n)$-dimensional semi-Riemannian manifold of constant index such that $1 \leq \nu \leq m+n-1$ and (M, g) be an m-dimensional submanifold of \widetilde{M}. In case \widetilde{g} is degenerate on the tangent bundle $T M$ of M, M is called a lightlike submanifold of \widetilde{M}. Denote by g the induced tensor field of \widetilde{g} on M and suppose g is degenerate. Then, for each tangent space $T_{x} M$ we consider

$$
T_{x} M^{\perp}=\left\{Y_{x} \in T_{x} \widetilde{M} \mid \widetilde{g}_{x}\left(Y_{x}, X_{x}\right)=0, \forall X_{x} \in T_{x} M\right\}
$$

which is a degenerate n-dimensional subspace of $T_{x} \widetilde{M}$. Thus, both $T_{x} M$ and $T_{x} M^{\perp}$ are degenerate orthogonal subspaces but no longer complementary subspaces. For this case, there exists a subspace $\operatorname{Rad} T_{x} M=T_{x} M \cap T_{x} M^{\perp}$ called radical (null) subspace. If the mapping

$$
\operatorname{Rad} T M: x \in M \longrightarrow \operatorname{Rad} T_{x} M
$$

defines a smooth distribution on M of rank $r>0$, the submanifold M of \widetilde{M} is called r-lightlike (r-degenerate) submanifold and RadTM is called the radical (lightlike) distribution on M. In the following, there are four possible cases:

Case 1. M is called a r-lightlike submanifold if $1 \leq r<\min \{m, n\}$.
Case 2. M is called a coisotropic submanifold if $1<r=n<m$.
Case 3. M is called an isotropic submanifold if $1<r=m<n$.

Case 4. M is called a totally lightlike submanifold if $1<r=m=n$ [5].
In this paper, we have considered Case 1 where there exists a non-degenerate screen distribution $S(T M)$ which is a complementary vector subbundle to $\operatorname{Rad} T M$ in $T M$. Therefore,

$$
\begin{equation*}
T M=\operatorname{Rad} T M \perp S(T M) \tag{2.1}
\end{equation*}
$$

in which \perp denotes orthogonal direct sum. Although $S(T M)$ is not unique, it is canonically isomorphic to the factor vector bundle $T M / \operatorname{Rad} T M$. Denote an r-lightlike submanifold by $\left(M, g, S(T M), S\left(T M^{\perp}\right)\right.$), where $S\left(T M^{\perp}\right)$ is a complementary vector bundle of $\operatorname{Rad} T M$ in $T M^{\perp}$ and $S\left(T M^{\perp}\right)$ is non-degenerate with respect to \widetilde{g}. Let us define that $\operatorname{tr}(T M)$ is a complementary (but never orthogonal) vectors bundle to $T M$ in $T \widetilde{M}_{\left.\right|_{M}}$ and

$$
\begin{equation*}
\operatorname{tr}(T M)=\operatorname{ltr}(T M) \perp S\left(T M^{\perp}\right) \tag{2.2}
\end{equation*}
$$

where $\operatorname{ltr}(T M)$ is an arbitrary lightlike transversal vector bundle of M. Then we have

$$
\begin{align*}
T \widetilde{M}_{\left.\right|_{M}} & =T M \oplus \operatorname{tr}(T M) \\
& =(\operatorname{Rad} T M \oplus \operatorname{ltr}(T M)) \perp S(T M) \perp S\left(T M^{\perp}\right) \tag{2.3}
\end{align*}
$$

where \oplus denotes direct sum, but it is not orthogonal [5].
Now we assume that \mathcal{U} is a local coordinate neighborhood of M. We consider the following local quasi-orthonormal field of frames on \widetilde{M} along M :

$$
\begin{equation*}
\left\{\xi_{1}, \ldots, \xi_{r}, X_{r+1}, \ldots, X_{m}, N_{1}, \ldots, N_{r}, W_{r+1}, \ldots, W_{n}\right\} \tag{2.4}
\end{equation*}
$$

where $\left\{\xi_{1}, \ldots, \xi_{r}\right\}$ and $\left\{N_{1}, \ldots, N_{r}\right\}$ are lightlike basis of $\Gamma\left(\operatorname{Rad}(T M)_{\mid \mathcal{u}}\right)$ and $\Gamma\left(\operatorname{ltr}(T M)_{\mid \mathcal{U}}\right)$, respectively and $\left\{X_{r+1}, \ldots, X_{m}\right\}$ and $\left\{W_{r+1}, \ldots, W_{n}\right\}$ are orthonormal basis of $\Gamma\left(S(T M)_{\left.\right|_{u}}\right)$ and $\Gamma\left(S\left(T M^{\perp}\right)_{\left.\right|_{u}}\right)$, respectively, where the following conditions are satisfied ([5])

$$
\begin{aligned}
& \widetilde{g}\left(N_{i}, \xi_{j}\right)=\delta_{i j}, 1 \leq i, j \leq r, \quad \widetilde{g}\left(N_{i}, N_{j}\right)=\widetilde{g}\left(N_{i}, X_{k}\right)=0, r+1 \leq k \leq m, \\
& X_{k} \in \Gamma\left(S(T M)_{\mid \mathfrak{u}}\right), N_{i} \in \Gamma\left(\operatorname{ltr}(T M)_{\mid \mathfrak{u}}\right) .
\end{aligned}
$$

Example 2.1 ([5]). Consider in \mathbb{R}_{2}^{4} the 1-lightlike submanifold M given by the equations:

$$
x^{3}=\frac{1}{\sqrt{2}}\left(x^{1}+x^{2}\right), x^{4}=\frac{1}{2} \log \left(1+\left(x^{1}-x^{2}\right)^{2}\right) .
$$

Then we have $T M=\operatorname{Span}\left\{U_{1}, U_{2}\right\}$ and $T M^{\perp}=\operatorname{Span}\left\{H_{1}, H_{2}\right\}$ where we set

$$
\begin{aligned}
& U_{1}=\sqrt{2}\left(1+\left(x^{1}-x^{2}\right)^{2}\right) \frac{\partial}{\partial x^{1}}+\left(1+\left(x^{1}-x^{2}\right)^{2}\right) \frac{\partial}{\partial x^{3}}+\sqrt{2}\left(x^{1}-x^{2}\right) \frac{\partial}{\partial x^{4}} \\
& U_{2}=\sqrt{2}\left(1+\left(x^{1}-x^{2}\right)^{2}\right) \frac{\partial}{\partial x^{2}}+\left(1+\left(x^{1}-x^{2}\right)^{2}\right) \frac{\partial}{\partial x^{3}}-\sqrt{2}\left(x^{1}-x^{2}\right) \frac{\partial}{\partial x^{4}}
\end{aligned}
$$

and

$$
H_{1}=\frac{\partial}{\partial x^{1}}+\frac{\partial}{\partial x^{2}}+\sqrt{2} \frac{\partial}{\partial x^{3}}
$$

$$
H_{2}=2\left(x^{2}-x^{1}\right) \frac{\partial}{\partial x^{2}}+\sqrt{2}\left(x^{2}-x^{1}\right) \frac{\partial}{\partial x^{3}}+\left(1+\left(x^{1}-x^{2}\right)^{2}\right) \frac{\partial}{\partial x^{4}}
$$

