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SOME RESULTS OF EXPONENTIALLY BIHARMONIC MAPS
INTO A NON-POSITIVELY CURVED MANIFOLD

YINGBO HAN

ABSTRACT. In this paper, we investigate exponentially biharmonic maps
u : (M,g) — (N,h) from a Riemannian manifold into a Riemannian
manifold with non-positive sectional curvature. We obtain that if

()]
/ et 2 |T(u)[Pdvg < o0 (p > 2), / |7(u)]?dvg < co and
M M

/ |du|2dvg < oo,
M

then w is harmonic. When w is an isometric immersion, we get that
2 2
m=|H|
iffMePZ |H|%dvgy < oo for 2 < p < oo and 0 < ¢ < p < o0,

then v is minimal. We also obtain that any weakly convex exponentially
biharmonic hypersurface in space form N(c) with ¢ < 0 is minimal. These
results give affirmative partial answer to conjecture 3 (generalized Chen’s
conjecture for exponentially biharmonic submanifolds).

1. Introduction

Let (M™,g) and (N™, h) be Riemannian manifolds of dimensions m,n and
w: (M™,g) = (N™, h) be asmooth map. The Dirichlet energy of u is defined by

E(u) = [, ‘d;‘zdvg. The critical maps of E(-) are called harmonic maps. The
Euler-Lagrange equation of harmonic maps is 7(u) = 0, where 7(u) is called the
tension field of u. Extensions to the notions of p-harmonic maps, exponentially
harmonic maps, F-harmonic maps and f-harmonic maps were introduced and
many results have been carried out (for instance, see [1, 2, 3, 9, 19, 28]). In 1983,
J. Eells and L. Lemaire [12] proposed the problem to consider the biharmonic
maps: they are critical maps of the functional Es(u) = [ M %dvg. We see
that harmonic maps are biharmonic maps and even more, minimizers of the
bienergy functional. After G.Y. Jiang [18] studied the first and second variation
formulas of the bienergy Es, there have been extensive studies on biharmonic

maps (for instance, see [10, 18, 20, 21, 26, 27]). Recently the author and S. X.
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Feng in [15] introduced the following functional Ers(u) = [,, F (M)dvg,
where 7(u) = —ddu = traceV (du). The map u is called an F-biharmonic map
if it is a critical point of that F-bienergy Ep o(u), which is a generalization of
biharmonic maps, p-biharmonic maps [17] or exponentially biharmonic maps.
Notice that harmonic maps are always F-biharmonic by definition. When
F(t) = €', we have exponential bienergy functional

lr(w)]?
Eeﬁg(u):/ e 2 dug.
M

The Euler-Lagrange equation of E, o is 7. 2(u) = 0, where 7 2(u) is given by
(5). A map u: (M,g) = (N, h) is called an exponentially biharmonic map if
Te2(u) = 0. When w : (M, g) — (N, h) is a exponentially biharmonic isometric
immersion, then M is called an exponentially biharmonic submanifold in N.

Recently, N. Nakauchi, H. Urakawa and S. Gudmundsson [26] proved that bi-
harmoic maps from a complete Riemannian manifold into a non-positive curved
manifold with finite bienergy and energy are harmonic. S. Maeta [25] proved
that biharmoic maps from a complete Riemannian manifold into a non-positive
curved manifold with finite (a 4 2)-bienergy [,, |7(u)|** 2dv, < oo (a > 0)
and energy are harmonic. The author and W. Zhang in [16] proved that p-
biharmoinc maps from a complete manifold into a non-positive curved manifold
with finite a + p-bienergy [, [7(u)|**Pdvy < oo and energy are harmonic. In
this paper, we first obtain the following result:

Theorem 1.1 (cf. Theorem 3.1). Let u: (M™,g) — (N", h) be an exponen-
tially biharmonic map from a Riemannian manifold (M, g) into a Riemannian
manifold (N, h) with non-positive sectional curvature and let p > 2 be a non-
negative real constant.

() If
plT(u 2
/ 67‘ Gl |7 (u)|Pdv, < oo, / |T(u)|2dvg < oo and / |du|2dvg < 0,
M M M

then u is harmonic.
(i) If Vol(M,g) = oo, and

2
/ epw;)‘ |7(w)Pdv, < o0,
M

then u is harmonic.

