
Bull. Korean Math. Soc. 54 (2017), No. 6, pp. 2091–2106

https://doi.org/10.4134/BKMS.b160773

pISSN: 1015-8634 / eISSN: 2234-3016

SOME RESULTS OF f-BIHARMONIC MAPS INTO
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Abstract. The authors investigate f -biharmonic maps u : (M, g) →
(N,h) from a Riemannian manifold into a Riemannian manifold with

non-positive sectional curvature, and derive that if
∫
M fp|τ(u)|pdvg <∞,∫

M |τ(u)|2dvg < ∞ and
∫
M |du|2dvg < ∞, then u is harmonic. When

u is an isometric immersion, the authors also get that if u satisfies some

integral conditions, then it is minimal. These results give an affirma-
tive partial answer to conjecture 4 (generalized Chen’s conjecture for f -

biharmonic submanifolds).

1. Introduction

In the past several decades harmonic maps have played a central role in
geometry and analysis. Let (Mm, g) and (Nn, h) be Riemannian manifolds of
dimensions m,n and u : (Mm, g) → (Nn, h) be a smooth map. The energy

of u is defined by E(u) =
∫
M
|du|2
2 dvg, where dvg is the volume element on

(Mm, g). Harmonic maps are the critical maps of E(·). The Euler-Lagrange
equation of harmonic maps is τ(u) = 0, where τ(u) is called the tension field of
u. p-harmonic maps [19], exponentially harmonic maps [16], F -harmonic maps
and f -harmonic maps are extensions to harmonic maps and many results have
been carried out (for instance, see [1–3,10,24,33]).

In 1983, J. Eells and L. Lemaire [13] proposed the problem to consider bi-
harmonic maps which are critical points of the bi-energy functional E2(u) =∫
M
|τ(u)|2

2 dvg. We see that biharmonic maps are a generalization of harmonic
maps. In 1986, G. Y. Jiang [21] studied the first and the second variational
formulas of the bi-energy. There have been many studies on biharmonic maps
(for instance, see [4–6, 11, 20, 25, 26, 32]). To further generalize the notion of
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harmonic maps, Y. B. Han and S. X. Feng [17] introduced the F -bienergy func-

tional EF,2(u) =
∫
M
F ( |τ(u)|

2

2 )dvg. The critical points of F -bienergy EF,2(u)

are called F -biharmonic maps. If F (u) = (2u)
p
2 , we have p-bienergy func-

tional Ep,2(u) =
∫
M
|τ(u)|pdvg. If F (u) = eu, we have exponential bienergy

functional Ee,2(u) =
∫
M
e
|τ(u)|2

2 dvg.
A. Lichnerowicz [23] (see also [12]) introduced and studied f -harmonic maps

between Riemannian manifolds. The study of f -harmonic maps comes from
a physical motivation, since in physics f -harmonic maps can be viewed as
stationary solutions to the inhomogeneous Heisenberg spin system (see [22]).
W. J. Lu [27] introduced the following functional:

E2,f (u) =

∫
M

f
|τ(u)|2

2
dvg,

where f : (M, g) → (0,+∞) is a smooth function. A map u is called an
f -biharmonic map if it is a critical point of the f -bienergy functional.

Recently, N. Nakauchi et al. [31] showed that every biharmonic map of a
complete Riemannian manifold into a Riemannian manifold of non-positive
curvature whose energy and bi-energy are finite must be harmonic. S. Maeta
[29] obtained that biharmonic maps from a complete Riemannian manifold into
a non-positive curved manifold with finite (a+2)-bienergy

∫
M
|τ(u)|a+2dvg <∞

(a ≥ 0) and energy are harmonic. Y. B. Han and W. Zhang [18] obtained that p-
biharmonic maps from a complete manifold into a non-positive curved manifold
with finite (a+ p)-bienergy

∫
M
|τ(u)|a+pdvg <∞ and energy are harmonic. In

this paper, we first obtain the following results:

Theorem 1.1 (cf. Theorem 3.1). Let u : (Mm, g)→(Nn, h) be an f -biharmonic
map from a compact Riemannian manifold (Mm, g) without boundary into a
Riemannian manifold (Nn, h) with non-positive sectional curvature, then u is
harmonic.

