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SOME FIXED POINT THEOREMS VIA COMMON LIMIT

RANGE PROPERTY IN NON-ARCHIMEDEAN MENGER

PROBABILISTIC METRIC SPACES

Hemant Kumar Nashine and Zoran Kadelburg

Abstract. We propose coincidence and common fixed point results for
a quadruple of self mappings satisfying common limit range property
and weakly compatibility under generalized Φ-contractive conditions in
Non-Archimedean Menger PM-spaces. As examples we exhibit different
types of situations where these conditions can be used. A common fixed
point theorem for four finite families of self mappings is presented as
an application of the proposed results. The existence and uniqueness of
solutions for certain system of functional equations arising in dynamic
programming are also presented as another application.

1. Introduction

The notion of probabilistic metric space (briefly, PM-space) as a generaliza-
tion of metric space, was introduced in 1942 by K. Menger. The first idea of
Menger was to use distribution functions instead of non-negative real numbers
as values of the metric. Such a probabilistic generalization of metric spaces
appears to be well adapted for the investigation of physical quantities and
physiological thresholds. It is also of fundamental importance in probabilistic
functional analysis. Since then the theory of probabilistic metric spaces has
been developed in many directions.

Non-Archimedean probabilistic metric spaces (briefly, N. A. PM-spaces) and
some of their topological properties were first studied by Istrătescu and Crivăt
[21] in the year 1974. Istrătescu [18, 19] obtained some fixed point theorems on
N. A. Menger PM-spaces and generalized the results of Sehgal and Bharucha-
Reid [31] (see also [20, 22]). Further, Hadžić [13] improved the results of
Istrătescu [18, 19]. The theory of probabilistic metric spaces is of fundamental
importance in probabilistic functional analysis due to its extensive applications
in random differential as well as random integral equations (see [5, 12]).
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In 1987, Singh and Pant [34] introduced the notion of weakly commuting
mappings on N. A. Menger PM-spaces and proved some common fixed point
theorems. Dimri and Pant [11] studied the application of N. A. Menger PM-
spaces to product spaces. Jungck and Rhoades [23, 24] weakened the notion of
compatible mappings by introducing weakly compatible mappings and proved
common fixed point theorems without any requirement of continuity of the
involved mappings. Many mathematicians proved common fixed point theo-
rems in N. A. Menger PM-spaces using different contractive conditions (see
[4, 10, 11, 25, 26, 27, 32, 33, 36]).

In 2002, Aamri and Moutawakil [1] defined the notion of property (E.A)
which contained the class of non-compatible mappings. It is observed that the
property (E.A) requires the completeness (or closedness) of the subspaces for
the existence of a common fixed point. As a further generalization, new notion
of CLRg property, recently given by Sintunavarat and Kuman [37], does not
impose such conditions. The importance of CLRg property is that it ensures
that one does not require the closedness of range of subspaces (see also [38]).
This concept was used by Singh et al. [35] who proved a common fixed point
theorem for a pair of weakly compatible self mappings in an N. A. Menger
PM-space employing common limit range property. Recently, Imdad et al. [17]
extended the notion of common limit range property to two pairs of self map-
pings which further relaxes the requirement on closedness of the subspaces.
Since then, a number of fixed point theorems has been established by several
researchers in different settings under common limit range property. We refer
the reader to [15, 39] and references therein. Further, using this concept for
two pairs in N. A. Menger PM-spaces, Chauhan and Vujaković [8] extended
results of Singh et al. [35].

The proposed results will be explained in the further sections, but we state
here briefly some improvements that we intend to achieve: (i) Containment of
ranges amongst the involved mappings is relaxed. (ii) Continuity requirements
of all the involved mappings are completely relaxed. (iii) The (E.A) property
is replaced by (CLRS,T ) property which is the most general among all existing
weak commutativity concepts. (iv) The condition on completeness of the whole
space is relaxed.

In the final two sections, we present examples that exhibit different types of
situations where the obtained results can be used; moreover, the existence and
uniqueness of solutions for a certain system of functional equations arising in
dynamic programming are also presented as another application.