One of the most interesting problems in the biharmonic theory is Chen’s
conjecture. In 1988, Chen raised the following problem:

Conjecture 1 ([8]). Any biharmonic submanifold in E™ is minimal.

There are many affirmative partial answers to Chen’s conjecture.
On the other hand, Chen’s conjecture was generalized as follows (cf. [6]):
“Any biharmonic submanifolds in a Riemannian manifold with non-positive
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sectional curvature is minimal”. There are also many affirmative partial an-
swers to this conjecture.

(a) Any biharmonic submanifold in H?3(—1) is minimal (cf. [5]).

(b) Any biharmonic hypersurfaces in H*(—1) is minimal (cf. [4]).

(c) Any weakly convex biharmonic hypersurfaces in space form N™¥1(c)
with ¢ < 0 is minimal (cf. [22]).

(d) Any compact biharmonic submanifold in a Riemannian manifold with
non-positive sectional curvature is minimal (cf. [18]).

(e) Any compact F-biharmonic submanifold in a Riemannian manifold with
non-positive sectional curvature is minimal (cf. [15]).

Motivated by Chen’s conjecture, the author [14] proposed the following con-
jecture:

Conjecture 2 ([14]). Any p-biharmonic submanifold in a Riemannian mani-
fold with non-positive sectional curvature is minimal.

Some partial affirmative answers to Conjecture 2 were proved in [7], [14],
[16], and [24].

For exponentially biharmonic submanifolds, it is natural to consider the
following problem.

Conjecture 3. Any exponentially biharmonic submanifold in a Riemannian
manifold with non-positive sectional curvature is minimal.

For exponentially biharmonic submanifolds, we obtain the following results:

Theorem 1.2 (cf. Theorem 4.1). Let u: (M,g) — (N,h) be an exponentially
biharmonic isometric immersion from a complete Riemannian manifold into a
Riemannian manifold (N, h) with non-positive sectional curvature and let p,q
be two real constants satisfying 2 < p < oo and 0 < ¢ < p < 0.

If

pm?|H|?
e 2 |H|dvg < 00,
M
then u is minimal.

Theorem 1.3 (cf. Theorem 4.2). Let u: (M,g) — (N,h) be an exponentially
biharmonic isometric immersion from a complete Riemannian manifold into a
Riemannian manifold (N, h) with non-positive sectional curvature. If

(1) / e G, < Co(1+7)°
BT(IU)

for some positive integer s, Cy independent of r and p > 2, then u is minimal.

Theorem 1.4 (cf. Theorem 4.3). Let u: (M,g) — (N,h) be an exponentially
biharmonic isometric immersion from a complete Riemannian manifold into
a Riemannian manifold (N, h) whose sectional curvature is smaller than —e

pm?|H|?

for some constant ¢ > 0 and fBT(IU)e = |H|Pdv, (p > 2) is of at most
polynomial growth of r. Then u is minimal.
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n [29], G. Wheeler proposed a notion e-super biharmonic submanifolds
which is a generalization of submanifolds with harmonic mean curvature vector
fields, as follows:

Definition 1.5 ([29]). Let M be a submanifold in N with the metric (-, ).
Then we call M a e-super biharmonic submanifold, if

(2) (AH H) > (e = 1)|VHP,
where € € [0,1] is a constant.
From the Definition 1.5, it is natural to consider the following definition.

Definition 1.6. Let M be a submanifold in N with the metric (-,-). Then we
call M a e-super exponentially biharmonic submanifold, if

m2 | H|2 m2| |2 m2|H|2 )
3) (Ale = H),e 2 H)>(e-1)|V(e = H),
where ¢ € [0,1] is a constant.

In this note, we investigate the e-super exponentially biharmonic submani-
fold, and get the following result:

Theorem 1.7 (cf. Theorem 4.4). Let u : (M,g) — (N,h) be a complete
e-super exponentially biharmonic submanifold in N for e > 0. If

(4) / e |H|Pdvg < o0,
M

then u is minimal, where p > 2.

In [22], Y. Luo investigate the weakly convex biharmonic hypersurfaces in a
space form, and obtained the following result:

Theorem 1.8 ([22]). Let u : (M™,g) — (N™*L(c),{,)) be a weakly convex
biharmonic hypersurface in a space form N™*L(c) with ¢ < 0. Then u is
manimal.