Theorem 1.2 (cf. Theorem 3.3). Let u : (Mm, g)→(Nn, h) be an f -biharmonic
map from a complete Riemannian manifold (Mm, g) into a Riemannian man-
ifold (Nn, h) with non-positive sectional curvature and let p ≥ 2 be a non-
negative real constant.

(i) If∫
M

fp|τ(u)|pdvg <∞,
∫
M

|τ(u)|2dvg <∞, and

∫
M

|du|2dvg <∞,

then u is harmonic.
(ii) If V ol(M, g) =∞, and

∫
M
fp|τ(u)|pdvg <∞, then u is harmonic.

Chen’s conjecture is the most interesting problem in the biharmonic theory.
In 1988, Chen [9] raised the following problem:

Conjecture 1. Any biharmonic submanifold in En is minimal.
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There are some affirmative partial answers to Conjecture 1.
Then Chen’s conjecture was generalized as follows ([8]): Any biharmonic

submanifolds in a Riemannian manifold with non-positive sectional curvature
is minimal. There are also some affirmative partial answers to this Conjecture
(for instance, see [7, 17,30,31]).

Motivated by Chen’s conjecture, Y. B. Han [15] proposed the following con-
jecture:

Conjecture 2. Any p-biharmonic submanifold in a Riemannian manifold with
non-positive sectional curvature is minimal.

Some affirmative partial answers to Conjecture 2 were proved in [15,18,28].
Y. B. Han [16] also proposed the following conjecture:

Conjecture 3. Any exponentially biharmonic submanifold in a Riemannian
manifold with non-positive sectional curvature is minimal.

Some affirmative partial answers to Conjecture 3 were proved in [16].
For f -biharmonic submanifolds, it is natural to consider the following con-

jecture.

Conjecture 4. Any f -biharmonic submanifold in a Riemannian manifold with
non-positive sectional curvature is minimal.

For f -biharmonic submanifolds, we obtain some results:

Theorem 1.3 (cf. Theorem 4.1). Let u : (M, g)→ (N,h) be an f -biharmonic
isometric immersion from a complete Riemannian manifold into a Riemannian
manifold (N,h) with non-positive sectional curvature and let p, q be two real
constants satisfying 2 ≤ p <∞ and 0 < q ≤ p <∞. If∫

M

fp| ~H|qdvg <∞,

then u is minimal.

Theorem 1.4 (cf. Theorem 4.2). Let u : (M, g)→ (N,h) be an f -biharmonic
isometric immersion from a complete Riemannian manifold into a Riemannian
manifold (N,h) with non-positive sectional curvature. If∫

Br(x0)

fpdvg ≤ C0(1 + r)s

for some positive integer s, C0 independent of r and p ≥ 2, then u is minimal.

Theorem 1.5 (cf. Theorem 4.3). Let u : (M, g)→ (N,h) be an f -biharmonic
isometric immersion from a complete Riemannian manifold into a Riemannian
manifold (N,h) whose sectional curvature is smaller than −ε for some constant

ε > 0 and
∫
Br(x0)

|f ~H|pdvg (p ≥ 2) is of at most polynomial growth of r. Then

u is minimal.
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Theorem 1.6 (cf. Theorem 4.4). Let u : (M, g) → (N,h) be a complete ε-
supper f -biharmonic submanifold in (N,h) for ε > 0. If∫

M

|f ~H|pdvg <∞,

where p ≥ 2, then u is minimal.

2. Preliminaries

In this section we give some necessary notations and terminologies about
harmonic maps, biharmonic maps, f -biharmonic maps and f -biharmonic sub-
manifolds.

Let u : (Mm, g) → (Nn, h) be a smooth map from an m-dimensional Rie-
mannian manifold (Mm, g) to an n-dimensional Riemannian manifold (Nn, h).
The energy of u is defined by

E(u) =

∫
M

| du |2

2
dvg,

where dvg is the volume element on (Mm, g).

The Euler-Lagrange equation of harmonic maps is τ(u) =
∑m
i=1{∇̃eidu(ei)−

du(∇eiei)} = 0 where ∇ is the Levi-Civita connection on (Mm, g) and ∇̃ is the
induced Levi-Civita connection of the pullback bundle u−1TN . {ei}mi=1 is an
orthonormal frame field on (Mm, g). If τ(u) = 0, then u is called a harmonic
map.

In 1983, J. Eells and L. Lemaire [13] proposed the problem to consider the
bi-energy functional:

E2(u) =

∫
M

|τ(u)|2

2
dvg.

