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SOME RESULTS OF EXPONENTIALLY BIHARMONIC MAPS

INTO A NON-POSITIVELY CURVED MANIFOLD

Yingbo Han

Abstract. In this paper, we investigate exponentially biharmonic maps
u : (M, g) → (N, h) from a Riemannian manifold into a Riemannian
manifold with non-positive sectional curvature. We obtain that if

∫

M

e
p|τ(u)|

2

2 |τ(u)|pdvg < ∞ (p ≥ 2),

∫

M

|τ(u)|2dvg < ∞ and

∫

M

|du|2dvg < ∞,

then u is harmonic. When u is an isometric immersion, we get that

if
∫

M
e

pm
2
|H|

2

2 |H|qdvg < ∞ for 2 ≤ p < ∞ and 0 < q ≤ p < ∞,

then u is minimal. We also obtain that any weakly convex exponentially
biharmonic hypersurface in space form N(c) with c ≤ 0 is minimal. These
results give affirmative partial answer to conjecture 3 (generalized Chen’s
conjecture for exponentially biharmonic submanifolds).

1. Introduction

Let (Mm, g) and (Nn, h) be Riemannian manifolds of dimensions m,n and
u : (Mm, g) → (Nn, h) be a smooth map. The Dirichlet energy of u is defined by

E(u) =
∫
M

|du|2

2 dvg. The critical maps of E(·) are called harmonic maps. The
Euler-Lagrange equation of harmonic maps is τ(u) = 0, where τ(u) is called the
tension field of u. Extensions to the notions of p-harmonic maps, exponentially
harmonic maps, F -harmonic maps and f -harmonic maps were introduced and
many results have been carried out (for instance, see [1, 2, 3, 9, 19, 28]). In 1983,
J. Eells and L. Lemaire [12] proposed the problem to consider the biharmonic

maps: they are critical maps of the functional E2(u) =
∫
M

|τ(u)|2

2 dvg. We see
that harmonic maps are biharmonic maps and even more, minimizers of the
bienergy functional. After G. Y. Jiang [18] studied the first and second variation
formulas of the bienergy E2, there have been extensive studies on biharmonic
maps (for instance, see [10, 18, 20, 21, 26, 27]). Recently the author and S. X.
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Feng in [15] introduced the following functional EF,2(u) =
∫
M

F ( |τ(u)|
2

2 )dvg ,

where τ(u) = −δdu = trace∇̃(du). The map u is called an F -biharmonic map
if it is a critical point of that F -bienergy EF,2(u), which is a generalization of
biharmonic maps, p-biharmonic maps [17] or exponentially biharmonic maps.
Notice that harmonic maps are always F -biharmonic by definition. When
F (t) = et, we have exponential bienergy functional

Ee,2(u) =

∫

M

e
|τ(u)|

2

2 dvg.

The Euler-Lagrange equation of Ee,2 is τe,2(u) = 0, where τe,2(u) is given by
(5). A map u : (M, g) → (N, h) is called an exponentially biharmonic map if
τe,2(u) = 0. When u : (M, g) → (N, h) is a exponentially biharmonic isometric
immersion, then M is called an exponentially biharmonic submanifold in N .

Recently, N. Nakauchi, H. Urakawa and S. Gudmundsson [26] proved that bi-
harmoic maps from a complete Riemannian manifold into a non-positive curved
manifold with finite bienergy and energy are harmonic. S. Maeta [25] proved
that biharmoic maps from a complete Riemannian manifold into a non-positive
curved manifold with finite (a + 2)-bienergy

∫
M

|τ(u)|a+2dvg < ∞ (a ≥ 0)
and energy are harmonic. The author and W. Zhang in [16] proved that p-
biharmoinc maps from a complete manifold into a non-positive curved manifold
with finite a + p-bienergy

∫
M

|τ(u)|a+pdvg < ∞ and energy are harmonic. In
this paper, we first obtain the following result:

Theorem 1.1 (cf. Theorem 3.1). Let u : (Mm, g) → (Nn, h) be an exponen-

tially biharmonic map from a Riemannian manifold (M, g) into a Riemannian

manifold (N, h) with non-positive sectional curvature and let p ≥ 2 be a non-

negative real constant.

(i) If
∫

M

e
p|τ(u)|

2

2 |τ(u)|pdvg < ∞,

∫

M

|τ(u)|2dvg < ∞ and

∫

M

|du|2dvg < ∞,

then u is harmonic.

(ii) If Vol(M, g) = ∞, and
∫

M

e
p|τ(u)|

2

2 |τ(u)|pdvg < ∞,

then u is harmonic.

One of the most interesting problems in the biharmonic theory is Chen’s
conjecture. In 1988, Chen raised the following problem:

Conjecture 1 ([8]). Any biharmonic submanifold in En is minimal.

There are many affirmative partial answers to Chen’s conjecture.
On the other hand, Chen’s conjecture was generalized as follows (cf. [6]):

“Any biharmonic submanifolds in a Riemannian manifold with non-positive
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sectional curvature is minimal”. There are also many affirmative partial an-
swers to this conjecture.

(a) Any biharmonic submanifold in H3(−1) is minimal (cf. [5]).
(b) Any biharmonic hypersurfaces in H4(−1) is minimal (cf. [4]).
(c) Any weakly convex biharmonic hypersurfaces in space form Nm+1(c)

with c ≤ 0 is minimal (cf. [22]).
(d) Any compact biharmonic submanifold in a Riemannian manifold with

non-positive sectional curvature is minimal (cf. [18]).
(e) Any compact F -biharmonic submanifold in a Riemannian manifold with

non-positive sectional curvature is minimal (cf. [15]).
Motivated by Chen’s conjecture, the author [14] proposed the following con-

jecture:

Conjecture 2 ([14]). Any p-biharmonic submanifold in a Riemannian mani-
fold with non-positive sectional curvature is minimal.

Some partial affirmative answers to Conjecture 2 were proved in [7], [14],
[16], and [24].

For exponentially biharmonic submanifolds, it is natural to consider the
following problem.