In this note, we investigate the weakly convex exponentially biharmonic
hypersurface in a space form, and get the following result:

Theorem 1.9 (cf. Theorem 4.5). Let u : (M™,g) — (N™"(c),(,)) be a
weakly convex exponentially biharmonic hypersurface in a space form N™1(c)
with ¢ < 0. Then u is minimal.

These results give affirmative partial answers to the generalized Chen’s con-
jecture for exponentially biharmonic submanifold.
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2. Preliminaries

In this section we give more details for the definitions of harmonic maps, bi-
harmonic maps, exponentially biharmonic maps and exponentially biharmonic
submanifolds.

Let u : (M,g9) — (N,h) be a map from an m-dimensional Riemannian
manifold (M, g) to an n-dimensional Riemannian manifold (N, k). The energy

of u is defined by
d 2
E(u):/ [dul dvy.
Mo 2

The Euler-Lagrange equation of F is

(u) = Z{%eidu(ei) —du(Ve,e)} =0,

where we denote by V the Levi-Civita connection on (M, g) and V the induced
Levi-civita connection on TN and {e;}™ is an orthonormal frame field on
(M, g). 7(u) is called the tension field of u. A map u: (M, g) — (N, h) is called
a harmonic map if 7(u) = 0.

To generalize the notion of harmonic maps, in 1983 J. Eells and L. Lemaire
[12] proposed considering the bienergy functional

Es(u) = /M @dvg.

In 1986, G. Y. Jiang [18] studied the first and second variation formulas of the
bienergy E5. The Euler-Lagrange equation of Ejs is

Ta(u) = —A(T(u)) - ZRN(T(U), du(e;))du(e;) =0,

where A = S (Ve, Ve, — %veiei) is the rough Laplacian on the section of
uITN and RN (X,Y) = [NV, N Vy] -V V(x,y] is the curvature operator on
N. A map u: (M,g) = (N,h) is called a biharmonic map if 72(u) = 0.

To generalize the notion of biharmoic maps, the author and S. X. Feng [15]
introduced the F-bienergy functional

rau) - [ 70

where F : [0,00) — [0,00) is a C? function such that F' > 0 on (0,00). The
Euler-Lagrange equation of Er s is

)dvg,

[ (u)l?
2

~ | T

o) = B (T ) (w) - 37 RN

)7(u), du(e;))du(e;) = 0.

A map u: (M, g) — (N, h) is called a F-biharmonic map if 7p2(u) = 0.
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When F(t) = €', we have exponential bienergy functional

Ir(w)|?
E.o(u)= [ e 2 du,.
M

The Euler-Lagrange equation of E, 5 is

(5)  Ten(u) = —A(TF 7 Z RN (e

(u), du(e;))du(e;) = 0.

A mapu: (M,g) = (N,h) is called an exponential biharmonic map if 7 2 (u) =
0.
Now we introduce the definition of exponentially biharmonic submanifolds.
Let w : (M,g) — (N,h = (-,-)) be an isometric immersion from an m-
dimensional Riemannian manifold into an m + t-dimensional Riemannian man-
ifold. We identify du(X) with X € T'(T'M) for each z € M. We also denote by
(-,+) the induced metric u=th. The Gauss formula is given by

NVxY =VxY + B(X,Y), X,Y cI(TM),

where B is the second fundamental form of M in N. The Weingarten formula
is give by

NUx€=—AcX +V%E, X eD(TM), £ €T(THM),

where A¢ is the shape operator for a unit normal vector field £ on M, and
V+ denotes the normal connection on the normal bundle of M in N. For any
x € M, the mean curvature vector field H of M at x is given by

= % iB(ei, 61').

If an isometric u : (M,g) — (N,h) is exponentially biharmonic, then M is
called an exponentially biharmonic submanifold in N. In this case, we remark
that the tension field 7(u) of u is written 7(u) = mH, where H is the mean
curvature vector field of M. The necessary and sufficient condition for M in
N to be exponentially biharmonic is the following:

(6) A" ZRN " eg)es = 0.