Then, in 1986, G. Y. Jiang [21] obtained the first and the second variational
formulas of the bi-energy functional. The Euler-Lagrange equation of the bi-
energy functional is

τ2(u) = −∆̃(τ(u))−
∑
i

RN (τ(u)), du(ei))du(ei) = 0,

where RN (X,Y ) = [N∇X ,N ∇Y ]−N∇[X,Y ] is the curvature operator on (N,h).
If τ2(u) = 0, then u is called a biharmonic map.

To generalize the notation of biharmonic maps, W. J. Lu [27] studied the
f -bienergy functional

E2,f (u) =

∫
M

f(x)
|τ(u)|2

2
dvg,

where f : (M, g) → (0,+∞) is a smooth function. The Euler-Lagrange equa-
tion of E2,f is

τ2,f (u) = −∆̃(fτ(u))−
∑
i

RN (fτ(u), du(ei))du(ei) = 0.
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If τ2,f (u) = 0, then u is called an f -biharmonic map.
Now we briefly recall the submanifold theory. Let u : (Mm, g)→ (Nm+t, h)

be an isometric immersion from an m-dimensional Riemannian manifold (Mm,
g) into an (m + t)-dimensional Riemannian manifold (Nm+t, h). The second
fundamental form B : TM

⊗
TM → NM is defined by

B(X,Y ) =N ∇XY −∇XY, X, Y ∈ Γ(TM).

The shape operator Aξ : TM → TM for a unit normal vector field ξ on M is
defined by

N∇Xξ = −AξX +∇⊥Xξ, X ∈ Γ(TM), ξ ∈ Γ(T⊥M),

where ∇⊥ denotes the normal connection on the normal bundle of M in N .
It’s well known that B and Aξ are related by

〈B(X,Y ), ξ〉 = 〈AξX,Y 〉.

For any x ∈M , the mean curvature vector field ~H of M at x is given by

~H =
1

m

∑
i

B(ei, ei).

If an isometric immersion u : (M, g) → (N,h) is f -biharmonic, then M is

called an f -biharmonic submanifold in N . In this case, τ(u) = m~H. We know
that M is an f -biharmonic submanifold in N if and only if

(1) −∆̃(f ~H)−
∑
i

RN (f ~H, ei)ei = 0.

From (2), we obtain the sufficient and necessary condition for M to be an
f -biharmonic submanifold in N as follows:

4⊥(f ~H)−
∑
i

B(ei, Af ~Hei) + [
∑
i

RN (f ~H, ei)ei]
⊥ = 0,(2)

Trg(∇(·)Af ~H(·)) + Trg[A∇⊥(f ~H)(·)]− [
∑
i

RN (f ~H, ei)ei]
> = 0.(3)

We also need the following lemma.

Lemma 2.1 (Gaffney [14]). Let (M, g) be a complete Riemannian manifold.
If a C1 1-form α satisfies that

∫
M
|α|dvg <∞ and

∫
M

(δα)dvg <∞, or equiv-

alently, a C1 vector X defined by α(Y ) = 〈X,Y 〉 satisfies that
∫
M
|X|dvg <∞

and
∫
M
div(X)dvg <∞, then

∫
M

(δα)dvg =
∫
M
div(X)dvg = 0.

3. f-biharmonic maps in a Riemannian manifold of non-positive
sectional curvature

In this section, we obtain some results as follows:

Theorem 3.1. Let u : (Mm, g) → (Nn, h) be an f -biharmonic map from a
compact Riemannian manifold (Mm, g) without boundary into a Riemannian
manifold (Nn, h) with non-positive sectional curvature, then u is harmonic.
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Proof. From (1), we have

1

2
∆|fτ(u)|2 = |∇̃(fτ(u))|2 + 〈∆̃[fτ(u)], fτ(u)〉

= |∇̃(fτ(u))|2 −
∑
i

〈RN (fτ(u), du(ei))du(ei), fτ(u)〉

≥ |∇̃(fτ(u))|2.

From Green theorem and the compactness of (M, g), we have

(4) 0 =

∫
M

1

2
∆|fτ(u)|2dvg =

∫
M

|∇̃(fτ(u))|2dvg.

Then, for every X ∈ Γ(TM), we have

∇̃X |fτ(u)| = 0.

