• 제목/요약/키워드: Non-Archimedean space

검색결과 22건 처리시간 0.025초

COMMON FIXED POINT THEOREMS FOR HYBRID MAPS IN NON-ARCHIMEDEAN FUZZY METRIC SPACES

  • Samanta, T.K.;Mohinta, Sumit
    • Journal of applied mathematics & informatics
    • /
    • 제31권1_2호
    • /
    • pp.155-164
    • /
    • 2013
  • In this paper, we have established some common fixed point theorems for two pairs of occasionally weakly compatible hybrid maps sat-isfying a strict contractive condition in a non-archimedean fuzzy metric space. Our result extend, generalized and fuzzify several fixed point theo-rems on metric space.

ADDITIVE-QUARTIC FUNCTIONAL EQUATION IN NON-ARCHIMEDEAN ORTHOGONALITY SPACES

  • Lee, Hyunju;Kim, Seon Woo;Son, Bum Joon;Lee, Dong Hwan;Kang, Seung Yeon
    • Korean Journal of Mathematics
    • /
    • 제20권1호
    • /
    • pp.33-46
    • /
    • 2012
  • Using the direct method, we prove the Hyers-Ulam stability of the orthogonally additive-quartic functional equation (0.1) $f(2x+y)+f(2x-y)=4f(x+y)+4f(x-y)+10f(x)+14f(-x)-3f(y)-3f(-y)$ for all $x$, $y$ with $x{\perp}y$, in non-Archimedean Banach spaces. Here ${\perp}$ is the orthogonality in the sense of R$\ddot{a}$tz.

THE GENERALIZED HYERS-ULAM STABILITY OF QUADRATIC FUNCTIONAL EQUATION WITH AN INVOLUTION IN NON-ARCHIMEDEAN SPACES

  • Kim, Chang Il;Shin, Chang Hyeob
    • 충청수학회지
    • /
    • 제27권2호
    • /
    • pp.261-269
    • /
    • 2014
  • In this paper, using fixed point method, we prove the Hyers-Ulam stability of the following functional equation $$(k+1)f(x+y)+f(x+{\sigma}(y))+kf({\sigma}(x)+y)-2(k+1)f(x)-2(k+1)f(y)=0$$ with an involution ${\sigma}$ for a fixed non-zero real number k with $k{\neq}-1$.

APPLICATION OF CONTRACTION MAPPING PRINCIPLE IN INTEGRAL EQUATION

  • Amrish Handa
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제30권4호
    • /
    • pp.443-461
    • /
    • 2023
  • In this paper, we establish some common fixed point theorems satisfying contraction mapping principle on partially ordered non-Archimedean fuzzy metric spaces and also derive some coupled fixed point results with the help of established results. We investigate the solution of integral equation and also give an example to show the applicability of our results. These results generalize, improve and fuzzify several well-known results in the recent literature.