From (6), we obtain the necessary and sufficient condition for M in N to be
exponentially biharmonic as follows:

(7)
A" H) -3 B (e A ZRN
=1
(8)
2‘H‘2
TTg(VA 2‘H‘2 ) + TTg[AVL(enLQ‘H‘Z ZRN H el)el]T — 0,

')ei]L =0,
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where A+ = 37" (VEVLE — Vg, ) is the Laplace operator associated with

the normal connection V-+.
We also need the following lemma.

Lemma 2.1 (Gaffney, [13]). Let (M,g) be a complete Riemannian manifold.
If a C* a-form « satisfies that Jas leldvg < 00 and [, (a)dvg < o0, or equiv-
alently, a C vector X defined by a(Y) = (X,Y) (VY € ['(T'M)) satisfies that
Sy | Xdvg < 00 and [, div(X)dvg < co, then

) A (=a)du, = /M div(X)dv, = 0.

3. Exponentially biharmonic maps into non-positively curved
manifolds

In this section, we obtain the following result.

Theorem 3.1. Letu : (M™,g) — (N™, h) be an exponentially biharmonic map
from a Riemannian manifold (M, g) into a Riemannian manifold (N, h) with
non-positive sectional curvature and let p > 2 be a non-negative real constant.

(i) If

T(uw 2
| e s, <oc, [ jrldy <oo and [ jduPd, < .
M M M

then u is harmonic.

(ii) If Vol(M,g) = oo, and

T(Uw 2
/ 25 |7(w)[Pdv, < o0,
M

Proof. Take a fixed point xg € M and for every r > 0, let us consider the
following cut off function A(z) on M:

then u is harmonic.

0< M) <1, xe M,
Az) =1, x € By (xo),
(10) AMz) =0, 2 € M — Ban(z0),
VAl < €, r €M,

where B, (x¢) = {z € M : d(x,z0) < r}, C is a positive constant and d is the
distance of (M, g). From (5), we have

/N I<—A<e%7<u>>, Xle

\r(;)\z T(u)|p726 w;)@ 7(u))dv,

(i = /M R ()l 22 RN (r(u), du(e;))du(e;), 7(u))dvy <0,



1658 YINGBO HAN
since the sectional curvature of (IV, k) is non-positive. From (11), we have
0> / <_£(e‘*<‘2‘)‘ 7(u)), Ne 2 -
M
= lrw)?
= [ T ). o
M
Uidgpe Ir(w)|? = 9 lrw|? - 2, \r(u)\
= MZWei(e 2 7(w), Ve, (Nle = 77 (u)] 7(u)))dvg
i=1

B /Miwei(e“5)27(@),%&(%*(:”T(u)w—%#ﬂu)

e 2 )

\T(u)\

ecile 2 T(w)])]dug
/2:2)\6Z i (u)|p72(§ei[e%7(u)],e%T(u))dvg

lrw)? T(u)\
2

T(w)P~2e "7 (u))do,

7(u)))dvg

T(u)\ T(w)|?

T(u)P2e T

+ /\261(

+/\2|e‘ 2

! / Z<p—2w|e—‘”3” )PV fe T (w)], e () o,

9 r(u)\ P~ 9 r(w)]? = r(uw)|?
ZAIe WP (Ve [ r(w)], Ve e r(u)])do,
\r(u)\ _9S |7 (w)|? |7 (w)|?
Z%ez TP (Ve le 2 r(w)) e 2 7(u))dyg

Ir(w|? I7(w)]? ~ I (w)|?
/MZW@ > ()P (Vele 2 r(w)],Vele 2 7(u)])dv,,

where the inequality follows from

Ir(w)|?
2

Ir(w)|? I7(uw)|?
2

\le (W) [P Ve, e 2 T(u)], e

From (12), we have

5 \r(u)\ 5 |7 (w)|? = |7 (w)|?
ZAIe WP (Ve e F r(w)], Vele s T(u))dvg
M

=1

(18 /MZM@ ) 2T, [ ()], e 7 () dv

i=1

By using Young’s inequality, we have

-/, Zm ()T e ()], e 7w
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/Z/\Q lr? [P 2|V [

plT(w)|?
2

)\2

7(u)][*dv,

(14) +2 /M IVA%e |7(w)[Pdvy.