Conjecture 3. Any exponentially biharmonic submanifold in a Riemannian
manifold with non-positive sectional curvature is minimal.

For exponentially biharmonic submanifolds, we obtain the following results:

Theorem 1.2 (cf. Theorem 4.1). Let u : (M, g) → (N, h) be an exponentially

biharmonic isometric immersion from a complete Riemannian manifold into a

Riemannian manifold (N, h) with non-positive sectional curvature and let p, q
be two real constants satisfying 2 ≤ p < ∞ and 0 < q ≤ p < ∞.

If ∫

M

e
pm

2
|H|

2

2 |H |qdvg < ∞,

then u is minimal.

Theorem 1.3 (cf. Theorem 4.2). Let u : (M, g) → (N, h) be an exponentially

biharmonic isometric immersion from a complete Riemannian manifold into a

Riemannian manifold (N, h) with non-positive sectional curvature. If

(1)

∫

Br(x0)

e
pm

2
|H|

2

2 dvg ≤ C0(1 + r)s

for some positive integer s, C0 independent of r and p ≥ 2, then u is minimal.

Theorem 1.4 (cf. Theorem 4.3). Let u : (M, g) → (N, h) be an exponentially

biharmonic isometric immersion from a complete Riemannian manifold into

a Riemannian manifold (N, h) whose sectional curvature is smaller than −ε

for some constant ε > 0 and
∫
Br(x0)

e
pm

2
|H|

2

2 |H |pdvg (p ≥ 2) is of at most

polynomial growth of r. Then u is minimal.
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In [29], G. Wheeler proposed a notion ε-super biharmonic submanifolds
which is a generalization of submanifolds with harmonic mean curvature vector
fields, as follows:

Definition 1.5 ([29]). Let M be a submanifold in N with the metric 〈·, ·〉.
Then we call M a ε-super biharmonic submanifold, if

(2) 〈△H,H〉 ≥ (ε− 1)|∇H |2,

where ε ∈ [0, 1] is a constant.

From the Definition 1.5, it is natural to consider the following definition.

Definition 1.6. Let M be a submanifold in N with the metric 〈·, ·〉. Then we
call M a ε-super exponentially biharmonic submanifold, if

(3) 〈△(e
m

2
|H|

2

2 H), e
m

2
|H|

2

2 H〉 ≥ (ε− 1)|∇(e
m

2
|H|

2

2 H)|2,

where ε ∈ [0, 1] is a constant.

In this note, we investigate the ε-super exponentially biharmonic submani-
fold, and get the following result:

Theorem 1.7 (cf. Theorem 4.4). Let u : (M, g) → (N, h) be a complete

ε-super exponentially biharmonic submanifold in N for ε > 0. If

(4)

∫

M

e
pm

2
|H|

2

2 |H |pdvg < ∞,

then u is minimal, where p ≥ 2.

In [22], Y. Luo investigate the weakly convex biharmonic hypersurfaces in a
space form, and obtained the following result:

Theorem 1.8 ([22]). Let u : (Mm, g) → (Nm+1(c), 〈, 〉) be a weakly convex

biharmonic hypersurface in a space form Nm+1(c) with c ≤ 0. Then u is

minimal.

In this note, we investigate the weakly convex exponentially biharmonic
hypersurface in a space form, and get the following result:

Theorem 1.9 (cf. Theorem 4.5). Let u : (Mm, g) → (Nm+1(c), 〈, 〉) be a

weakly convex exponentially biharmonic hypersurface in a space form Nm+1(c)
with c ≤ 0. Then u is minimal.

These results give affirmative partial answers to the generalized Chen’s con-
jecture for exponentially biharmonic submanifold.
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2. Preliminaries

In this section we give more details for the definitions of harmonic maps, bi-
harmonic maps, exponentially biharmonic maps and exponentially biharmonic
submanifolds.

Let u : (M, g) → (N, h) be a map from an m-dimensional Riemannian
manifold (M, g) to an n-dimensional Riemannian manifold (N, h). The energy
of u is defined by

E(u) =

∫

M

|du|2

2
dvg.

The Euler-Lagrange equation of E is

τ(u) =
m∑

i=1

{∇̃eidu(ei)− du(∇eiei)} = 0,

where we denote by ∇ the Levi-Civita connection on (M, g) and ∇̃ the induced
Levi-civita connection on u−1TN and {ei}mi=1 is an orthonormal frame field on
(M, g). τ(u) is called the tension field of u. A map u : (M, g) → (N, h) is called
a harmonic map if τ(u) = 0.

To generalize the notion of harmonic maps, in 1983 J. Eells and L. Lemaire
[12] proposed considering the bienergy functional

E2(u) =

∫

M

|τ(u)|2

2
dvg.

In 1986, G. Y. Jiang [18] studied the first and second variation formulas of the
bienergy E2. The Euler-Lagrange equation of E2 is

τ2(u) = −△̃(τ(u))−
∑

i

RN (τ(u), du(ei))du(ei) = 0,

where △̃ =
∑

i(∇̃ei∇̃ei − ∇̃∇ei
ei) is the rough Laplacian on the section of

u−1TN and RN (X,Y ) = [N∇X ,N ∇Y ]−N ∇[X,Y ] is the curvature operator on
N . A map u : (M, g) → (N, h) is called a biharmonic map if τ2(u) = 0.

To generalize the notion of biharmoic maps, the author and S. X. Feng [15]
introduced the F -bienergy functional

EF,2(u) =

∫

M

F (
|τ(u)|2

2
)dvg,

where F : [0,∞) → [0,∞) is a C3 function such that F ′ > 0 on (0,∞). The
Euler-Lagrange equation of EF,2 is

τF,2(u) = −△̃(F ′(
|τ(u)|2

2
)τ(u)) −

∑

i

RN (F ′(
|τ(u)|2

2
)τ(u), du(ei))du(ei) = 0.