Let Y =
∑
i h(du(ei), fτ(u))ei, we have

(5)

div(Y ) =
∑
k

g(∇ekY, ek)

=
∑
k

[h(∇̃ekdu(ek), fτ(u))− h(du(∇ekek), fτ(u))]

= h(τ(u), fτ(u)) = f |τ(u)|2.

From (6), we have

0 =

∫
M

div(Y )dvg =

∫
M

f |τ(u)|2dvg.

Since f > 0 in M , so we have τ(u) = 0. �

Corollary 3.2. Any f -biharmonic function in a compact manifold (M, g) with-
out boundary is constant.

Proof. From Theorem 3.1, u is an f -biharmonic function if and only if u is a
harmonic function. On the other hand, any harmonic function in a compact
manifold (M, g) is constant, so we have u = C. �

Theorem 3.3. Let u : (Mm, g) → (Nn, h) be an f -biharmonic map from a
complete Riemannian manifold (Mm, g) into a Riemannian manifold (Nn, h)
with non-positive sectional curvature and let p ≥ 2 be a non-negative real con-
stant.

(i) If∫
M

fp|τ(u)|pdvg <∞,
∫
M

|τ(u)|2dvg <∞ and

∫
M

|du|2dvg <∞,

then u is harmonic.
(ii) If V ol(M, g) =∞ and

∫
M
fp|τ(u)|pdvg <∞, then u is harmonic.
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Proof. Take a fixed point x0 ∈ M and for every r > 0, let us consider the
following cut off function λ(x) on M :

(6)


0 ≤ λ(x) ≤ 1, x ∈M,
λ(x) = 1, x ∈ Br(x0),
λ(x) = 0, x ∈M −B2r(x0),
|∇λ| ≤ C

r , x ∈M,

where Br(x0) = {x ∈ M : d(x, x0) < r}, C is a positive constant and d is the
distance of M . From (1), we have

(7)

∫
M

〈−∆̃(fτ(u)), λ2|fτ(u)|p−2fτ(u)〉dvg

=

∫
M

λ2fp|τ(u)|p−2
∑
i

〈RN (τ(u), du(ei))du(ei), τ(u)〉dvg ≤ 0,

where the inequality follows from the sectional curvature of (N,h) is non-
positive. From (8), we have

(8)

0 ≥
∫
M

〈−∆̃(fτ(u)), λ2|fτ(u)|p−2fτ(u)〉dvg

=

∫
M

〈∇̃(fτ(u)), ∇̃(λ2|fτ(u)|p−2fτ(u))〉dvg

=

∫
M

m∑
i=1

[〈∇̃ei(fτ(u)), ∇̃ei(λ2|fτ(u)|p−2fτ(u))〉dvg

=

∫
M

m∑
i=1

〈∇̃ei(fτ(u)), 2λei(λ)|fτ(u)|p−2fτ(u)

+ λ2ei[|fτ(u)|p−2]fτ(u) + λ2|fτ(u)|p−2∇̃ei [fτ(u)]〉dvg

=

∫
M

m∑
i=1

2λei(λ)|fτ(u)|p−2〈∇̃ei [fτ(u)], fτ(u)〉dvg

+

∫
M

m∑
i=1

(p− 2)λ2|fτ(u)|p−4〈∇̃ei [fτ(u)], fτ(u)〉2dvg

+

∫
M

m∑
i=1

λ2|fτ(u)|p−2〈∇̃ei [fτ(u)], ∇̃ei [fτ(u)]〉dvg

≥
∫
M

m∑
i=1

2λei(λ)|fτ(u)|p−2〈∇̃ei [fτ(u)], fτ(u)〉dvg

+

∫
M

m∑
i=1

λ2|fτ(u)|p−2〈∇̃ei [fτ(u)], ∇̃ei [fτ(u)]〉dvg,
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where the inequality follows from∫
M

m∑
i=1

λ2|fτ(u)|p−4〈∇̃ei [fτ(u)], fτ(u)〉2dvg ≥ 0.

From (9), we have

(9)

∫
M

m∑
i=1

λ2|fτ(u)|p−2〈∇̃ei [fτ(u)], ∇̃ei [fτ(u)]〉dvg

≤ −
∫
M

m∑
i=1

2λei(λ)|fτ(u)|p−2〈∇̃ei [fτ(u)], fτ(u)〉dvg.

