DOI QR코드

DOI QR Code

GENERAL SOLUTION AND ULAM STABILITY OF GENERALIZED CQ FUNCTIONAL EQUATION

  • Govindan, Vediyappan (Department of Mathematics, DMI St John Baptist University) ;
  • Lee, Jung Rye (Department of Data Science, Daejin University) ;
  • Pinelas, Sandra (Departamento de Ciencias Exatas e Engenharia, Academia Militar) ;
  • Muniyappan, P. (Erode Arts and Science College (Autonomous))
  • Received : 2022.05.02
  • Accepted : 2022.06.14
  • Published : 2022.06.30

Abstract

In this paper, we introduce the following cubic-quartic functional equation of the form $$f(x+4y)+f(x-4y)=16[f(x+y)+f(x-y)]{\pm}30f(-x)+\frac{5}{2}[f(4y)-64f(y)]$$. Further, we investigate the general solution and the Ulam stability for the above functional equation in non-Archimedean spaces by using the direct method.

Keywords

References

  1. M. Eshaghi Gordji, R. Khodabakhsh, S. Jung and H. Khodaei, AQCQ-Functional equation in non-Archimedean normed spaces, Abstr.. Appl. Anal. 2010 (2010), Article ID 741942.
  2. M. Eshaghi Gordji, H. Khodaei and R. Khodabakhsh, General quartic-cubic-quadratic functional equation in non-Archimedean normed spaces, UPB Sci. Bull. Ser. A, 72 (2010), no. 3, 69-84.
  3. M. Eshaghi Gorgji and M. B. Savadkouhi, Stability of cubic and quartic functional equations in non-Archimedean spaces, Acta Appl. Math. 110 (2010), 1321-1329. https://doi.org/10.1007/s10440-009-9512-7
  4. M. Eshaghi Gordji and M. B. Savadkouhi, Stability of a mixed type cubic-quartic functional equation in non-Archimedean spaces, Appl. Math. Lett. 23 (2010), 1198-1202. https://doi.org/10.1016/j.aml.2010.05.011
  5. A. Gil'anyi, On a problem by K. Nikodem, Math. Inequal. Appl. 5 (2002), 707-710.
  6. V. Govindan, S. Murthy and M. Saravanan, Solution and stability of new type of (aaq,bbq,caq,daq) mixed type functional equation in various normed spaces: Using two different methods, Int. J. Math. Appl. 5 (2017), 187-211.
  7. K. Jun and H. Kim, The generalized Hyers-Ulam-Rassias stability of a cubic functional equation, J. Math. Anal. Appl. 274 (2002), 267-278.
  8. S. Jung, D. Popa and M. Th. Rassias, On the stability of the linear functional equation in a single variable on complete metric spaces, J. Global Optim. 59 (2014), 13-16.
  9. Y. Lee, S. Jung and M. Th. Rassias, Uniqueness theorems on functional inequalities concerning cubic-quadratic-additive equation, J. Math. Inequal. 12 (2018), 43-61.
  10. D. Mihet, The stability of the additive Cauchy functional equation in non- Archimedean fuzzy normed spaces, Fuzzy Sets Syst. 161 (2010), 2206-2212. https://doi.org/10.1016/j.fss.2010.02.010
  11. R. Murali, S. Pinelas and V. Vithya, The stability of viginti unus functional equation in various spaces, Global J. Pure Appl. Math. 13 (2017), 5735-5759.
  12. S. Murthy, V. Govindhan, General solution and generalized HU (Hyers-Ulam) statbility of new dimension cubic functional equation in fuzzy ternary Banach algebras: Using two different methods, Int. J. Pure Appl. Math. 113 (2017), no. 6, 394-403.
  13. P. Narasimman, K. Ravi and S. Pinelas, Stability of Pythagorean mean functional equation, Global J. Math. 4 (2015), 398-411.
  14. C. Park, Additive ρ-functional inequalities and equations, J. Math. Inequal. 9 (2015), 17-26. https://doi.org/10.7153/jmi-09-02
  15. C. Park, Additive ρ-functional inequalities in non-Archimedean normed spaces, J. Math. Inequal. 9 (2015), 397-407. https://doi.org/10.7153/jmi-09-33
  16. S. Pinelas, V. Govindan and K. Tamilvanan, Stability of non-additive functional equation, IOSR J. Math. 14 (2018), no. 2, 70-78.