A map u : (M, g) → (N, h) is called a F -biharmonic map if τF,2(u) = 0.
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When F (t) = et, we have exponential bienergy functional

Ee,2(u) =

∫

M

e
|τ(u)|

2

2 dvg.

The Euler-Lagrange equation of Ee,2 is

(5) τe,2(u) = −△̃(e
|τ(u)|

2

2 τ(u))−
∑

i

RN(e
|τ(u)|

2

2 τ(u), du(ei))du(ei) = 0.

A map u : (M, g) → (N, h) is called an exponential biharmonic map if τe,2(u) =
0.

Now we introduce the definition of exponentially biharmonic submanifolds.
Let u : (M, g) → (N, h = 〈·, ·〉) be an isometric immersion from an m-

dimensional Riemannian manifold into an m+ t-dimensional Riemannian man-
ifold. We identify du(X) with X ∈ Γ(TM) for each x ∈ M . We also denote by
〈·, ·〉 the induced metric u−1h. The Gauss formula is given by

N∇XY = ∇XY +B(X,Y ), X, Y ∈ Γ(TM),

where B is the second fundamental form of M in N . The Weingarten formula
is give by

N∇Xξ = −AξX +∇⊥

Xξ, X ∈ Γ(TM), ξ ∈ Γ(T⊥M),

where Aξ is the shape operator for a unit normal vector field ξ on M , and
∇⊥ denotes the normal connection on the normal bundle of M in N . For any
x ∈ M , the mean curvature vector field H of M at x is given by

H =
1

m

m∑

i=1

B(ei, ei).

If an isometric u : (M, g) → (N, h) is exponentially biharmonic, then M is
called an exponentially biharmonic submanifold in N . In this case, we remark
that the tension field τ(u) of u is written τ(u) = mH , where H is the mean
curvature vector field of M . The necessary and sufficient condition for M in
N to be exponentially biharmonic is the following:

(6) −△̃(e
m

2
|H|

2

2 H)−
∑

i

RN(e
m

2
|H|

2

2 H, ei)ei = 0.

From (6), we obtain the necessary and sufficient condition for M in N to be
exponentially biharmonic as follows:

△⊥(e
m

2
|H|

2

2 H)−
m∑

i=1

B(ei, A
e

m2
|H|

2

2 H
(ei)) + [

m∑

i=1

RN (e
m

2
|H|

2

2 H, ei)ei]
⊥ = 0,

(7)

Trg(∇A
e

m2
|H|

2

2 H
) + Trg[A

∇⊥(e
m2

|H|
2

2 H)
(·)]− [

m∑

i=1

RN (e
m

2
|H|

2

2 H, ei)ei]
⊤ = 0,

(8)
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where △⊥ =
∑m

i=1(∇
⊥
ei
∇⊥

ei
−∇⊥

∇ei
ei
) is the Laplace operator associated with

the normal connection ∇⊥.
We also need the following lemma.

Lemma 2.1 (Gaffney, [13]). Let (M, g) be a complete Riemannian manifold.

If a C1 a-form α satisfies that
∫
M

|α|dvg < ∞ and
∫
M
(δα)dvg < ∞, or equiv-

alently, a C1 vector X defined by α(Y ) = 〈X,Y 〉 (∀Y ∈ Γ(TM)) satisfies that∫
M

|X |dvg < ∞ and
∫
M

div(X)dvg < ∞, then

(9)

∫

M

(−δα)dvg =

∫

M

div(X)dvg = 0.

3. Exponentially biharmonic maps into non-positively curved

manifolds

In this section, we obtain the following result.

Theorem 3.1. Let u : (Mm, g) → (Nn, h) be an exponentially biharmonic map

from a Riemannian manifold (M, g) into a Riemannian manifold (N, h) with

non-positive sectional curvature and let p ≥ 2 be a non-negative real constant.

(i) If
∫

M

e
p|τ(u)|

2

2 |τ(u)|pdvg < ∞,

∫

M

|τ(u)|2dvg < ∞ and

∫

M

|du|2dvg < ∞,

then u is harmonic.

(ii) If Vol(M, g) = ∞, and
∫

M

e
p|τ(u)|

2

2 |τ(u)|pdvg < ∞,

then u is harmonic.

Proof. Take a fixed point x0 ∈ M and for every r > 0, let us consider the
following cut off function λ(x) on M :

(10)





0 ≤ λ(x) ≤ 1, x ∈ M,
λ(x) = 1, x ∈ Br(x0),
λ(x) = 0, x ∈ M −B2r(x0),
|∇λ| ≤ C

r
, x ∈ M,

where Br(x0) = {x ∈ M : d(x, x0) < r}, C is a positive constant and d is the
distance of (M, g). From (5), we have

∫

M

〈−△̃(e
|τ(u)|

2

2 τ(u)), λ2|e
|τ(u)|

2

2 τ(u)|p−2e
|τ(u)|

2

2 τ(u)〉dvg

=

∫

M

λ2e
p|τ(u)|

2

2 |τ(u)|p−2
m∑

i=1

〈RN (τ(u), du(ei))du(ei), τ(u)〉dvg ≤ 0,(11)
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since the sectional curvature of (N, h) is non-positive. From (11), we have

0 ≥

∫

M

〈−△̃(e
|τ(u)|

2

2 τ(u)), λ2|e
|τ(u)|

2

2 τ(u)|p−2e
|τ(u)|

2

2 τ(u)〉dvg

=

∫

M

〈∇̃(e
|τ(u)|

2

2 τ(u)), ∇̃(λ2|e
|τ(u)|

2

2 τ(u)|p−2e
|τ(u)|

2

2 τ(u))〉dvg

=

∫

M

m∑

i=1

〈∇̃ei (e
|τ(u)|

2

2 τ(u)), ∇̃ei (λ
2|e

|τ(u)|
2

2 τ(u)|p−2e
|τ(u)|

2

2 τ(u))〉dvg

=

∫

M

m∑

i=1

[〈∇̃ei (e
|τ(u)|

2

2 τ(u)), 2λei(λ)|e
|τ(u)|

2

2 τ(u)|p−2e
|τ(u)|

2

2 τ(u)