By using Young’s inequality, we have

(10)

−
∫
M

m∑
i=1

2λei(λ)|fτ(u)|p−2〈∇̃ei [fτ(u)], fτ(u)〉dvg

≤ 1

2

∫
M

m∑
i=1

λ2|fτ(u)|p−2|∇̃ei [fτ(u)]|2dvg + 2

∫
M

|∇λ|2fp|τ(u)|pdvg.

From (10) and (11), we have

(11)

∫
M

m∑
i=1

λ2|fτ(u)|p−2〈∇̃ei [fτ(u)], ∇̃ei [fτ(u)]〉dvg

≤ 4

∫
M

|∇λ|2fp|τ(u)|pdvg ≤
4C2

r2

∫
M

fp|τ(u)|pdvg.

By assumption
∫
M
fp|τ(u)|pdvg <∞, letting r →∞ in (12), we have∫

M

m∑
i=1

fp−2|τ(u)|p−2〈∇̃ei [fτ(u)], ∇̃ei [fτ(u)]〉dvg = 0.

So we obtain that f |τ(u)| is constant. If |τ(u)| 6= 0, we get∫
M

fp|τ(u)|p = |fτ(u)|pV ol(M) =∞,

which yields a contradiction. So we have |τ(u)| = 0, i.e., u is harmonic. We
derive that (ii) is tenable.

For (i), we assume that∫
M

fp|τ(u)|pdvg <∞,
∫
M

|τ(u)|2dvg <∞,
∫
M

|du|2dvg <∞.

We define a 1-form

(12) α(X) = |fτ(u)|
p
2−1〈du(X), fτ(u)〉,
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where X ∈ Γ(TM). We note that
(13)∫

M

|α|dvg =

∫
M

[

m∑
i=1

|α(ei)|2]
1
2 dvg

=

∫
M

{
m∑
i=1

[|fτ(u)|
p
2−1〈du(ei), fτ(u)〉]2} 1

2 dvg

≤
∫
M

|fτ(u)|
p
2 |du|dvg ≤ [

∫
M

fp|τ(u)|pdvg]
1
2 [

∫
M

|du|2dvg]
1
2 <∞.

We compute

−δα =

m∑
i=1

(∇eiα)(ei) =

m∑
i=1

[∇eiα(ei)− α(∇eiei)]

=

m∑
i=1

∇ei [|fτ(u)|
p
2−1〈du(ei), fτ(u)〉]−

m∑
i=1

|fτ(u)|
p
2−1〈du(∇eiei), fτ(u)〉

=

m∑
i=1

|fτ(u)|
p
2−1〈∇̃eidu− du(∇eiei), fτ(u)〉 = |fτ(u)|

p
2 |τ(u)|,

where the third equality follows from that |fτ(u)| is constant and ∇̃X [fτ(u)] =
0, for all X ∈ Γ(TM). We have∫
M

(−δα)dvg =

∫
M

|fτ(u)|
p
2 |τ(u)|dvg ≤ [

∫
M

fp|τ(u)|pdvg]
1
2 [

∫
M

|τ(u)|2dvg]
1
2 .

From
∫
M
fp|τ(u)|pdvg <∞ and

∫
M
|τ(u)|2dvg <∞, we know the function −δα

is also integrable over M .
From this and (14), applying Lemma 2.1 for the 1-form α, we have

0 =

∫
M

(−δα)dvg =

∫
M

f
p
2 |τ(u)|

p
2+1dvg.

So we have τ(u) = 0, i.e., u is harmonic. �

4. f-biharmonic submanifolds in a Riemannian manifold of
non-positive sectional curvature

Theorem 4.1. Let u : (M, g)→ (N,h) be an f -biharmonic isometric immer-
sion from a complete Riemannian manifold into a Riemannian manifold (N,h)
with non-positive sectional curvature and let p, q be two real constants satisfying
2 ≤ p <∞ and 0 < q ≤ p <∞. If∫

M

fp| ~H|qdvg <∞,

then u is minimal.
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Proof. From (3), we have

4|f ~H|2 = 4〈f ~H, f ~H〉 = 2〈4⊥(f ~H), f ~H〉+ 2|∇⊥(f ~H)|2

= 2|∇⊥(f ~H)|2 + 2

m∑
i=1

〈B(Af ~Hei, ei), f
~H〉 − 2

m∑
i=1

〈RN (f ~H, ei)ei, f ~H〉

≥ 2|∇⊥(f ~H)|2 + 2

m∑
i=1

〈B(Af ~Hei, ei), f
~H〉,(14)

where the inequality follows from the sectional curvature of N is non-positive.
Now we proof the following inequality:

(15)

m∑
i=1

〈B(Af ~Hei, ei), f
~H〉 ≥ mf2| ~H|4.