It follows that $\operatorname{Rad}(T M)$ is a distribution on M of rank 1 spanned by $\xi=H_{1}$. Choose $S(T M)$ and $S\left(T M^{\perp}\right)$ spanned by U_{2} and H_{2} which are timelike and spacelike respectively. Finally, the lightlike transversal vector bundle

$$
\operatorname{ltr}(T M)=\operatorname{Span}\left\{N=-\frac{1}{2} \frac{\partial}{\partial x^{1}}+\frac{1}{2} \frac{\partial}{\partial x^{2}}+\frac{1}{\sqrt{2}} \frac{\partial}{\partial x^{3}}\right\}
$$

and the transversal vector bundle

$$
\operatorname{tr}(T M)=\operatorname{Span}\left\{N, H_{2}\right\}
$$

are obtained.

3. Semi-symmetric non-metric connection

Let \widetilde{M} be an $(m+n)$-dimensional semi-Riemannian manifold with a semiRiemannian metric \widetilde{g} of index $1 \leq \nu \leq m+n-1$. A linear connection $\widetilde{\nabla}$ on \widetilde{M} is called a semi-symmetric non-metric connection if

$$
\left(\widetilde{\nabla}_{\widetilde{X}} \widetilde{g}\right)(\widetilde{Y}, \widetilde{Z})=-\widetilde{\pi}(\widetilde{Y}) \widetilde{g}(\widetilde{X}, \widetilde{Z})-\widetilde{\pi}(\widetilde{Z}) \widetilde{g}(\widetilde{X}, \widetilde{Y})
$$

and the torsion tensor \widetilde{T} of $\widetilde{\nabla}$ satisfies

$$
\widetilde{T}(\widetilde{X}, \widetilde{Y})=\widetilde{\pi}(\widetilde{Y}) \widetilde{X}-\widetilde{\pi}(\widetilde{X}) \widetilde{Y}
$$

for any $\widetilde{X}, \widetilde{Y}, \widetilde{Z} \in \Gamma(T \widetilde{M})$, where $\widetilde{\pi}$ is a 1-form on $\widetilde{M}[1]$.
We can now suppose that the semi-Riemannian manifold \widetilde{M} admits a semisymmetric non-metric connection $\widetilde{\nabla}$ given by

$$
\begin{equation*}
\widetilde{\nabla}_{\widetilde{X}} \widetilde{Y}=\stackrel{\circ}{\nabla}_{\widetilde{X}} \widetilde{Y}+\widetilde{\pi}(\widetilde{Y}) \widetilde{X} \tag{3.1}
\end{equation*}
$$

for any $\widetilde{X}, \widetilde{Y} \in \Gamma(T \widetilde{M})$, where $\stackrel{\circ}{\nabla}$ is a Levi-civita connection with respect to \widetilde{g} and $\widetilde{\pi}$ is a 1-form associated with the vector field \widetilde{Q} on \widetilde{M} given by

$$
\widetilde{\pi}(\widetilde{X})=\widetilde{g}(\widetilde{X}, \widetilde{Q})
$$

(see [1]). By using the first form of the decomposition (2.3), we can write

$$
\begin{equation*}
\widetilde{Q}=Q+\sum_{i=1}^{r} \lambda_{i} N_{i}+\sum_{\alpha=r+1}^{n} \lambda_{\alpha} W_{\alpha} \tag{3.2}
\end{equation*}
$$

where Q is a vector field and $\lambda_{a}, 1 \leq a \leq n$ are real valued functions on M.
If we denote by $\stackrel{\circ}{\nabla}$ the symmetric linear connection induced on M from $\stackrel{\circ}{\nabla}$ on \widetilde{M}, then we have the Gauss formula with respect to $\stackrel{\circ}{\nabla}$ for $X, Y \in \Gamma(T M)$, $N_{i} \in \Gamma(\operatorname{ltr}(T M)), 1 \leq i \leq r$ and $W_{\alpha} \in \Gamma\left(S\left(T M^{\perp}\right)\right), r+1 \leq \alpha \leq n$

$$
\begin{equation*}
\stackrel{\circ}{\nabla}_{X} Y=\stackrel{\circ}{\nabla}_{X} Y+\sum_{i=1}^{r} \stackrel{\circ}{h}_{i}(X, Y) N_{i}+\sum_{\alpha=r+1}^{n} \stackrel{\circ}{h}_{\alpha}(X, Y) W_{\alpha}, \tag{3.3}
\end{equation*}
$$

where $\left\{\stackrel{\circ}{h_{i}}\right\}$ and $\left\{\stackrel{\circ}{h}_{\alpha}^{s}\right\}$ are called the local lightlike second fundamental forms and the local screen second fundamental forms of M which are symmetric bilinear forms [5]. Let us define the connection ∇ on M that is induced from the semi-symmetric non-metric connection $\widetilde{\nabla}$ on \widetilde{M} given by the equation below is called the Gauss formula with respect to $\widetilde{\nabla}$ for any $X, Y \in \Gamma(T M)$

$$
\begin{equation*}
\widetilde{\nabla}_{X} Y=\nabla_{X} Y+\sum_{i=1}^{r} h_{i}^{\ell}(X, Y) N_{i}+\sum_{\alpha=r+1}^{n} h_{\alpha}^{s}(X, Y) W_{\alpha} \tag{3.4}
\end{equation*}
$$

where $\left\{h_{i}^{\ell}\right\}$ and $\left\{h_{\alpha}^{s}\right\}$ are called the local lightlike second fundamental forms and the local screen second fundamental forms of M which are tensors of type $(0,2)$ on M.