QUADRATIC ρ-FUNCTIONAL INEQUALITIES IN NON-ARCHIMEDEAN NORMED SPACES

  • Cui, Yinhua;Hyun, Yuntak;Yun, Sungsik
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제24권2호
    • /
    • pp.109-127
    • /
    • 2017
  • In this paper, we solve the following quadratic ${\rho}-functional$ inequalities ${\parallel}f({\frac{x+y+z}{2}})+f({\frac{x-y-z}{2}})+f({\frac{y-x-z}{2}})+f({\frac{z-x-y}{2}})-f(x)-f(y)f(z){\parallel}$ (0.1) ${\leq}{\parallel}{\rho}(f(x+y+z)+f(x-y-z)+f(y-x-z)+f(z-x-y)-4f(x)-4f(y)-4f(z)){\parallel}$, where ${\rho}$ is a fixed non-Archimedean number with ${\mid}{\rho}{\mid}$ < ${\frac{1}{{\mid}4{\mid}}}$, and ${\parallel}f(x+y+z)+f(x-y-z)+f(y-x-z)+f(z-x-y)-4f(x)-4f(y)-4f(z){\parallel}$ (0.2) ${\leq}{\parallel}{\rho}(f({\frac{x+y+z}{2}})+f({\frac{x-y-z}{2}})+f({\frac{y-x-z}{2}})+f({\frac{z-x-y}{2}})-f(x)-f(y)f(z)){\parallel}$, where ${\rho}$ is a fixed non-Archimedean number with ${\mid}{\rho}{\mid}$ < ${\mid}8{\mid}$. Using the direct method, we prove the Hyers-Ulam stability of the quadratic ${\rho}-functional$ inequalities (0.1) and (0.2) in non-Archimedean Banach spaces and prove the Hyers-Ulam stability of quadratic ${\rho}-functional$ equations associated with the quadratic ${\rho}-functional$ inequalities (0.1) and (0.2) in non-Archimedean Banach spaces.

SOME FIXED POINT THEOREMS VIA COMMON LIMIT RANGE PROPERTY IN NON-ARCHIMEDEAN MENGER PROBABILISTIC METRIC SPACES

  • Nashine, Hemant Kumar;Kadelburg, Zoran
    • 대한수학회보
    • /
    • 제52권3호
    • /
    • pp.789-807
    • /
    • 2015
  • We propose coincidence and common fixed point results for a quadruple of self mappings satisfying common limit range property and weakly compatibility under generalized ${\Phi}$-contractive conditions i Non-Archimedean Menger PM-spaces. As examples we exhibit different types of situations where these conditions can be used. A common fixed point theorem for four finite families of self mappings is presented as an application of the proposed results. The existence and uniqueness of solutions for certain system of functional equations arising in dynamic programming are also presented as another application.

ORTHOGONALITY AND LINEAR MAPPINGS IN BANACH MODULES

  • YUN, SUNGSIK
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제22권4호
    • /
    • pp.343-357
    • /
    • 2015
  • Using the fixed point method, we prove the Hyers-Ulam stability of lin- ear mappings in Banach modules over a unital C*-algebra and in non-Archimedean Banach modules over a unital C*-algebra associated with the orthogonally Cauchy- Jensen additive functional equation.

GENERAL SOLUTION AND ULAM STABILITY OF GENERALIZED CQ FUNCTIONAL EQUATION

  • Govindan, Vediyappan;Lee, Jung Rye;Pinelas, Sandra;Muniyappan, P.
    • Korean Journal of Mathematics
    • /
    • 제30권2호
    • /
    • pp.403-412
    • /
    • 2022
  • In this paper, we introduce the following cubic-quartic functional equation of the form $$f(x+4y)+f(x-4y)=16[f(x+y)+f(x-y)]{\pm}30f(-x)+\frac{5}{2}[f(4y)-64f(y)]$$. Further, we investigate the general solution and the Ulam stability for the above functional equation in non-Archimedean spaces by using the direct method.

REMARKS ON THE PAPER: ORTHOGONALLY ADDITIVE AND ORTHOGONALLY QUADRATIC FUNCTIONAL EQUATION

  • Kim, Hark-Mahn;Jun, Kil-Woung;Kim, Ahyoung
    • 충청수학회지
    • /
    • 제26권2호
    • /
    • pp.377-391
    • /
    • 2013
  • The main goal of this paper is to present the additional stability results of the following orthogonally additive and orthogonally quadratic functional equation $$f(\frac{x}{2}+y)+f(\frac{x}{2}-y)+f(\frac{x}{2}+z)+f(\frac{x}{2}-z)=\frac{3}{2}f(x)-\frac{1}{2}f(-x)+f(y)+f(-y)+f(z)+f(-z)$$ for all $x,y,z$ with $x{\bot}y$, which has been introduced in the paper [11], in orthogonality Banach spaces and in non-Archimedean orthogonality Banach spaces.