From (13) and (14), we have

/ ZA2 WPV [ ()], Ve e ()]

g plr(uw?

| /\

VA |7 (u)[Pdvg

402 plr(w)?
(15) ST—Q Me 2 |7 (u)[Pdy.

plT (u)\

By assumption [, e

. Z B )2 (9, [ ()], Ve e () = 0.

|7(w)[Pdvy < o0, letting » — oo in (15), we have

I7(uw)|?

Therefore, we obtain that e |7(u)| is constant and Vx[e = 7(u)] = 0,
that is (Vx7(u), 7(u))7(u) + Vx7(u) = 0 for any vector field X on M.
Therefore, if Vol(M) = oo and |7(u)| # 0, then

/ e r(w)Pdvg = e E T (w) PV ol(M) = o,
M
which yields a contradiction. Thus, we have |7(u)| = 0, i.e., u is harmonic. We
have (ii).

For (i), assume [, e |T(u)|Pdvy < o0, [y, I7(u)]Pdvy < oo and
Joys ldu|?*dvg < oo. Define a 1-from a on M defined by

I7(uw)|?
2

p\()\

I (w)|? P I (w2
2

(16) a(X) = e T(u)|* TN du(X), e = m(w)

for any vector X € T'(T'M).
Note here that

/ |a| dvg = Z 61 2dvg
:/ [Z“ewﬂuﬂ%_l(du(ei),ewr(u»ﬁ%dvg

W) |duldog

<[

a7) s[/Me—‘” # |r<u>|?dvg1%[/ duPdu,]t < .
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Now we compute
—0a = Z(veia)(ei) = Z[Veia(ei) — (V)]

=1 =1
m

= Vel P ) 5N du(er), e

*Z ] (V) e ()

= 3 [ )5 (T dule) — du(Veses), =5 7 (w)
=1

Ir(w)|? D
77 (w)]2[r(u)],

Il
™

where the fourth equality follows from that |e 7(u)| is constant and

~ (|2
VX[e‘ Eh T(u)] =0, for X € T'(TM). So we have

[ [daldv, = [ 155w g ir(wlas,

M M
plr(u?
<[ ] ([ ropan]
M

Since [, e Mh’( u)[Pdvg < oo and [}, |7(u)[*dvy < oo, the function —do is

also integrable over M.
From this and (17), we can apply Lemma 2.1 for the 1-form «. Therefore

we have
0:/ (—504)dvg:/ B G |T(u)|%+1dvg,
M M

so we have 7(u) = 0, that is, u is harmonic. O

4. Exponentially biharmonic submanifolds in
nonpositive curvature forms

In this section, we obtain the following results:

Theorem 4.1. Let u : (M,g) — (N, h) be an exponentially biharmonic iso-
metric immersion from a complete Riemannian manifold into a Riemannian
manifold (N,h) with non-positive sectional curvature and let p,q be two real
constants satisfying 2 < p < oo and 0 < g < p < oo.

If

pm \H\
/ e |H|dvy < o0,
M

then u is minimal.
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Proof. From the equation (7), we have

m?2 WLQ\H\Z

m?|H|? 9 |H|?
Ale” 2 |H|)?=A{e 2 H,e =z H)

mQ\H\Z mZ\H\Q

= AN (" FTH), e H) + 2|V (e H)

mQ\H\Z m mZ\H\Q
=2|Vi(e = - H)|2+22(B(Aem22HzHei,ei),e—2

i=1

H)

m N m2| 5|2 m2| 5|2
—Z(R (e 2 H,e;)e;e 2 H)

i=1

m?2|H|? m m2 |2
(18) > 2V (e H)P 423 (B(A pome ecier)ie” 7
2 H

€

H>’

i=1
where the inequality follows from the sectional curvature of (N,h) is non-
positive. Now we state an inequality:

m

(19) Z(B(A m2‘2H‘2 Hei,ei),e

i=1 ¢

In fact, let © € M, when H(x) = 0, we are done. If H(x) # 0, we have at z,

m2|H|2 m2|H|2
2 2

) = mle 2]

s m?2|H|?
Z(B(A w22z €,€;),e 2 H
X e 2 H

NP ey
= Z[e 2 TIH[H(B(A g e, ), |H|>

>mle” = )?|H|".
From (18) and (19), we have

m?2|H|? 22| H|2

’V‘VL2 2 m
(200 AlE O |HP 22V (e E T H)P 4 2mle™E PIH|

Take a fixed point xg € M and for every r > 0, let us consider the following
cut off function A(z) on M:

0<Az) <1, e M,
(21) AMz) =1, x € By(xo),
)\(SC) = 0, reM-— B2r($0)7
VAl < €, T € M,
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where B (x0) = {x € M : d(z,z9) < r}, C is a positive constant and d is the
distance of (M, g). From (20), we have

7/ v()\a+4

M

— / Aa+4
M

22/ ) (i
M

) H 9V e 1 H 2 dy

e alem ‘H‘2|H|21dv

]|2dvg

(22) +2m/ Aottt [H|2e™ 11 H | v,
M

where a is a positive constant to be determined later. On the other hand, we
have

mZ2a|H|? 2 2
*/ Ve H) Ve I H P do
M

m \ 12 m?2|H|? m?2|H|?

H|*(V*e = "Hle = H)dv,

= 72(a+4)/ PRARAVONE
M

m?2|H|? m?2|H|?

72(1/ A" [ ([ 1), e H)2do,
M

m2\H\2 m2\H\2

H|"(V*[e™ = H],e” =  H)dv,.

(23) < 72(a+4)/

M
From (22) and (23), we have

2/ A L T ) P,
M

+om / XA prjagm PP | F A gy,
M

m?2|H|? m?2|H|?

H|"(V*[e = Hl,e = H)do,

24) < 72(a+4)/

M

m’2a 2 m,2 2
< / N S | O [ HPdu
M

+(a+4)2/ N 2e
M

So we have

m2(a+2)|H|2
2

|H|* T2V A2 do,.

atd m2alH?
[t e P,
+2m / PELPUE Natd | |+ gy,

(25) < (a+4)2/ It ? A2 H |92V A2 d,.
M
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By using Young’s inequalities, we have
m?(a+2)|H|?
(a+ 4)2/ ez NTH|*THVAdy,
M
2 M s sya+2—s a+2—s 2
= (a+4) e 2 N|HIPA |H | [V A|“dvg
M

m2(a+2)|H|2
< / e 2 AT H |y,
M

m?(a+2)|H|?
2

(26) + C(a,s) / e Ala+2=s)atits | | (42 =) 255 | WA Pats du,,
M

where s € (0,a+2) and C(a, s) is a constant depending on a, s. From (25) and
(26), we have

[ e P,
M

+(2m— 1)/ em,2<a+22>\m2 AT H |2 dy,
M

< C(a, 5) /M e

4 m2(a+2 2 a at4
(27> < C(a,S)(g)QaiI*s / e ( +2 ) H]| A(a+2fs)W+fs|H|(a+2fs)TLdvg.
r M

2 2
(a+2)|H| +4 +4 +4
S Aet+2—9) 7= |H|(a+2_5) ari— |V/\|2 PR d’l)g

Note that when s varies from 0 to a + 2, we know that (a +2 —s) aﬂ'fs varies

from a+2 to 0. Set ¢ = (a+275)afﬂfs, we have ¢ € (0,a+2). Set p=a+2.

m p\H\

By the assumption [, e
letting  — oo in (27), we have

/ " o v ™ H]|2dvg+(2mfl)/ e
M M

Thus, we have H = 0. [l

|H|%dvg < 00 (2<p<o00,0<q<p<o0),

m2 (a+2) |H|2

|H|* dv, = 0.

Theorem 4.2. Let u : (M,g) — (N, h) be an exponentially biharmonic iso-
metric immersion from a complete Riemannian manifold into a Riemannian
manifold (N, h) with non-positive sectional curvature. If

pm?|H|?
(28) / e 2 dvg < Co(l+7)°
Br(zo)

for some positive integer s, Cy independent of r and p > 2, then u is minimal.

Proof. From the equation (24), we have

a m a\H\
2/M/\ e |H|%| V(e 7H]|2dvg

+2m/ N+ | g P | i gy,
M
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+3 m2\H\2 n m2\H\2 m2\H\2
(29) < —2(a+4) | AX7T°VAe = H|"(V©[e” 2 Hl,e 2z H)dv,.
M
By using Young’s inequalities, we have
(30)
—2(a—|—4)/ AN E |V " H], e H)d,
M

m?2 m?2|H|?