In view of (3.1), we get

$$
\widetilde{\nabla}_{X} Y=\stackrel{\circ}{\nabla}_{X} Y+\tilde{\pi}(Y) X
$$

and therefore, by using (3.3) and (3.4), we can also write

$$
\begin{align*}
& \nabla_{X} Y+\sum_{i=1}^{r} h_{i}^{\ell}(X, Y) N_{i}+\sum_{\alpha=r+1}^{n} h_{\alpha}^{s}(X, Y) W_{\alpha} \tag{3.5}\\
= & \stackrel{\circ}{\nabla}_{X} Y+\sum_{i=1}^{r} \stackrel{\circ}{h}_{i}(X, Y) N_{i}+\sum_{\alpha=r+1}^{n} \stackrel{\circ}{h}_{\alpha}^{s}(X, Y) W_{\alpha}+\widetilde{\pi}(Y) X
\end{align*}
$$

from which we have

$$
\begin{equation*}
\nabla_{X} Y=\stackrel{\circ}{\nabla}_{X} Y+\pi(Y) X \tag{3.6}
\end{equation*}
$$

where $\pi(Y)=\widetilde{\pi}(Y)$ and we also have

$$
\begin{equation*}
h_{i}^{\ell}=\stackrel{\circ}{h_{i}} \text { and } h_{\alpha}^{s}=\stackrel{\circ}{h_{\alpha}^{s}}, 1 \leq i \leq r, r+1 \leq \alpha \leq n \tag{3.7}
\end{equation*}
$$

for any $X, Y \in \Gamma(T M)$.
Taking account of (3.6) and the connection induced on lightlike submanifold from Levi-Civita connection is not metric, we get

$$
\begin{align*}
\left(\nabla_{X} g\right)(Y, Z)= & \sum_{i=1}^{r}\left\{h_{i}^{\ell}(X, Y) \eta_{i}(Z)+h_{i}^{\ell}(X, Z) \eta_{i}(Y)\right\} \\
& -\pi(Y) g(X, Z)-\pi(Z) g(X, Y) \tag{3.8}
\end{align*}
$$

where

$$
\begin{equation*}
\eta_{i}(Z)=g\left(N_{i}, Z\right), 1 \leq i \leq r \tag{3.9}
\end{equation*}
$$

for any $X, Y, Z \in \Gamma(T M)$ and $N_{i} \in \Gamma(\operatorname{ltr}(T M))$. We also obtain from (3.6)

$$
\begin{equation*}
T(X, Y)=\pi(Y) X-\pi(X) Y \tag{3.10}
\end{equation*}
$$

in which T denotes the torsion tensor of the connection ∇. Then from (3.8) and (3.10) we have:

Proposition 3.1. The induced connection on a lightlike submanifold of a semiRiemannian manifold with a semi-symmetric non-metric connection is also semi-symmetric non-metric connection.

The Weingarten formulae with respect to $\stackrel{\circ}{\nabla}$ is given by

$$
\begin{equation*}
\stackrel{\circ}{\nabla}_{X} N_{i}=-\stackrel{\circ}{A}_{N_{i}} X+\stackrel{\circ}{\nabla}_{X}^{\ell} N_{i}+\stackrel{\circ}{D}^{s}\left(X, N_{i}\right), 1 \leq i \leq r, \tag{3.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\stackrel{\circ}{\nabla}_{X} W_{\alpha}=-\stackrel{\circ}{A}_{W_{\alpha}} X+\stackrel{\circ}{D}^{\ell}\left(X, W_{\alpha}\right)+\stackrel{\circ}{\nabla}_{X}^{s} W_{\alpha}, r+1 \leq \alpha \leq n \tag{3.12}
\end{equation*}
$$

for any $X \in \Gamma(T M), N_{i} \in \Gamma(\operatorname{ltr}(T M))$ and $W_{\alpha} \in \Gamma\left(S\left(T M^{\perp}\right)\right)$, where

$$
\begin{gathered}
\stackrel{\circ}{\nabla}_{X}^{\ell}: \Gamma\left(\operatorname { l t r } (T M) \longrightarrow \Gamma \left(\operatorname{ltr}(T M) ; \stackrel{\circ}{\nabla}_{X}^{\ell}(L V)=\stackrel{\circ}{D}_{X}^{\ell}(L V),\right.\right. \\
\quad \stackrel{\circ}{\nabla}_{X}^{s}: \Gamma\left(S\left(T M^{\perp}\right)\right) \longrightarrow \Gamma\left(S\left(T M^{\perp}\right)\right) ; \stackrel{\circ}{\nabla}_{X}^{s}(S V)=\stackrel{\circ}{D}_{X}^{s}(S V), \\
\stackrel{\circ}{D}^{\ell}: \Gamma(T M) \times \Gamma\left(S\left(T M^{\perp}\right)\right) \longrightarrow \Gamma(\operatorname{ltr}(T M)) ; \stackrel{\circ}{D}^{\ell}(X, S V)=\stackrel{\circ}{D}_{X}^{\ell}(S V), \\
\stackrel{\circ}{D}^{s}: \Gamma(T M) \times \Gamma(\operatorname{ltr}(T M)) \longrightarrow \Gamma\left(S\left(T M^{\perp}\right)\right) ; \stackrel{\circ}{D}^{s}(X, L V)=\stackrel{\circ}{D}_{X}^{s}(L V)
\end{gathered}
$$

for any $V \in \Gamma(\operatorname{tr}(T M))$ such that L and S are the projection morphisms of $\operatorname{tr}(T M)$ on $\operatorname{ltr}(T M)$ and $S\left(T M^{\perp}\right)$ respectively. Also $\stackrel{\circ}{\nabla}^{\ell}$ and $\stackrel{\circ}{\nabla}^{s}$ are linear connections on $\operatorname{ltr}(T M)$ and $S\left(T M^{\perp}\right)$, respectively, $\stackrel{\circ}{A}_{N_{i}}$ and $\stackrel{\circ}{A}_{W_{\alpha}}$ are called the shape operators of M with respect to N_{i} and W_{α}, respectively [5]. We define

$$
\begin{gathered}
\rho_{i j}(X)=\widetilde{g}\left(\stackrel{\circ}{\nabla}_{X}^{\ell} N_{i}, \xi_{j}\right), 1 \leq i, j \leq r \\
\sigma_{i \alpha}(X)=\varepsilon_{\alpha} \widetilde{g}\left(\stackrel{\circ}{D}^{s}\left(X, N_{i}\right), W_{\alpha}\right), r+1 \leq \alpha \leq n, 1 \leq i \leq r \\
\gamma_{\alpha j}(X)=\widetilde{g}\left(\stackrel{\circ}{D}\left(X, W_{\alpha}\right), \xi_{j}\right), r+1 \leq \alpha \leq n, 1 \leq j \leq r \\
\mu_{\alpha \beta}(X)=\varepsilon_{\beta} \widetilde{g}\left(\stackrel{\circ}{\nabla}_{X}^{s} W_{\alpha}, W_{\beta}\right), r+1 \leq \alpha, \beta \leq n
\end{gathered}
$$

for any $X \in \Gamma(T M), N_{i} \in \Gamma\left(\operatorname{ltr}(T M)\right.$ and $W_{\alpha} \in \Gamma\left(S\left(T M^{\perp}\right)\right)$. Thus, (3.11) and (3.12) become

$$
\begin{equation*}
\stackrel{\circ}{\nabla}_{X} N_{i}=-\stackrel{\circ}{A}_{N_{i}} X+\sum_{j=1}^{r} \rho_{i j}(X) N_{j}+\sum_{\alpha=r+1}^{n} \sigma_{i \alpha}(X) W_{\alpha}, 1 \leq i \leq r \tag{3.13}
\end{equation*}
$$

and

$$
\begin{equation*}
\stackrel{\circ}{\nabla_{X}} W_{\alpha}=-\stackrel{\circ}{A}_{W_{\alpha}} X+\sum_{j=1}^{r} \gamma_{\alpha j}(X) N_{j}+\sum_{\beta=r+1}^{n} \mu_{\alpha \beta}(X) W_{\beta}, r+1 \leq \alpha \leq n \tag{3.14}
\end{equation*}
$$