Let x ∈M , if ~H = 0, we are done. If ~H(x) 6= 0, we have at x,

m∑
i=1

〈B(Af ~Hei, ei), f
~H〉 =

m∑
i=1

f2| ~H|2〈B(A ~H

|~H|
ei, ei),

~H

| ~H|
〉

=

m∑
i=1

f2| ~H|2〈A ~H

|~H|
ei, A ~H

|~H|
ei〉 =

m∑
i,j=1

f2| ~H|2|〈B(ei, ej),
~H

| ~H|
〉|2 ≥ mf2| ~H|4.

From (15) and (16), we have

(16) 4|f ~H|2 ≥ 2|∇⊥(f ~H)|2 + 2mf2| ~H|4.

Take a fixed point x0 ∈ M and for every r > 0, let us consider the following
cut off function λ(x) on M :

(17)


0 ≤ λ(x) ≤ 1, x ∈M,
λ(x) = 1, x ∈ Br(x0),
λ(x) = 0, x ∈M −B2r(x0),
|∇λ| ≤ C

r , x ∈M,

where Br(x0) = {x ∈ M : d(x, x0) < r}, C is a positive constant and d is the
distance of M . From (17), we have

(18)

−
∫
M

∇(λa+4|f ~H|a)∇|f ~H|2dvg =

∫
M

λa+4|f ~H|a4|f ~H|2dvg

≥ 2

∫
M

λa+4|f ~H|a|∇⊥(f ~H)|2dvg + 2m

∫
M

λa+4|f ~H|af2| ~H|4dvg,
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where a is a positive constant to be determined later. On the other hand, we
have

(19)

−
∫
M

∇(λa+4|f ~H|a)∇|f ~H|2dvg

= − 2(a+ 4)

∫
M

λa+3∇λ|f ~H|a〈∇⊥(f ~H), f ~H〉dvg

− 2a

∫
M

λa+4|f ~H|a−2〈∇⊥(f ~H), f ~H〉2dvg

≤ − 2(a+ 4)

∫
M

λa+3∇λ|f ~H|a〈∇⊥(f ~H), f ~H〉dvg.

From (19) and (20), we have

2

∫
M

λa+4|f ~H|a|∇⊥(f ~H)|2dvg + 2m

∫
M

λa+4|f ~H|af2| ~H|4dvg

≤ − 2(a+ 4)

∫
M

λa+3∇λ|f ~H|a〈∇⊥(f ~H), f ~H〉dvg

≤
∫
M

λa+4|f ~H|a|∇⊥(f ~H)|2dvg + (a+ 4)2
∫
M

λa+2|f ~H|a+2|∇λ|2dvg.(20)

So we have ∫
M

λa+4|f ~H|a|∇⊥(f ~H)|2dvg + 2m

∫
M

λa+4|f ~H|af2| ~H|4dvg

≤ (a+ 4)2
∫
M

λa+2fa+2| ~H|a+2|∇λ|2dvg.(21)

From Young’s inequality, we have

(a+ 4)2
∫
M

fa+2λa+2| ~H|a+2|∇λ|2dvg

= (a+ 4)2
∫
M

fa+2λs| ~H|sλa+2−s| ~H|a+2−s|∇λ|2dvg

≤
∫
M

λa+4| ~H|a+4fa+2dvg

+ C(a, s)

∫
M

fa+2λ(a+2−s) a+4
a+4−s | ~H|(a+2−s) a+4

a+4−s |∇λ|2
a+4
a+4−s dvg,(22)

where s ∈ (0, a+ 2) and C(a, s) is a constant depending on a, s. From (22) and
(23), we have∫

M

λa+4|f ~H|a|∇⊥(f ~H)|2dvg + (2m− 1)

∫
M

fa+2λa+4| ~H|a+4dvg

≤ C(a, s)