+ λ2ei(|e
|τ(u)|

2

2 τ(u)|p−2)e
|τ(u)|

2

2 τ(u)

+ λ2|e
|τ(u)|

2

2 τ |p−2∇̃ei [e
|τ(u)|

2

2 τ(u)]〉]dvg

=

∫

M

m∑

i=1

2λei(λ)|e
|τ(u)|

2

2 τ(u)|p−2〈∇̃ei [e
|τ(u)|

2

2 τ(u)], e
|τ(u)|

2

2 τ(u)〉dvg

+

∫

M

m∑

i=1

(p− 2)λ2|e
|τ(u)|

2

2 τ(u)|p−4〈∇̃ei [e
|τ(u)|

2

2 τ(u)], e
|τ(u)|

2

2 τ(u)〉2dvg

+

∫

M

m∑

i=1

λ2|e
|τ(u)|

2

2 τ(u)|p−2〈∇̃ei [e
|τ(u)|

2

2 τ(u)], ∇̃ei [e
|τ(u)|

2

2 τ(u)]〉dvg

≥

∫

M

m∑

i=1

2λei(λ)|e
|τ(u)|

2

2 τ(u)|p−2〈∇̃ei [e
|τ(u)|

2

2 τ(u)], e
|τ(u)|

2

2 τ(u)〉dvg

+

∫

M

m∑

i=1

λ2|e
|τ(u)|

2

2 τ(u)|p−2〈∇̃ei [e
|τ(u)|

2

2 τ(u)], ∇̃ei [e
|τ(u)|

2

2 τ(u)]〉dvg ,(12)

where the inequality follows from

λ2|e
|τ(u)|

2

2 τ(u)|p−4〈∇̃ei [e
|τ(u)|

2

2 τ(u)], e
|τ(u)|

2

2 τ(u)〉2 ≥ 0.

From (12), we have

∫

M

m∑

i=1

λ2|e
|τ(u)|

2

2 τ(u)|p−2〈∇̃ei [e
|τ(u)|

2

2 τ(u)], ∇̃ei [e
|τ(u)|

2

2 τ(u)]〉dvg

≤ −

∫

M

m∑

i=1

2λei(λ)|e
|τ(u)|

2

2 τ(u)|p−2〈∇̃ei [e
|τ(u)|

2

2 τ(u)], e
|τ(u)|

2

2 τ(u)〉dvg .(13)

By using Young’s inequality, we have

−

∫

M

m∑

i=1

2λei(λ)|e
|τ(u)|

2

2 τ(u)|p−2〈∇̃ei [e
|τ(u)|

2

2 τ(u)], e
|τ(u)|

2

2 τ(u)〉dvg
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≤
1

2

∫

M

m∑

i=1

λ2|e
|τ(u)|

2

2 τ(u)|p−2|∇̃ei [e
|τ(u)|

2

2 τ(u)]|2dvg

+ 2

∫

M

|∇λ|2e
p|τ(u)|

2

2 |τ(u)|pdvg.(14)

From (13) and (14), we have
∫

M

m∑

i=1

λ2|e
|τ(u)|

2

2 τ(u)|p−2〈∇̃ei [e
|τ(u)|

2

2 τ(u)], ∇̃ei [e
|τ(u)|

2

2 τ(u)]〉dvg

≤ 4

∫

M

|∇λ|2e
p|τ(u)|

2

2 |τ(u)|pdvg

≤
4C2

r2

∫

M

e
p|τ(u)|

2

2 |τ(u)|pdvg .(15)

By assumption
∫
M

e
p|τ(u)|

2

2 |τ(u)|pdvg < ∞, letting r → ∞ in (15), we have

∫

M

m∑

i=1

e
(p−2)|τ(u)|

2

2 |τ(u)|p−2〈∇̃ei [e
|τ(u)|

2

2 τ(u)], ∇̃ei [e
|τ(u)|

2

2 τ(u)]〉dvg = 0.

Therefore, we obtain that e
|τ(u)|

2

2 |τ(u)| is constant and ∇̃X [e
|τ(u)|

2

2 τ(u)] = 0,

that is 〈∇̃Xτ(u), τ(u)〉τ(u) + ∇̃Xτ(u) = 0 for any vector field X on M .
Therefore, if V ol(M) = ∞ and |τ(u)| 6= 0, then

∫

M

e
p|τ(u)|

2

2 |τ(u)|pdvg = |e
|τ(u)|

2

2 τ(u)|pV ol(M) = ∞,

which yields a contradiction. Thus, we have |τ(u)| = 0, i.e., u is harmonic. We
have (ii).

For (i), assume
∫
M

e
p|τ(u)|

2

2 |τ(u)|pdvg < ∞,
∫
M

|τ(u)|2dvg < ∞ and∫
M

|du|2dvg < ∞. Define a 1-from α on M defined by

(16) α(X) = |e
|τ(u)|

2

2 τ(u)|
p

2
−1〈du(X), e

|τ(u)|
2

2 τ(u)〉

for any vector X ∈ Γ(TM).
Note here that

∫

M

|α|2dvg =

∫

M

[

m∑

i=1

|α(ei)|
2]

1

2 dvg

=

∫

M

[

m∑

i=1

[|e
|τ(u)|

2

2 τ(u)|
p

2
−1〈du(ei), e

|τ(u)|
2

2 τ(u)〉]2]
1

2 dvg

≤

∫

M

|e
|τ(u)|

2

2 τ(u)|
p

2 |du|dvg

≤ [

∫

M

e
p|τ(u)|

2

2 |τ(u)|pdvg ]
1

2 [

∫

M

|du|2dvg]
1

2 < ∞.(17)
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Now we compute

−δα =
m∑

i=1

(∇eiα)(ei) =
m∑

i=1

[∇eiα(ei)− α(∇eiei)]

=

m∑

i=1

∇ei [|e
|τ(u)|

2

2 τ(u)|
p

2
−1〈du(ei), e

|τ(u)|
2

2 τ(u)〉]