Let us denote by P the projection morphism of $T M$ on $S(T M)$ with respect to the decomposition (2.1). Then we can write $X=P X+\sum_{i=1}^{r} \eta_{i}(X) \xi_{i}$ for any $X \in \Gamma(T M)$. Next, by using (3.1) and (3.2) we have

$$
\begin{gathered}
\widetilde{\nabla}_{X} N_{i}=\stackrel{\circ}{\nabla}_{X} N_{i}+\eta_{i}(Q) X, 1 \leq i \leq r, \\
\widetilde{\nabla}_{X} W_{\alpha}=\stackrel{\circ}{\nabla}_{X} W_{\alpha}+\varepsilon_{\alpha} \lambda_{\alpha} X, r+1 \leq \alpha \leq n .
\end{gathered}
$$

Substituting (3.13) and (3.14) into the above equations, we obtain

$$
\begin{equation*}
\widetilde{\nabla}_{X} N_{i}=\left(-\stackrel{\circ}{A}_{N_{i}}+\eta_{i}(Q) I\right) X+\sum_{j=1}^{r} \rho_{i j}(X) N_{j}+\sum_{\alpha=r+1}^{n} \sigma_{i \alpha}(X) W_{\alpha}, 1 \leq i \leq r \tag{3.15}
\end{equation*}
$$

$$
\begin{align*}
\widetilde{\nabla}_{X} W_{\alpha}= & \left(-{\stackrel{\circ}{A} W_{\alpha}}+\varepsilon_{\alpha} \lambda_{\alpha} I\right) X+\sum_{i=1}^{r} \gamma_{\alpha j}(X) N_{j} \\
& +\sum_{\beta=r+1}^{n} \mu_{\alpha \beta}(X) W_{\beta}, r+1 \leq \alpha \leq n, \tag{3.16}
\end{align*}
$$

where I is the identity tensor and $\widetilde{\pi}\left(N_{i}\right)=\widetilde{g}\left(N_{i}, \widetilde{Q}\right)=\eta_{i}(Q)$. Let us define that $A_{N_{i}}, 1 \leq i \leq r$, and $A_{W_{\alpha}}, r+1 \leq \alpha \leq n$ are

$$
A_{N_{i}}=\stackrel{\circ}{A}_{N_{i}}-\eta_{i}(Q) I,
$$

and

$$
A_{W_{\alpha}}=\stackrel{\circ}{A}_{W_{\alpha}}-\varepsilon_{\alpha} \lambda_{\alpha} I,
$$

respectively. Then (3.15) and (3.16) become

$$
\begin{equation*}
\widetilde{\nabla}_{X} N_{i}=-A_{N_{i}} X+\sum_{j=1}^{r} \rho_{i j}(X) N_{j}+\sum_{\alpha=r+1}^{n} \sigma_{i \alpha}(X) W_{\alpha}, 1 \leq i \leq r \tag{3.17}
\end{equation*}
$$

and
(3.18) $\widetilde{\nabla}_{X} W_{\alpha}=-A_{W_{\alpha}} X+\sum_{j=1}^{r} \gamma_{\alpha j}(X) N_{j}+\sum_{\beta=r+1}^{n} \mu_{\alpha \beta}(X) W_{\beta}, \quad r+1 \leq \alpha \leq n$ for any $X \in \Gamma(T M), N_{i} \in \Gamma(\operatorname{ltr}(T M))$ and $W_{\alpha} \in \Gamma\left(S\left(T M_{\sim}^{\perp}\right)\right)$. We will call (3.17) and (3.18) the Weingarten formulae with respect to $\widetilde{\nabla}$.

By using (3.1), (3.4), (3.17), (3.18) and taking into account that $\stackrel{\circ}{\nabla}$ is a metric connection, we have
(3.19) $\widetilde{g}\left(N_{i}, A_{W_{\alpha}} X\right)=\sigma_{i \alpha}(X) \varepsilon_{\alpha}-\varepsilon_{\alpha} \lambda_{\alpha} \eta_{i}(X), 1 \leq i \leq r, r+1 \leq \alpha \leq n$,

$$
\begin{equation*}
\widetilde{g}\left(A_{W_{\alpha}} X, Y\right)+\varepsilon_{\alpha} \lambda_{\alpha} g(X, Y)=\varepsilon_{\alpha} h_{\alpha}^{s}(X, Y)+\sum_{i=1}^{r} \gamma_{\alpha i}(X) \eta_{i}(Y), \tag{3.20}
\end{equation*}
$$

$$
\begin{equation*}
h_{i}^{\ell}(X, Y)+\widetilde{g}\left(\nabla_{X} \xi_{i}, Y\right)=\lambda_{i} g(X, Y) \tag{3.21}
\end{equation*}
$$

for any $X, Y \in \Gamma(T M), \xi_{i} \in \Gamma(\operatorname{Rad} T M), W_{\alpha} \in \Gamma\left(S\left(T M^{\perp}\right)\right), N_{i} \in \Gamma(\operatorname{ltr}(T M))$.
Now, we give geometrical objects for screen distribution. With the analysis of (2.1), we get

$$
\begin{align*}
\stackrel{\circ}{\nabla}_{X} P Y & =\stackrel{\circ}{\nabla}_{X}^{*} P Y+\sum_{i=1}^{r} \stackrel{\circ}{h}_{i}^{*}(X, P Y) \xi_{i}, \tag{3.22}\\
\stackrel{\circ}{\nabla}_{X} \xi_{i} & =-\stackrel{\circ}{A}_{\xi_{i}}^{*} X+\stackrel{\circ}{\nabla}_{X}^{* t} \xi_{i}, 1 \leq i \leq r \tag{3.23}
\end{align*}
$$