∫
M

fa+2λ(a+2−s) a+4
a+4−s | ~H|(a+2−s) a+4

a+4−s |∇λ|2
a+4
a+4−s dvg

≤ C(a, s)(
C

r
)2

a+4
a+4−s

∫
M

fa+2λ(a+2−s) a+4
a+4−s | ~H|(a+2−s) a+4

a+4−s dvg.(23)
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We know that when s varies from 0 to a+ 2, then (a+ 2− s) a+4
a+4−s varies from

a+ 2 to 0. Let q = (a+ 2− s) a+4
a+4−s , then q ∈ (0, a+ 2). Let p = a+ 2, from∫

M
fp| ~H|qdvg < ∞, 2 ≤ p < ∞ and 0 < q ≤ p < ∞, set r → ∞ in (24), we

have ∫
M

|f ~H|a|∇⊥(f ~H)|2dvg + (2m− 1)

∫
M

fa+2| ~H|a+4dvg = 0.

So we have ~H = 0. �

Theorem 4.2. Let u : (M, g)→ (N,h) be an f -biharmonic isometric immer-
sion from a complete Riemannian manifold into a Riemannian manifold (N,h)
with non-positive sectional curvature. If

(24)

∫
Br(x0)

fpdvg ≤ C0(1 + r)s

for some positive integer s, C0 independent of r and p ≥ 2, then u is minimal.

Proof. From (21), we have

2

∫
M

λa+4|f ~H|a|∇⊥(f ~H)|2dvg + 2m

∫
M

λa+4|f ~H|af2| ~H|4dvg

≤ − 2(a+ 4)

∫
M

λa+3∇λ|f ~H|a〈∇⊥(f ~H), F ′(
m2| ~H|2

2
) ~H〉dvg.(25)

From Young’s inequality, we have

− 2(a+ 4)

∫
M

λa+3∇λ|f ~H|a〈∇⊥(f ~H), f ~H〉dvg

≤
∫
M

λa+4|f ~H|a|∇⊥(f ~H)|2dvg +

∫
M

λa+4fa+2| ~H|a+4dvg

+ C(a)

∫
M

fa+2|∇λ|a+4dvg,(26)

where C(a) is a constant depending on a. From (26) and (27), we have∫
M

λa+4|f ~H|a|∇⊥(f ~H)|2dvg +

∫
M

(2m− 1)λa+4fa+2| ~H|a+4dvg

≤ C(a)

∫
M

fa+2|∇λ|a+4dvg ≤ C(a)
Ca+4

ra+4

∫
B2r(x0)

fa+2dvg

≤ C(a)Ca+4C0
(1 + 2r)s

ra+4
.(27)

Let a be big enough and r →∞, then we finish the proof. �

Theorem 4.3. Let u : (M, g) → (N,h) be an f -biharmonic isometric im-
mersion from a complete Riemannian manifold into a Riemannian manifold
(N,h) whose sectional curvature is smaller than −ε for some constant ε > 0

and
∫
Br(x0)

|f ~H|pdvg(p ≥ 2) is of at most polynomial growth of r. Then u is

minimal.
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Proof. From the equation (3), we have

4|f ~H|2 = 4〈f ~H, f ~H〉 = 2〈4⊥(f ~H), f ~H〉+ 2|∇⊥[f ~H]|2

= 2|∇⊥(f ~H)|2 + 2

m∑
i=1

〈B(Af ~Hei, ei), f
~H〉 − 2

m∑
i=1

〈RN (f ~H, ei)ei, f ~H〉

≥ 2|∇⊥(f ~H)|2 + 2m| ~H|4f2 + 2mε|f ~H|2

≥ 2|∇⊥(f ~H)|2 + 2mε|f ~H|2,

that is

(28) 4|f ~H|2 ≥ 2|∇⊥(f ~H)|2 + 2mε|f ~H|2.

From (29), we have

−
∫
M

∇[λ2|f ~H|a]∇|f ~H|2dvg =

∫
M

[λ2|f ~H|a]4|f ~H|2dvg

≥ 2

∫
M

λ2|f ~H|a|∇⊥(f ~H)|2dvg + 2mε

∫
M

λ2|f ~H|a+2dvg,(29)