−
m∑

i=1

|e
|τ(u)|

2

2 τ(u)|
p

2
−1〈du(∇eiei), e

|τ(u)|
2

2 τ(u)〉

=

m∑

i=1

|e
|τ(u)|

2

2 τ(u)|
p

2
−1〈∇̃eidu(ei)− du(∇eiei), e

|τ(u)|
2

2 τ(u)〉

= |e
|τ(u)|

2

2 τ(u)|
p

2 |τ(u)|,

where the fourth equality follows from that |e
|τ(u)|

2

2 τ(u)| is constant and

∇̃X [e
|τ(u)|

2

2 τ(u)] = 0, for X ∈ Γ(TM). So we have
∫

M

[−δα]dvg =

∫

M

|e
|τ(u)|

2

2 τ(u)|
p

2 |τ(u)|dvg

≤

[∫

M

e
p|τ(u)|

2

2 |τ(u)|pdvg

] 1

2

[∫

M

|τ(u)|2dvg

] 1

2

.

Since
∫
M

e
p|τ(u)|

2

2 |τ(u)|pdvg < ∞ and
∫
M

|τ(u)|2dvg < ∞, the function −δα is
also integrable over M .

From this and (17), we can apply Lemma 2.1 for the 1-form α. Therefore
we have

0 =

∫

M

(−δα)dvg =

∫

M

e
p|τ(u)|

2

4 |τ(u)|
p

2
+1dvg,

so we have τ(u) = 0, that is, u is harmonic. �

4. Exponentially biharmonic submanifolds in

nonpositive curvature forms

In this section, we obtain the following results:

Theorem 4.1. Let u : (M, g) → (N, h) be an exponentially biharmonic iso-

metric immersion from a complete Riemannian manifold into a Riemannian

manifold (N, h) with non-positive sectional curvature and let p, q be two real

constants satisfying 2 ≤ p < ∞ and 0 < q ≤ p < ∞.

If ∫

M

e
pm

2
|H|

2

2 |H |qdvg < ∞,

then u is minimal.
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Proof. From the equation (7), we have

△[e
m

2
|H|

2

2 |H |]2 = △〈e
m

2
|H|

2

2 H, e
m

2
|H|

2

2 H〉

= 2〈△⊥(e
m

2
|H|

2

2 H), e
m

2
|H|

2

2 H〉+ 2|∇⊥(e
m

2
|H|

2

2 H)|2

= 2|∇⊥(e
m

2
|H|

2

2 H)|2 + 2
m∑

i=1

〈B(A
e

m2
|H|

2

2 H
ei, ei), e

m
2
|H|

2

2 H〉

−
m∑

i=1

〈RN (e
m

2
|H|

2

2 H, ei)ei, e
m

2
|H|

2

2 H〉

≥ 2|∇⊥(e
m

2
|H|

2

2 H)|2 + 2
m∑

i=1

〈B(A
e

m2
|H|

2

2 H
ei, ei), e

m
2
|H|

2

2 H〉,(18)

where the inequality follows from the sectional curvature of (N, h) is non-
positive. Now we state an inequality:

(19)

m∑

i=1

〈B(A
e

m2
|H|

2

2 H
ei, ei), e

m
2
|H|

2

2 H〉 ≥ m[e
m

2
|H|

2

2 ]2|H |4.

In fact, let x ∈ M , when H(x) = 0, we are done. If H(x) 6= 0, we have at x,

m∑

i=1

〈B(A
e

m2
|H|

2

2 H
ei, ei), e

m
2
|H|

2

2 H〉

=

m∑

i=1

[e
m

2
|H|

2

2 ]2|H |2〈B(A H

|H|

ei, ei),
H

|H |
〉

=

m∑

i=1

[e
m

2
|H|

2

2 ]2|H |2〈A H

|H|

ei, A H

|H|

ei〉

=

m∑

i,j=1

[e
m

2
|H|

2

2 ]2|H |2|〈B(ei, ej),
H

|H |
〉|2

≥ m[e
m

2
|H|

2

2 ]2|H |4.

From (18) and (19), we have

(20) △[e
m

2
|H|

2

2 |H |]2 ≥ 2|∇⊥(e
m

2
|H|

2

2 H)|2 + 2m[e
m

2
|H|

2

2 ]2|H |4.

Take a fixed point x0 ∈ M and for every r > 0, let us consider the following
cut off function λ(x) on M :

(21)





0 ≤ λ(x) ≤ 1, x ∈ M,
λ(x) = 1, x ∈ Br(x0),
λ(x) = 0, x ∈ M −B2r(x0),
|∇λ| ≤ C

r
, x ∈ M,
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where Br(x0) = {x ∈ M : d(x, x0) < r}, C is a positive constant and d is the
distance of (M, g). From (20), we have

−

∫

M

∇(λa+4e
m

2
a|H|

2

2 |H |a)∇[em
2
|H|

2

|H |2]dvg

=

∫

M

λa+4e
m

2
a|H|

2

2 |H |a△[em
2
|H|

2

|H |2]dvg

≥ 2

∫

M

λa+4e
m

2
a|H|

2

2 |H |a|∇⊥[e
m

2
|H

2
|

2 H ]|2dvg

+ 2m

∫

M

λa+4e
m

2
a|H|

2

2 |H |aem
2
|H|

2

|H |4dvg,(22)

where a is a positive constant to be determined later. On the other hand, we
have

−

∫

M

∇(λa+4e
m

2
a|H|

2

2 |H |a)∇[em
2
|H|

2

|H |2]dvg

= − 2(a+ 4)

∫

M

λa+3∇λ|e
m

2
|H|

2

2 H |a〈∇⊥[e
m

2
|H|

2

2 H ], e
m

2
|H|

2

2 H〉dvg

− 2a

∫

M

λa+4|e
m

2
|H|

2

2 H |a−2〈∇⊥[e
m

2
|H|

2

2 H ], e
m

2
|H|

2

2 H〉2dvg

≤ − 2(a+ 4)