for any $X, Y \in \Gamma(T M)$ and $\xi_{i} \in \Gamma(\operatorname{Rad} T M), 1 \leq i \leq r$, where $\left\{\nabla_{\nabla_{X}^{*}}^{*} P Y\right.$,
 respectively. It follows that $\stackrel{\circ}{\nabla}^{*}$ and $\stackrel{\circ}{\nabla}^{* t}$ are metric linear connections on complementary distributions $S(T M)$ and $\operatorname{Rad}(T M)$, respectively, $\stackrel{\circ}{A}_{\xi_{i}}^{*}$ are shape operator of $S(T M)$ with respect to $\xi_{i}, \stackrel{\circ}{h}_{i}^{*}$ are bilinear forms on $\Gamma(T M) \times$ $\Gamma(S(T M))$. Also by using (3.3) and (3.23) we obtain

$$
\begin{equation*}
\stackrel{\circ \ell}{h_{i}}(X, P Y)=\widetilde{g}\left(\stackrel{\circ}{A}_{\xi_{i}}^{*} X, P Y\right), 1 \leq i \leq r \tag{3.24}
\end{equation*}
$$

for any $X, Y \in \Gamma(T M)[5]$. We define

$$
u_{i j}(X)=g\left(\stackrel{\circ}{\nabla}_{X}^{* t} \xi_{i}, N_{j}\right), 1 \leq i, j \leq r
$$

for any $X \in \Gamma(T M)$ and $\xi_{i} \in \Gamma(\operatorname{Rad} T M), 1 \leq i \leq r$. Hence, (3.23) can be written as

$$
\begin{equation*}
\stackrel{\circ}{\nabla}_{X} \xi_{i}=-\stackrel{\circ}{A}_{\xi_{i}}^{*} X+\sum_{j=1}^{r} u_{i j}(X) \xi_{j}, 1 \leq i \leq r . \tag{3.25}
\end{equation*}
$$

Analogous to the equation (3.22) we have

$$
\begin{equation*}
\nabla_{X} P Y=\nabla_{X}^{*} P Y+\sum_{i=1}^{r} h_{i}^{*}(X, P Y) \xi_{i} \tag{3.26}
\end{equation*}
$$

where h_{i}^{*} is the second fundamental form of distribution $S(T M)$.
From (3.6), we get

$$
\begin{equation*}
\nabla_{X} P Y=\stackrel{\circ}{\nabla}_{X} P Y+\pi(P Y) X \tag{3.27}
\end{equation*}
$$

Thus, using (3.22) and (3.26), we have

$$
\nabla_{X}^{*} P Y+\sum_{i=1}^{r} h_{i}^{*}(X, P Y) \xi_{i}=\stackrel{\circ}{\nabla}_{X}^{*} P Y+\sum_{i=1}^{r} \stackrel{\circ}{h}_{i}(X, P Y) \xi_{i}+\pi(P Y) X
$$

from which

$$
\begin{equation*}
\nabla_{X}^{*} P Y=\stackrel{\circ}{\nabla}_{X}^{*} P Y+\pi(P Y) P X \tag{3.28}
\end{equation*}
$$

and

$$
\begin{equation*}
h_{i}^{*}(X, P Y)=\stackrel{\circ}{h}_{i}^{*}(X, P Y)+\eta_{i}(X) \pi(P Y), 1 \leq i \leq r \tag{3.29}
\end{equation*}
$$

for any $X, Y \in \Gamma(T M)$. In addition, substituting (3.25) into (3.6) we have

$$
\begin{equation*}
\nabla_{X} \xi_{i}=-A_{\xi_{i}}^{*} X+\sum_{j=1}^{r} u_{i j}(X) \xi_{j} \tag{3.30}
\end{equation*}
$$

where $A_{\xi_{i}}^{*}=\stackrel{\circ}{\stackrel{\circ}{A}_{\xi_{i}}^{*}}-\lambda_{i} I, 1 \leq i \leq r$. By using (3.28) we get

$$
\begin{equation*}
\left(\nabla_{X}^{*} g\right)(P Y, P Z)=-\pi(P Y) g(P X, P Z)-\pi(P Z) g(P X, P Y) \tag{3.31}
\end{equation*}
$$

We also have from (3.28)

$$
\begin{equation*}
T^{*}(P X, P Y)=\pi(P Y) P X-\pi(P X) P Y \tag{3.32}
\end{equation*}
$$

Then, in view of (3.31) and (3.32), we have:
Proposition 3.2. The induced connection on a screen distribution of lightlike submanifold with a semi-symmetric non-metric connection is a semi-symmetric non-metric connection.

Proposition 3.3. Let $\left(M, g, S(T M), S\left(T M^{\perp}\right)\right)$ be a lightlike submanifold of semi-Riemannian manifold $(\widetilde{M}, \widetilde{g})$ admitting a semi-symmetric non-metric connection. The screen distribution $S(T M)$ is integrable if and only if $\eta_{i}, 1 \leq i \leq$ r, are closed forms on $S(T M)$.

Proof. The torsion tensor T of ∇ does not vanish, by using (3.10), (3.26), (3.30) and equality given by

$$
X=P X+\sum_{i=1}^{r} \eta_{i}(X) \xi_{i}
$$

we can get

$$
\begin{align*}
{[X, Y]=} & \nabla_{X}^{*} P Y-\nabla_{Y}^{*} P X+\sum_{i=1}^{r} \eta_{i}(X) A_{\xi_{i}}^{*} Y-\eta_{i}(Y) A_{\xi_{i}}^{*} X \\
& +\sum_{i=1}^{r}\left\{h_{i}^{*}(X, P Y)-h_{i}^{*}(Y, P X)+X\left(\eta_{i}(Y)\right)-Y\left(\eta_{i}(X)\right)\right\} \xi_{i} \tag{3.33}\\
& +\sum_{i, j=1}^{r}\left\{\eta_{i}(Y) u_{i j}(X)-\eta_{i}(X) u_{i j}(Y)\right\} \xi_{j} \\
& +\left\{\pi(P X)+\sum_{i=1}^{r} \eta_{i}(X) \lambda_{i}\right\} P Y-\left\{\pi(P Y)+\sum_{i=1}^{r} \eta_{i}(Y) \lambda_{i}\right\} P X
\end{align*}
$$

$$
+\sum_{i=1}^{r}\left\{\pi(P X) \eta_{i}(Y)-\pi(P Y) \eta_{i}(X)\right\} \xi_{i}
$$

After that, by taking the scalar product of the equation above with $N_{i}, 1 \leq$ $i \leq r$, we have

$$
\begin{aligned}
\widetilde{g}\left([X, Y], N_{i}\right)= & h_{i}^{*}(X, P Y)-h_{i}^{*}(Y, P X)+X\left(\eta_{i}(Y)\right)-Y\left(\eta_{i}(X)\right) \\
& +\sum_{j=1}^{r}\left\{\eta_{i}(Y) u_{i j}(X)-\eta_{i}(X) u_{i j}(Y)\right\} \\
& +\pi(P X) \eta_{i}(Y)-\pi(P Y) \eta_{i}(X)
\end{aligned}
$$

From (3.9) and (3.34), we obtain

$$
\begin{aligned}
2 d \eta_{i}(X, Y)= & h_{i}^{*}(Y, P X)-h_{i}^{*}(X, P Y)+\sum_{j=1}^{r}\left\{\eta_{i}(X)\left\{u_{i j}(Y)+\pi(P Y)\right\}\right. \\
& \left.-\eta_{i}(Y)\left\{u_{i j}(X)+\pi(P X)\right\}\right\}
\end{aligned}
$$

or

$$
2 d \eta_{i}(P X, P Y)=h_{i}^{*}(P Y, P X)-h_{i}^{*}(P X, P Y), 1 \leq i \leq r
$$

which prove the assertion of the proposition.