where λ is given by (18) and a is a nonnegative constant. We also have

−
∫
M

∇[λ2|f ~H|a]∇|f ~H|2dvg

= − 4

∫
M

λ∇λ|f ~H|a〈∇⊥(f ~H), f ~H〉dvg

− 2a

∫
M

λ2|f ~H|a−2〈∇⊥(f ~H), f ~H〉2dvg

≤ − 4

∫
M

λ∇λ|f ~H|a〈∇⊥(f ~H), f ~H〉dvg

≤ 2

∫
M

λ2|f ~H|a|∇⊥(f ~H)|2dvg + 2

∫
M

|f ~H|a+2|∇λ|2dvg

≤ 2

∫
M

λ2|f ~H|a|∇⊥(f ~H)|2dvg + 2
C2

r2

∫
B2r(x0)−Br(x0)

|f ~H|a+2dvg

≤ 2

∫
M

λ2|f ~H|a|∇⊥(f ~H)|2dvg + 2
C2

r2

∫
B2r(x0)

|f ~H|a+2dvg.(30)

From (30) and (31), we have

2mε

∫
Br(x0)

|f ~H|a+2dvg ≤ 2
C2

r2

∫
B2r(x0)

|f ~H|a+2dvg.

Letting g(r) =
∫
Br(x0)

|f ~H|a+2dvg, we have g(r) ≤ C1

r2 g(2r) where C1 = C2

mε .

Then we know g(r) ≤ C2

r2n g(2nr), where C2 is a constant independent of r. From
the assumption, we know g(r) ≤ C2(1 + 2nsrs) for some integer s > 0. When r
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is big enough, we have g(r) ≤ C2
2 (1+2nsrs)

r2n . Set 2n > s, then limr→∞ g(r) = 0,

so ~H = 0. �

Definition. Let M be a submanifold in N with the metric 〈·, ·〉, then we call
M a ε-super f -biharmonic submanifold, if

(31) 〈4(f ~H), f ~H〉 ≥ (ε− 1)|∇(f ~H)|2,

where ε ∈ [0, 1] is a constant.

Theorem 4.4. Let u : (M, g) → (N,h) be a complete ε-supper f -biharmonic
submanifold in (N,h) for ε > 0. If

(32)

∫
M

|f ~H|pdvg <∞,

then u is minimal, where p ≥ 2.

Proof. From (32), we have

(ε− 1)

∫
M

λ2|f ~H|a|∇(f ~H)|2dvg ≤
∫
M

λ2|f ~H|a〈4(f ~H), f ~H〉dvg

= −
∫
M

λ2|f ~H|a|∇(f ~H)|2dvg −
∫
M

2λ∇λ|f ~H|a〈∇(f ~H), f ~H〉dvg

− a
∫
M

λ2|f ~H|a−2〈∇(f ~H), f ~H〉2dvg

≤ −
∫
M

λ2|f ~H|a|∇(f ~H)|2dvg −
∫
M

2λ∇λ|f ~H|a〈∇(f ~H), f ~H〉dvg,

where λ is defined by (18), a ≥ 0, we have

ε

∫
M

λ2|f ~H|a|∇(f ~H)|2dvg ≤ −
∫
M

2λ∇λ|f ~H|a〈∇(f ~H), f ~H〉dvg.

From Young’s inequality, we have

ε

∫
M

λ2|f ~H|a|∇(f ~H)|2dvg

≤ −
∫
M

2λ∇λ|f ~H|a〈∇(f ~H), f ~H〉dvg

≤ ε

2

∫
M

λ2|f ~H|a|∇(f ~H)|2dvg +
2

ε

∫
M

|f ~H|a+2|∇λ|2dvg,

so

(33)

∫
M

λ2|f ~H|a|∇(f ~H)|2dvg ≤
4

ε2
C2

r2

∫
M

|f ~H|a+2dvg.

Since
∫
M
|f ~H|a+2dvg is finite, setting r →∞ in (34), we have

(34)

∫
M

|f ~H|a|∇(f ~H)|2dvg ≤ 0,
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and then ~H = 0 or ∇(f ~H) = 0.

We will prove that ∇(f ~H) = 0 implies ~H = 0.

Set x ∈ M such that ∇(f ~H) = 0. We take an orthonormal basis {ei}mi=1 of
TxM , an orthonormal basis {vα}tα=1 of (TxM)⊥, then we have

(35) 0 = 〈∇ei(f ~H), ej〉 = −〈f ~H,B(ei, ej)〉.

From (36), we have

0 =

m∑
i=1

〈f ~H,B(ei, ei)〉 = m| ~H|2f,

so we obtain ~H = 0. �
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