∫

M

λa+3∇λ|e
m

2
|H|

2

2 H |a〈∇⊥[e
m

2
|H|

2

2 H ], e
m

2
|H|

2

2 H〉dvg .(23)

From (22) and (23), we have

2

∫

M

λa+4e
m

2
a|H|

2

2 |H |a|∇⊥[e
m

2
|H

2
|

2 H ]|2dvg

+ 2m

∫

M

λa+4e
m

2
a|H|

2

2 |H |aem
2
|H|

2

|H |4dvg

≤ − 2(a+ 4)

∫

M

λa+3∇λ|e
m

2
|H|

2

2 H |a〈∇⊥[e
m

2
|H|

2

2 H ], e
m

2
|H|

2

2 H〉dvg(24)

≤

∫

M

λa+4e
m

2
a|H|

2

2 |H |a|∇⊥[e
m

2
|H

2
|

2 H ]|2dvg

+ (a+ 4)2
∫

M

λa+2e
m

2
(a+2)|H|

2

2 |H |a+2|∇λ|2dvg.

So we have
∫

M

λa+4e
m

2
a|H|

2

2 |H |a|∇⊥[e
m

2
|H

2
|

2 H ]|2dvg

+ 2m

∫

M

e
m

2
(a+2)|H|

2

2 λa+4|H |a+4dvg

≤ (a+ 4)2
∫

M

e
m

2
(a+2)|H|

2

2 λa+2|H |a+2|∇λ|2dvg.(25)
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By using Young’s inequalities, we have

(a+ 4)2
∫

M

e
m

2
(a+2)|H|

2

2 λa+2|H |a+2|∇λ|2dvg

= (a+ 4)2
∫

M

e
m

2
(a+2)|H|

2

2 λs|H |sλa+2−s|H |a+2−s|∇λ|2dvg

≤

∫

M

e
m

2
(a+2)|H|

2

2 λa+4|H |a+4dvg

+ C(a, s)

∫

M

e
m

2
(a+2)|H|

2

2 λ(a+2−s) a+4

a+4−s |H |(a+2−s) a+4

a+4−s |∇λ|2
a+4

a+4−s dvg,(26)

where s ∈ (0, a+2) and C(a, s) is a constant depending on a, s. From (25) and
(26), we have

∫

M

λa+4e
m

2
a|H|

2

2 |H |a|∇⊥[e
m

2
|H

2
|

2 H ]|2dvg

+ (2m− 1)

∫

M

e
m

2
(a+2)|H|

2

2 λa+4|H |a+4dvg

≤ C(a, s)

∫

M

e
m

2
(a+2)|H|

2

2 λ(a+2−s) a+4

a+4−s |H |(a+2−s) a+4

a+4−s |∇λ|2
a+4

a+4−s dvg

≤ C(a, s)(
C

r
)2

a+4

a+4−s

∫

M

e
m

2
(a+2)|H|

2

2 λ(a+2−s) a+4

a+4−s |H |(a+2−s) a+4

a+4−s dvg.(27)

Note that when s varies from 0 to a+2, we know that (a+ 2− s) a+4
a+4−s

varies

from a+2 to 0. Set q = (a+2− s) a+4
a+4−s

, we have q ∈ (0, a+2). Set p = a+2.

By the assumption
∫
M

e
m

2
p|H|

2

2 |H |qdvg < ∞ (2 ≤ p < ∞, 0 < q ≤ p < ∞),
letting r → ∞ in (27), we have
∫

M

e
m

2
a|H|

2

2 |H |a|∇⊥[e
m

2
|H

2
|

2 H ]|2dvg + (2m− 1)

∫

M

e
m

2
(a+2)|H|

2

2 |H |a+4dvg = 0.

Thus, we have H = 0. �

Theorem 4.2. Let u : (M, g) → (N, h) be an exponentially biharmonic iso-

metric immersion from a complete Riemannian manifold into a Riemannian

manifold (N, h) with non-positive sectional curvature. If

(28)

∫

Br(x0)

e
pm

2
|H|

2

2 dvg ≤ C0(1 + r)s

for some positive integer s, C0 independent of r and p ≥ 2, then u is minimal.

Proof. From the equation (24), we have

2

∫

M

λa+4e
m

2
a|H|

2

2 |H |a|∇⊥[e
m

2
|H

2
|

2 H ]|2dvg

+ 2m

∫

M

λa+4e
m

2
a|H|

2

2 |H |aem
2
|H|

2

|H |4dvg
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≤ − 2(a+ 4)

∫

M

λa+3∇λ|e
m

2
|H|

2

2 H |a〈∇⊥[e
m

2
|H|

2

2 H ], e
m

2
|H|

2

2 H〉dvg .(29)

By using Young’s inequalities, we have

− 2(a+ 4)

∫

M

λa+3∇λ|e
m

2
|H|

2

2 H |a〈∇⊥[e
m

2
|H|

2

2 H ], e
m

2
|H|

2

2 H〉dvg

(30)

≤

∫

M

λa+4|e
m

2
|H|

2

2 H |a|∇⊥[e
m

2
|H|

2

2 H ]|2dvg +

∫

M

e
(a+2)m

2
|H|

2

2 λa+4|H |a+4dvg

+ C(a)

∫

M

e
(a+2)m

2
|H|

2

2 |∇λ|a+4dvg,

where C(a) is a constant depending on a.
From (29) and (30), we have

∫

M

λa+4e
m

2
a|H|

2

2 |H |a|∇⊥[e
m

2
|H

2
|

2 H ]|2dvg

+ (2m− 1)

∫

M

λa+4e
m

2
a|H|

2

2 |H |aem
2
|H|

2

|H |4dvg

≤ C(a)

∫

M

e
(a+2)m

2
|H|

2

2 |∇λ|a+4dvg

≤ C(a)Ca+4 1

ra+4

∫

B2r(x0)

e
(a+2)m

2
|H|

2

2 dvg

≤ C(a)Ca+4C0
(1 + 2r)s

ra+4
.(31)

We finish the proof by letting a be big enough and r → ∞. �

Theorem 4.3. Let u : (M, g) → (N, h) be an exponentially biharmonic iso-

metric immersion from a complete Riemannian manifold into a Riemannian

manifold (N, h) whose sectional curvature is smaller than −ε for some constant

ε > 0 and
∫
Br(x0)

e
pm

2
|H|

2

2 |H |pdvg (p ≥ 2) is of at most polynomial growth of

r. Then u is minimal.