4. The Gauss and Codazzi equations

We denote by

$$
\widetilde{R}(\widetilde{X}, \widetilde{Y}) \widetilde{Z}=\widetilde{\nabla}_{\widetilde{X}} \widetilde{\nabla}_{\widetilde{Y}} \widetilde{Z}-\widetilde{\nabla}_{\widetilde{Y}} \widetilde{\nabla} \widetilde{X}^{\widetilde{Z}}-\widetilde{\nabla}_{[\widetilde{X}, \widetilde{Y}]} \widetilde{Z}
$$

the curvature tensor of \widetilde{M} with respect to the semi-symmetric non-metric connection $\widetilde{\nabla}$ and by

$$
R(X, Y) Z=\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z
$$

that of M with respect to induced connection ∇, where $\widetilde{X}, \widetilde{Y}, \widetilde{Z} \in \Gamma(T \widetilde{M})$ and $X, Y, Z \in \Gamma(T M)$. Then by using (3.4), (3.17), (3.18), we get

$$
\begin{aligned}
\widetilde{R}(X, Y) Z= & R(X, Y) Z+\sum_{i=1}^{r}\left\{\left(\nabla_{X} h_{i}^{\ell}\right)(Y, Z)-\left(\nabla_{Y} h_{i}^{\ell}\right)(X, Z)\right. \\
& \left.+h_{i}^{\ell}(\pi(Y) X-\pi(X) Y, Z)\right\} N_{i} \\
& +\sum_{\alpha=r+1}^{n}\left\{\left(\nabla_{X} h_{\alpha}^{s}\right)(Y, Z)-\left(\nabla_{Y} h_{\alpha}^{s}\right)(X, Z)\right. \\
& \left.+h_{\alpha}^{s}(\pi(Y) X-\pi(X) Y, Z)\right\} W_{\alpha}+\sum_{i=1}^{r}\left\{h_{i}^{\ell}(X, Z) A_{N_{i}} Y\right. \\
& -h_{i}^{\ell}(Y, Z) A_{N_{i}} X+\sum_{\alpha=r+1}^{n} h_{\alpha}^{s}(X, Z) A_{W_{\alpha}} Y-h_{\alpha}^{s}(Y, Z) A_{W_{\alpha}} X
\end{aligned}
$$

$$
\begin{aligned}
& +\sum_{i, j=1}^{r}\left\{h_{i}^{\ell}(Y, Z) \rho_{i j}(X)-h_{i}^{\ell}(X, Z) \rho_{i j}(Y)\right. \\
& \left.+\sum_{\alpha=r+1}^{n} h_{\alpha}^{s}(Y, Z) \gamma_{\alpha j}(X)-h_{\alpha}^{s}(X, Z) \gamma_{\alpha j}(Y)\right\} N_{j} \\
& +\sum_{\alpha, \beta=r+1}^{n} \sum_{i=1}^{r}\left\{h_{i}^{\ell}(Y, Z) \sigma_{i \beta}(X)-h_{i}^{\ell}(X, Z) \sigma_{i \beta}(Y)\right. \\
& \left.+h_{\alpha}^{s}(Y, Z) \mu_{\alpha \beta}(X)-h_{\alpha}^{s}(X, Z) \mu_{\alpha \beta}(Y)\right\} W_{\beta}
\end{aligned}
$$

for any $X, Y, Z \in \Gamma(T M), N_{i} \in \Gamma(\operatorname{ltr}(T M))$ and $W_{\alpha} \in \Gamma\left(S\left(T M^{\perp}\right)\right)$. From (3.26), (3.30) and (4.1), we have the Gauss and Codazzi equations of the lightlike submanifold with a semi-symmetric non-metric connection:

$$
\begin{equation*}
\widetilde{g}(\widetilde{R}(X, Y) P Z, P U) \tag{4.2}
\end{equation*}
$$

$$
\begin{aligned}
= & g(R(X, Y) P Z, P U)+\sum_{i=1}^{r}\left\{h_{i}^{\ell}(X, P Z) g\left(A_{N_{i}} Y, P U\right)-h_{i}^{\ell}(Y, P Z) g\left(A_{N_{i}} X, P U\right)\right. \\
& +\sum_{\alpha=r+1}^{n} h_{\alpha}^{s}(X, P Z) g\left(A_{W_{\alpha}} Y, P U\right)-h_{\alpha}^{s}(Y, P Z) g\left(A_{W_{\alpha}} X, P U\right)
\end{aligned}
$$

(4.3) $\widetilde{g}\left(\widetilde{R}(X, Y) \xi_{i}, N_{i}\right)$

$$
\begin{aligned}
= & g\left(R(X, Y) \xi_{i}, N_{i}\right)+\sum_{j=1}^{r}\left\{h_{j}^{\ell}\left(X, \xi_{i}\right) g\left(A_{N_{j}} Y, N_{i}\right)-h_{j}^{\ell}\left(Y, \xi_{i}\right) g\left(A_{N_{j}} X, N_{i}\right)\right\} \\
& +\sum_{\alpha=r+1}^{n}\left\{h_{\alpha}^{s}\left(X, \xi_{i}\right) g\left(A_{W_{\alpha}} Y, N_{i}\right)-h_{\alpha}^{s}\left(Y, \xi_{i}\right) g\left(A_{W_{\alpha}} X, N_{i}\right)\right\},
\end{aligned}
$$

$$
\begin{align*}
\widetilde{g}\left(R(X, Y) \xi_{i}, N_{i}\right)= & h_{i}^{*}\left(Y, A_{\xi_{i}}^{*} X\right)-h_{i}^{*}\left(X, A_{\xi_{i}}^{*} Y\right)+2 d u_{i i}(X, Y) \tag{4.4}\\
& +\sum_{j=1}^{r}\left\{u_{i j}(Y) u_{j i}(X)-u_{i j}(X) u_{j i}(Y)\right\} .
\end{align*}
$$