< / N+ 2 g L2 H]|2dvg+/ ¢
M

+C(a)/Me ’

where C'(a) is a constant depending on a.
From (29) and (30), we have

(a+2)m? | H|?
2

(a+2)m?2|H|2
2

|VA|“ T du,,

atd m2a|H|? P m2|H?| 9
X TeT 2 T |H|Y\ Ve 7 H]%dy,
M

m2a|H|?

+(2m71)/ A ST | H e | H A dw,
M

(a42)m?2|H|?

< C’(a)/ e 2 VAT dv,
M

1 (a+2)m?| H|?
< C(G)Ca+4a—+4 / e 2 dUg
r Bar (o)

(L+2r)°

a-+4
(31) < O(a)C*™Cy pr

We finish the proof by letting a be big enough and r — oo.

)\a+4|H|a+4dvg

O

Theorem 4.3. Let u : (M,g) — (N,h) be an exponentially biharmonic iso-
metric immersion from a complete Riemannian manifold into a Riemannian
manifold (N, h) whose sectional curvature is smaller than —e for some constant

pm?|H|?

>0 and [p (o) e~ =2 |HPdv, (p > 2) is of at most polynomial growth of

r. Then u is minimal.

Proof. From the equation (7), we have

m?2|H|? m?2|H|? m?2|H|?

Ale™ =5 |H|? = Ale™ = H,e™ = H)

m2|H |2 m2|H |2

= AN (" H), e HY 4 2V (e H)?

= 2|VL(€m ‘QH‘ H)|2+22<B(A m2|H|2 ei,ei),e
e 2 H

i=1
7Z<RN(em ‘QH‘ Haei)eiaem ‘QH‘ H>

=1

mZ\H\Q
2

m2|H|? 2| 1712 217712
> 2|VL(€%H)|2 + 2me™ | |H|* + 2mee™ |H]| |H|?

H)
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> 9|V (™ F H)[? + 2mee™ 1H I | HP?,

that is,
(32) Ale™F|H[]? > 2|V (€™ H) 2 + 2mee™ HP |2,
From (32), we have
*/MVWem FE H Ve P | H ) dv
> 2/M[A2e’" P B9 L (5 ) 2do,

2 2
m?(at2)|H]|
—|—2m€/ Me z |H|" 2 dv,,
M

1665

where a is a nonnegative constant and A is given by (21). On the other hand,

we have
VN 1V e 1 o
M
m2a|H|? o n m2|H|? m2|H|?
= —4 [ AVXe 2z |H|*"V-le = H)le = Hdy,
M
2 / N 2 (v [ ) [ H)du,
M
m a\H\ m2|H|? m2|H |2
< _4/ AV e H|* (V™ Y, [ v,
M

IN

m a m 2
2/ A2 oy [ H][2dv,
M

+2/ o P 11042 A P,
M

ma m 2
<2/ X2 H o T e H) P,
M

N 2(}2‘2 o 2at2)|n)? H | 2,
T BQT(IU) B (IU)

<2 [ et v e P,
M

207 m2(a 2
a1y + 22 " H | 2 .

r? Bar(z0)
From (33) and (34), we have

202 m2(at2)| H|?
e 2

2

m2(at2)|H|?
2m€/ e 2 |H|" 2dv, < —
B, (z0) r Bar(z0)

|H|“ 2 dv,.
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m2(at2)|H|?

Set f(r) =[5 (20) € |H|**2dv,, we have

7)< e,
CQ

where C; = <. This implies that f(r) < 2 f(2"r), where C3 is a constant
independent of r. By assumption, we have f(r) < Ca(1 + 2"%r°) for some

2 ns,_.s
positive integer s, as r is big enough, hence f(r) < %. Let 2n > s,
we have lim,_, o f(r) = 0. Therefore H = 0. O

Theorem 4.4. Let u : (M,g) — (N,h) be a complete e-super exponentially
biharmonic submanifold in N for e > 0. If

(35) / e 5 |H|Pdvg < o0,
M
then u is minimal, where p > 2.