Proof. From the equation (7), we have

△[e
m

2
|H|

2

2 |H |]2 = △〈e
m

2
|H|

2

2 H, e
m

2
|H|

2

2 H〉

= 2〈△⊥(e
m

2
|H|

2

2 H), e
m

2
|H|

2

2 H〉+ 2|∇⊥(e
m

2
|H|

2

2 H)|2

= 2|∇⊥(e
m

2
|H|

2

2 H)|2 + 2

m∑

i=1

〈B(A
e

m2
|H|

2

2 H
ei, ei), e

m
2
|H|

2

2 H〉

−
m∑

i=1

〈RN (e
m

2
|H|

2

2 H, ei)ei, e
m

2
|H|

2

2 H〉

≥ 2|∇⊥(e
m

2
|H|

2

2 H)|2 + 2mem
2
|H|

2

|H |4 + 2mεem
2
|H|

2

|H |2
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≥ 2|∇⊥(e
m

2
|H|

2

2 H)|2 + 2mεem
2
|H|

2

|H |2,

that is,

(32) △[e
m

2
|H|

2

2 |H |]2 ≥ 2|∇⊥(e
m

2
|H|

2

2 H)|2 + 2mεem
2
|H|

2

|H |2.

From (32), we have

−

∫

M

∇[λ2e
m

2
a|H|

2

2 |H |a]∇[em
2
|H|

2

|H |2]dvg

=

∫

M

[λ2e
m

2
a|H|

2

2 |H |a]△[em
2
|H|

2

|H |2]dvg(33)

≥ 2

∫

M

[λ2e
m

2
a|H|

2

2 |H |a]|∇⊥(e
m

2
|H|

2

2 H)|2dvg

+ 2mε

∫

M

λ2e
m

2
(a+2)|H|

2

2 |H |a+2dvg,

where a is a nonnegative constant and λ is given by (21). On the other hand,
we have

−

∫

M

∇[λ2e
m

2
a|H|

2

2 |H |a]∇[em
2
|H|

2

|H |2]dvg

= − 4

∫

M

λ∇λe
m

2
a|H|

2

2 |H |a〈∇⊥[e
m

2
|H|

2

2 H ], [e
m

2
|H|

2

2 H ]〉dvg

− 2a

∫

M

λ2e
m

2
(a−2)|H|

2

2 |H |a−2〈∇⊥[e
m

2
|H|

2

2 H ], [e
m

2
|H|

2

2 H ]〉2dvg

≤ − 4

∫

M

λ∇λe
m

2
a|H|

2

2 |H |a〈∇⊥[e
m

2
|H|

2

2 H ], [e
m

2
|H|

2

2 H ]〉dvg

≤ 2

∫

M

λ2e
m

2
a|H|

2

2 |H |a|∇⊥[e
m

2
|H|

2

2 H ]|2dvg

+ 2

∫

M

e
m

2
(a+2)|H|

2

2 |H |a+2|∇λ|2dvg

≤ 2

∫

M

λ2e
m

2
a|H|

2

2 |H |a|∇⊥[e
m

2
|H|

2

2 H ]|2dvg

+
2C2

r2

∫

B2r(x0)−Br(x0)

e
m

2
(a+2)|H|

2

2 |H |a+2dvg

≤ 2

∫

M

λ2e
m

2
a|H|

2

2 |H |a|∇⊥[e
m

2
|H|

2

2 H ]|2dvg

+
2C2

r2

∫

B2r(x0)

e
m

2
(a+2)|H|

2

2 |H |a+2dvg.(34)

From (33) and (34), we have

2mε

∫

Br(x0)

e
m

2
(a+2)|H|

2

2 |H |a+2dvg ≤
2C2

r2

∫

B2r(x0)

e
m

2
(a+2)|H|

2

2 |H |a+2dvg.
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Set f(r) =
∫
Br(x0)

e
m

2
(a+2)|H|

2

2 |H |a+2dvg, we have

f(r) ≤
C1

r2
f(2r),

where C1 = C2

mε
. This implies that f(r) ≤ C2

r2n
f(2nr), where C2 is a constant

independent of r. By assumption, we have f(r) ≤ C2(1 + 2nsrs) for some

positive integer s, as r is big enough, hence f(r) ≤ C2

2
(1+2nsrs)
ρ2n . Let 2n > s,

we have limr→∞ f(r) = 0. Therefore H = 0. �

Theorem 4.4. Let u : (M, g) → (N, h) be a complete ε-super exponentially

biharmonic submanifold in N for ε > 0. If

(35)

∫

M

e
pm

2
|H|

2

2 |H |pdvg < ∞,

then u is minimal, where p ≥ 2.

Proof. From (3), we have

(ε− 1)