Thus, from (4.1) we have the following proposition.
Proposition 4.1. Let $\left(M, g, S(T M), S\left(T M^{\perp}\right)\right)$ be a lightlike submanifold of semi-Riemannian manifold ($\widetilde{M}, \widetilde{g}$) admitting a semi-symmetric non-metric connection. If M is totally geodesic in \widetilde{M}, then

$$
\widetilde{R}(X, Y) Z=R(X, Y) Z, \forall X, Y, Z \in \Gamma(T M)
$$

5. The Ricci tensor of lightlike submanifold with a semi-symmetric non-metric connection

Let $\left(M, g, S(T M), S\left(T M^{\perp}\right)\right)$ be an m-dimensional lightlike submanifold of an $(m+n)$-dimensional semi-Riemannian manifold ($\widetilde{M}, \widetilde{g})$ admitting a semisymmetric non-metric connection. Similar to the definition of the Ricci tensor of M with respect to the symmetric connection, the Ricci tensor of M with respect to the semi-symmetric non-metric connection is defined by

$$
\begin{equation*}
\operatorname{Ric}(X, Y)=\operatorname{trace}\{Z \rightarrow R(X, Z) Y\} \tag{5.1}
\end{equation*}
$$

for any $X, Y, Z \in \Gamma(T M)$. Then the Ricci tensor of an m-dimensional lightlike submanifold M with respect to the semi-symmetric non-metric connection is given by

$$
\begin{equation*}
\operatorname{Ric}(X, Y)=\sum_{i=1}^{r} \widetilde{g}\left(R\left(X, \xi_{i}\right) Y, N_{i}\right)+\sum_{k=r+1}^{m} \varepsilon_{k} g\left(R\left(X, X_{k}\right) Y, X_{k}\right), \tag{5.2}
\end{equation*}
$$

where $\left\{X_{r+1}, \ldots, X_{m}\right\}$ is an orthonormal basis of screen distribution $\Gamma(S(T M))$.
Thus, by using (3.6), (4.1) and (5.2) we obtain

$$
\begin{equation*}
\operatorname{Ric}(X, Y)-\operatorname{Ric}(Y, X)=\stackrel{\circ}{\operatorname{Ric}}(X, Y)-\stackrel{\circ}{\operatorname{Ric}}(Y, X)+(m-1) d \pi(X, Y) \tag{5.3}
\end{equation*}
$$

for any $X, Y \in \Gamma(T M)$.
From (5.3) we have:
Proposition 5.1. Let $\left(M, g, S(T M), S\left(T M^{\perp}\right)\right)$ be a lightlike submanifold of semi-Riemannian manifold $(\widetilde{M}, \widetilde{g})$ admitting a semi-symmetric non-metric connection. Then Ricci tensor of a lightlike submanifold with respect to the semisymmetric non-metric connection is symmetric if and only if the Ricci tensor of a lightlike submanifold with respect to the symmetric non-metric connection is symmetric and the 1 -form π is closed.

We assume that the 1 -form π is closed. In this case we can define the sectional curvature for a section in \widetilde{M} with respect to the semi-symmetric nonmetric connection (see [1]).

Now, suppose that the semi-symmetric non-metric connection $\widetilde{\nabla}$ is of constant sectional curvature, then $\widetilde{R}(\widetilde{X}, \widetilde{Y}) \widetilde{Z}$ should be in the form of

$$
\begin{equation*}
\widetilde{R}(\widetilde{X}, \widetilde{Y}) \widetilde{Z}=c\{\widetilde{g}(\widetilde{X}, \widetilde{Z}) \widetilde{Y}-\widetilde{g}(\widetilde{Y}, \widetilde{Z}) \widetilde{X}\} \tag{5.4}
\end{equation*}
$$

for any $\widetilde{X}, \widetilde{Y}, \widetilde{Z} \in \Gamma(T \widetilde{M})$, where c is a certain scalar. Thus, \widetilde{M} is called a semi-Riemannian space form with respect to the semi-symmetric non-metric connection and is denoted by $\widetilde{M}(c)$.

Proposition 5.2. Let $\left(M, g, S(T M), S\left(T M^{\perp}\right)\right)$ be a lightlike submanifold of an $(m+n)$-dimensional semi-Riemannian space form $\widetilde{M}(c)$ with a semi-symmetric non-metric connection. Then we have

$$
\operatorname{Ric}(X, Y)=(m-1) c g(X, Y)
$$

$$
\begin{aligned}
& \left.+\sum_{i=1}^{r} h_{i}^{\ell}\left(A_{N_{i}} X, Y\right)-\sum_{k=r+1}^{m} \varepsilon_{k} h_{i}^{\ell}(X, Y) g\left(A_{N_{i}} X_{k}, X_{k}\right)\right\} \\
& +\sum_{\alpha=r+1}^{n}\left\{h_{\alpha}^{s}\left(A_{W_{\alpha}} X, Y\right)-\sum_{k=r+1}^{m} \varepsilon_{k} h_{\alpha}^{s}(X, Y) g\left(A_{W_{\alpha}} X_{k}, X_{k}\right)\right\} \\
& -\sum_{i, j=1}^{r}\left\{h_{i}^{\ell}(X, Y) \eta_{j}\left(A_{N_{i}} \xi_{j}\right)-\sum_{\alpha=r+1}^{n} h_{\alpha}^{s}(X, Y) \eta_{j}\left(A_{W_{\alpha}} \xi_{j}\right)\right\}
\end{aligned}
$$

for any $X, Y, Z \in \Gamma(T M)$.
Proof. Taking (4.1) in (5.2) and considering (5.4), we obtain (5.5).
Corollary 5.3. Let $\left(M, g, S(T M), S\left(T M^{\perp}\right)\right.$) be a lightlike submanifold of an $(m+n)$-dimensional semi-Riemannian space form $\widetilde{M}(c)$ admitting a semisymmetric non-metric connection. If M is totally geodesic, then M is an Einstein manifold.

Corollary 5.4. Let $\left(M, g, S(T M), S\left(T M^{\perp}\right)\right.$) be a lightlike submanifold of an $(m+n)$-dimensional semi-Riemannian space form $\widetilde{M}(c)$ with a semi-symmetric non-metric connection. Then the Ricci tensor of M is symmetric if and only if the shape tensors with respect to the semi-symmetric non-metric connection of M is symmetric with respect to the local lightlike second fundamental forms and the local screen fundamental forms of M.

Proposition 5.5. Let $\left(M, g, S(T M), S\left(T M^{\perp}\right)\right.$) be a lightlike submanifold of a semi-Riemannian space form $\widetilde{M}(c)$ with a semi-symmetric non-metric connection. Then the Ricci tensor of M is not parallel with respect to the semisymmetric non-metric connection.