Proof. From (3), we have

m a\ \
(1) / X4 e e E) o,
2, m a\H\ m?2|H|? m?2|H|?
< [ RS A ), [
- */M N2 o [ H) o,
m2|H|2 m2|H|2
- M2/\V)\e “V]e~ = Hlle” * H])dy,
—a [ ST e v [ )R,
< - [ e v P,
—/MQ)\V)\e V[ FH], [ H])dv,,

where A is given by (21) and a > 0. So we have

E/M N2 F (019 [ 2 P,

2512 2 512
m®|H]| |H]

< —/ AV | H (Ve ™ H], [e" 5 H])dv,.
M

By Young’s inequality, we have

2 m a\H\ 2
€ I\/[)\ |H|*|V[e” H]| dvg

m2|H |2 m2|H|?

myza 2
< f/ AV T | H|(V[e™ = H], [e" 7 H])dv,
M
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3 9 m E‘H‘
<5 | Ne (H|*V]e ™ H]? dvg
2 Jm
) m2(a 2
+—/ e 1042 A P d,.
€JMm
So we have
2 m a\H\ 2
Ae |||V ¥ )| dug
M
4 C? m2@ilH2
(36) S5, ] ¢ |[H|*"“dv,.
Since [, e M|H|“+2dvg is finite, let 7 — oo in (36), we have
(37) / ™| 11|V [ H][2dv, < 0
M

mQ\H\Q

and hence H =0 or V(e H]=0.
In the following, we will show that V[e™ - ] = 0 implies H = 0.

Now let x € M such that V[em ! ] = 0. We choose an orthonormal basis
{ei}™, of T, M and an orthonormal basis {v,},_; of (T.M)*+. We have

m?2|H|? m?2|H|?

(38) 0= (Ve le = Hlej) = (e > HJ Blei,e;))-

From (38), we have

=Z =L 1), Bler, en)) = me™F | HP2,

so we have H = 0. O

Theorem 4.5. Letu: (M™,g) — (N™*1(c),(,)) be a weakly convexr exponen-
tially biharmonic hypersurface in a space form N™ L (¢) with ¢ < 0. Then u is
minimal.

Proof. Assume that H = hv, where v is the unit normal vector field on M.
Since M is weakly convex, we have h > 0. Set C = {g € M : h(q) > 0}. We
will prove that C' is an empty set.

If C' is not empty, we see that C is an open subset of M. We assume that
C1 is a nonempty connect component of C'. We will prove that h = 0 in Cf,
thus a contradiction.

Firstly, we prove that h is a constant in Cj.

Let ¢ € (4 be a point. Choose a local orthonormal frame {e;,i =1,...,m}
around ¢ such that (B,v) is a diagonal matrix and V., e;|, = 0.

From equation (8), we have at ¢

m m
0= (O (Ved e, )e)ea) + (30 A

i=1 i=1

: (e )

2
m2h
vLi

€4 (e 2
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2,2

(Blei,er), Ve, (2 H))

NE

=Y efA ngpz (@), e) +

=1 7

Il
—

2h2

(B(e;, ex), Vj‘i (e™2 H))

-

= eile™ H Blei,er)) +

s
Il
—
-
Il
-

m

= Z(emi’lz H, VeiiB(ei, er)) + 22(3(61', k), Vé (e

i=1 i=1

m?2h?2

> H))

2,2

n WL22 n m
=Y e b H,V;, Bleiei)) +2Y (Blei,ex), Vi (e™7 H))
: =1

m?2h2 m2h2

=m{e" 2 H,V:H)+2(\v, V(e 2 H))

2h2

=me 2 hegp(h)+ e 2(m?h? + 1) Aper(h)

m2

2
= (mh + 2\ + 2m2h2\p)e ™ ex(h),

where Ay is the kth principle curvature of M at ¢, which is nonnegative by the
assumption that M is weakly convex. Since (mh + 2\, + 2m2h2)\k)enl22h2 >0
at ¢, we have egx(h) = 0 at ¢, for kK = 1,...,m, which implies that VA = 0 at
q. Because ¢ is an arbitrary point in C, we have Vi = 0 in C;. Therefore we
obtain that h is constant in C;.

Secondly, we prove that h is zero in Cj.

From (20), we have

m2p? m2h?

(39) Ale™ ™2 h]2 > 2m[e” 2 2h%.
From equation (39), we have in C
m?2p2 m2h?
0=Ale"2 h*>>2mle 2 *h%.
We know that h = 0 in (1. This is a contradiction. O
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