∫

M

λ2e
m

2
a|H|

2

2 |H |a|∇[e
m

2
|H|

2

2 H ]|2dvg

≤

∫

M

λ2e
m

2
a|H|

2

2 |H |a〈△[e
m

2
|H|

2

2 H ], [e
m

2
|H|

2

2 H ]〉dvg

= −

∫

M

λ2e
m

2
a|H|

2

2 |H |a|∇[e
m

2
|H|

2

2 H ]|2dvg

−

∫

M

2λ∇λe
m

2
a|H|

2

2 |H |a〈∇[e
m

2
|H|

2

2 H ], [e
m

2
|H|

2

2 H ]〉dvg

− a

∫

M

λ2e
m

2
(a−2)|H|

2

2 |H |a−2〈∇[e
m

2
|H|

2

2 H ], [e
m

2
|H|

2

2 H ]〉2dvg

≤ −

∫

M

λ2e
m

2
a|H|

2

2 |H |a|∇[e
m

2
|H|

2

2 H ]|2dvg

−

∫

M

2λ∇λe
m

2
a|H|

2

2 |H |a〈∇[e
m

2
|H|

2

2 H ], [e
m

2
|H|

2

2 H ]〉dvg ,

where λ is given by (21) and a ≥ 0. So we have

ε

∫

M

λ2e
m

2
a|H|

2

2 |H |a|∇[e
m

2
|H|

2

2 H ]|2dvg

≤ −

∫

M

2λ∇λe
m

2
a|H|

2

2 |H |a〈∇[e
m

2
|H|

2

2 H ], [e
m

2
|H|

2

2 H ]〉dvg.

By Young’s inequality, we have

ε

∫

M

λ2e
m

2
a|H|

2

2 |H |a|∇[e
m

2
|H|

2

2 H ]|2dvg

≤ −

∫

M

2λ∇λe
m

2
a|H|

2

2 |H |a〈∇[e
m

2
|H|

2

2 H ], [e
m

2
|H|

2

2 H ]〉dvg
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≤
ε

2

∫

M

λ2e
m

2
a|H|

2

2 |H |a|∇[e
m

2
|H|

2

2 H ]|2dvg

+
2

ε

∫

M

e
m

2
(a+2)|H|

2

2 |H |a+2|∇λ|2dvg.

So we have ∫

M

λ2e
m

2
a|H|

2

2 |H |a|∇[e
m

2
|H|

2

2 H ]|2dvg

≤
4

ε2
C2

r2

∫

M

e
m

2
(a+2)|H|

2

2 |H |a+2dvg.(36)

Since
∫
M

e
m

2
(a+2)|H|

2

2 |H |a+2dvg is finite, let r → ∞ in (36), we have

(37)

∫

M

e
m

2
a|H|

2

2 |H |a|∇[e
m

2
|H|

2

2 H ]|2dvg ≤ 0

and hence H = 0 or ∇[e
m

2
|H|

2

2 H ] = 0.

In the following, we will show that ∇[e
m

2
|H|

2

2 H ] = 0 implies H = 0.

Now let x ∈ M such that ∇[e
m

2
|H|

2

2 H ] = 0. We choose an orthonormal basis
{ei}mi=1 of TxM and an orthonormal basis {υα}tα=1 of (TxM)⊥. We have

(38) 0 = 〈∇ei [e
m

2
|H|

2

2 H ], ej〉 = −〈[e
m

2
|H|

2

2 H ], B(ei, ej)〉.

From (38), we have

0 =
m∑

i=1

〈[e
m

2
|H|

2

2 H ], B(ei, ei)〉 = me
m

2
|H|

2

2 |H |2,

so we have H = 0. �

Theorem 4.5. Let u : (Mm, g) → (Nm+1(c), 〈, 〉) be a weakly convex exponen-

tially biharmonic hypersurface in a space form Nm+1(c) with c ≤ 0. Then u is

minimal.

Proof. Assume that H = hν, where ν is the unit normal vector field on M .
Since M is weakly convex, we have h ≥ 0. Set C = {q ∈ M : h(q) > 0}. We
will prove that C is an empty set.

If C is not empty, we see that C is an open subset of M . We assume that
C1 is a nonempty connect component of C. We will prove that h ≡ 0 in C1,
thus a contradiction.

Firstly, we prove that h is a constant in C1.
Let q ∈ C1 be a point. Choose a local orthonormal frame {ei, i = 1, . . . ,m}

around q such that 〈B, ν〉 is a diagonal matrix and ∇eiej |q = 0.
From equation (8), we have at q

0 = 〈
m∑

i=1

(∇eiA
(e

m2h2

2 H)
)(ei), ek〉+ 〈

m∑

i=1

A
∇⊥

ei
(e

m2h2

2 H)
(ei), ek〉
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=

m∑

i=1

ei〈A
(e

m2h2

2 H)
(ei), ek〉+

m∑

i=1

〈B(ei, ek),∇
⊥

ei
(e

m
2
h
2

2 H)〉

=
m∑

i=1

ei〈e
m

2
h
2

2 H,B(ei, ek)〉+
m∑

i=1

〈B(ei, ek),∇
⊥

ei
(e

m
2
h
2

2 H)〉

=

m∑

i=1

〈e
m

2
h
2

2 H,∇⊥

ei
B(ei, ek)〉+ 2

m∑

i=1

〈B(ei, ek),∇
⊥

ei
(e

m
2
h
2

2 H)〉

=

m∑

i=1

〈e
m

2
h
2

2 H,∇⊥

ek
B(ei, ei)〉+ 2

m∑

i=1

〈B(ei, ek),∇
⊥

ei
(e

m
2
h
2

2 H)〉

= m〈e
m

2
h
2

2 H,∇⊥

ek
H〉+ 2〈λkν,∇

⊥

ei
(e

m
2
h
2

2 H)〉

= me
m

2
h
2

2 hek(h) + e
m

2
h
2

2 2(m2h2 + 1)λkek(h)

= (mh+ 2λk + 2m2h2λk)e
m

2
h
2

2 ek(h),

where λk is the kth principle curvature of M at q, which is nonnegative by the

assumption that M is weakly convex. Since (mh+ 2λk + 2m2h2λk)e
m

2
h
2

2 > 0
at q, we have ek(h) = 0 at q, for k = 1, . . . ,m, which implies that ∇h = 0 at
q. Because q is an arbitrary point in C1, we have ∇h = 0 in C1. Therefore we
obtain that h is constant in C1.

Secondly, we prove that h is zero in C1.
From (20), we have

(39) △[e
m

2
h
2

2 h]2 ≥ 2m[e
m

2
h
2

2 ]2h4.

From equation (39), we have in C1

0 = △[e
m

2
h
2

2 h]2 ≥ 2m[e
m

2
h
2

2 ]2h4.

We know that h ≡ 0 in C1. This is a contradiction. �
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