Proof. First of all, we compute the derivative of Ricci tensor of M with respect to the semi-symmetric non-metric connection. We define

$$
\left(\nabla_{Z} \operatorname{Ric}\right)(X, Y)=\nabla_{Z} \operatorname{Ric}(X, Y)-\operatorname{Ric}\left(\nabla_{Z} X, Y\right)-\operatorname{Ric}\left(X, \nabla_{Z} Y\right)
$$

Then, by using equations (3.8) and (5.5), we obtain

$$
\begin{align*}
& \left(\nabla_{Z} \operatorname{Ric}\right)(X, Y) \tag{5.6}\\
= & c(m-1)\left(\nabla_{Z} g\right)(X, Y)+\sum_{i=1}^{r}\left\{\left(\nabla_{Z} h_{i}^{\ell}\right)\left(A_{N_{i}} X, Y\right)+h_{i}^{\ell}\left(\nabla_{Z} A_{N_{i}} X, Y\right)\right\} \\
& +\sum_{\alpha=r+1}^{n}\left\{\left(\nabla_{Z} h_{\alpha}^{s}\right)\left(A_{W_{\alpha}} X, Y\right)+h_{\alpha}^{s}\left(\nabla_{Z} A_{W_{\alpha}} X, Y\right)\right\} \\
& -\sum_{k=r+1}^{m} \sum_{i=1}^{r} \varepsilon_{k}\left\{h_{i}^{\ell}(X, Y) \nabla_{Z} g\left(A_{N_{i}} X_{k}, X_{k}\right)\right.
\end{align*}
$$

$$
\begin{aligned}
& \left.-\sum_{\alpha=r+1}^{n} h_{\alpha}^{s}(X, Y) \nabla_{Z} g\left(A_{W_{\alpha}} X_{k}, X_{k}\right)\right\} \\
& -\sum_{k=r+1}^{m} \sum_{\alpha=r+1}^{n} \varepsilon_{k}\left(\nabla_{Z} h_{\alpha}^{s}\right)(X, Y) g\left(A_{W_{\alpha}} X_{k}, X_{k}\right) \\
& -\sum_{j=1}^{r} \sum_{\alpha=r+1}^{n}\left\{\left(\nabla_{Z} h_{\alpha}^{s}\right)(X, Y) \eta_{j}\left(A_{W_{\alpha}} \xi_{j}\right)+h_{\alpha}^{s}(X, Y) \nabla_{Z} \eta_{j}\left(A_{W_{\alpha}} \xi_{j}\right)\right\} \\
& -\sum_{i=1}^{r} \sum_{\alpha=r+1}^{n}\left\{h_{i}^{\ell}\left(A_{N_{i}} \nabla_{Z} X, Y\right)+h_{\alpha}^{s}\left(A_{W_{\alpha}} \nabla_{Z} X, Y\right)\right\} \\
& -\sum_{k=r+1}^{m} \sum_{i=1}^{r} \varepsilon_{k}\left(\nabla_{Z} h_{i}^{\ell}\right)(X, Y) g\left(A_{N_{i}} X_{k}, X_{k}\right) \\
& -\sum_{i, j=1}^{r}\left\{\left(\nabla_{Z} h_{i}^{\ell}\right)(X, Y) \eta_{j}\left(A_{N_{i}} \xi_{j}\right)+h_{i}^{\ell}(X, Y) \nabla_{Z} \eta_{j}\left(A_{N_{i}} \xi_{j}\right)\right\}
\end{aligned}
$$

Since the term $\left(\nabla_{Z} g\right)(X, Y)$ in the right hand side of the equation (5.6) is not vanishing for any $X, Y, Z \in \Gamma(T M)$, we have the assertion of the theorem.

References

[1] N. S. Ageshe and M. R. Chafle, A semi-symmetric nonmetric connection on a Riemannian manifold, Indian J. Pure Appl. Math. 23 (1992), no. 6, 399-409.
[2] , On submanifolds of a Riemannian manifold with a semi-symmetric non-metric connection, Tensor (N.S.) 55 (1994), no. 2, 120-130.
[3] A. Bejancu and K. L. Duggal, Lightlike submanifolds of semi-Riemannian manifolds, Acta Appl. Math. 38 (1995), no. 2, 197-215.
[4] U. C. De and D. Kamilya, Hypersurfaces of a Riemannian manifold with semisymmetric non-metric connection, J. Indian Inst. Sci. 75 (1995), no. 6, 707-710.
[5] K. L. Duggal and A. Bejancu, Lightlike Submanifold of Semi-Riemannian Manifolds and Applications, Kluwer Academic Publishers Group, Dordrecht, 1996.
[6] K. L. Duggal and R. Sharma, Semisymmetric metric connections in a semi-Riemannian manifold, Indian J. Pure Appl. Math. 17 (1986), no. 11, 1276-1283.
[7] K. L. Duggal and D. H. Jin, Half lightlike submanifolds of codimension 2, Math. J. Toyama Univ. 22 (1999), 121-161.
[8] H. A. Hayden, Subspaces of a space with torsion, Proc. London Math. Soc. 34 (1932), 27-50.
[9] E. Kılıç, B. Şahin, H. B. Karadağ, and R. Güneş, Coisotropic submanifolds of a semiRiemannian manifold, Turkish J. Math. 28 (2004), no. 4, 335-352.
[10] B. O'Neill, Semi-Riemannian Geometry with Applications to Relativity, Academic Press, London, 1983.
[11] B. Prasad and R. K. Verma, On a type of semi-symmetric non-metric connection on a Riemannian manifold, Bull. Calcutta Math. Soc. 96 (2004), no. 6, 483-488.
[12] J. Sengupta, D. C. De, and T. Q. Binh, On a type of semi-symmetric non-metric connection on a Riemannian manifold, Indian J. Pure Appl. Math. 31 (2000), no. 12, 1659-1670.
[13] K. Yano, On semi-symmetric metric connection, Rev. Roumaine Math. Pures Appl. 15 (1970), 1579-1586.
[14] E. Yaşar, A. C. Çöken, and A. Yücesan, Lightlike hypersurfaces in semi-Riemannian manifold with semi-symmetric non-metric connection, Math. Scand. 102 (2008), no. 2, 253-264.

Ahmet Yücesan
Süleyman Demirel University
Department of Mathematics
32260 Isparta, Turkey
E-mail address: yucesan@fef.sdu.edu.tr
Erol Yaşar
Mersin University
Department of Mathematics
Mezitli Mersin, Turkey
E-mail address: yerol@mersin.edu.tr

[^0]: Received April 14, 2009.
 2000 Mathematics Subject Classification. 53B15, 53B30, 53C05, 53C50.
 Key words and phrases. lightlike submanifolds, semi-symmetric non-metric connection, Levi-Civita connection, Ricci tensor.