2. Preliminaries

We shall recall some definitions and mathematical preliminaries.

Definition ([30]). A triangular norm (briefly a t-norm) T is a binary opera-
tion on the unit interval [0, 1] such that for all a, b, c, d ∈ [0, 1] the following
conditions are satisfied:
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(1) T (a, 1) = a for all a ∈ [0, 1];
(2) T (a, b) = T (b, a);
(3) T (a, b) ≤ T (c, d), whenever a ≤ c and b ≤ d;
(4) T (a, T (b, c)) = T (T (a, b), c).

Some examples of t-norms are T (a, b)= min{a, b}, T (a, b)= ab and T (a, b) =
max{a+ b− 1, 0}.

Definition ([30]). A mapping F : R → R+ is said to be a distribution function
if it is non-decreasing and left continuous with inf{F (t) : t ∈ R} = 0 and
sup{F (t) : t ∈ R} = 1.

We shall denote by ℑ the set of all distribution functions while H will always
denote the specific distribution function defined by

H(t) =

{

0, if t ≤ 0,

1, if t > 0.

If X is a non-empty set, F : X ×X → ℑ is called a probabilistic distance on
X and F(x, y) is usually denoted by Fx,y.

Definition ([19, 21]). The ordered pair (X,F) is said to be an N. A. PM-space
if X is a non-empty set and F is a probabilistic distance satisfying the following
conditions: for all x, y, z ∈ X and t, t1, t2 > 0,

(1) Fx,y(t) = 1 ⇐⇒ x = y;
(2) Fx,y(t) = Fy,x(t);
(3) if Fx,y(t1) = 1 and Fy,z(t2) = 1, then Fx,z(max{t1, t2}) = 1.

The ordered triplet (X,F , T ) is called an N. A. Menger PM-space if (X,F) is
an N. A. PM-space, T is a t-norm and the following inequality holds:

Fx,z(max{t1, t2}) ≥ T (Fx,y(t1), Fy,z(t2))

for all x, y, z ∈ X and t1, t2 > 0.

The concept of neighbourhoods in Menger PM-spaces was introduced by
Schweizer and Sklar [30]. If x ∈ X , ǫ > 0 and λ ∈ (0, 1), then an (ǫ, λ)-
neighbourhood of x, Ux(ǫ, λ) is defined by

Ux(ǫ, λ) = {y ∈ X : Fx,y(ǫ) > 1− λ}.

If the t-norm T is continuous and strictly increasing, then (X,F , T ) is a Haus-
dorff space in the topology induced by the family {Ux(ǫ, λ) : x ∈ X, ǫ > 0, λ ∈
(0, 1)} of neighbourhoods [30].

Example 2.1. Let X be any set with at least two elements. If we define
Fx,x(t) = 1 for all x ∈ X , t > 0 and

Fx,y(t) =

{

0, if t ≤ 1;

1, if t > 1,

where x, y ∈ X , x 6= y, then (X,F , T ) is an N. A. Menger PM-space with
T (a, b) = min{a, b} or (ab) for all a, b ∈ [0, 1].
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Example 2.2. Let X = R be the set of real numbers equipped with the metric
defined by d(x, y) = |x− y| and

Fx,y(t) =

{

t
t+|x−y| , if t > 0;

0, if t = 0.

Then (X,F , T ) is an N. A. Menger PM-space with T as continuous t-norm
satisfying T (a, b) = min{a, b} or (ab) for all a, b ∈ [0, 1].

Let us denote Ω = {g | g : [0, 1] → [0,∞) is continuous, strictly decreasing
with g(1) = 0 and g(0) < ∞}.

Definition ([10]). Let g ∈ Ω. An N. A. Menger PM-space (X,F , T ) is said to
be of type (C)g if

g(Fx,z(t)) ≤ g(Fx,y(t)) + g(Fy,z(t))

for all x, y, z ∈ X , t ≥ 0,

Definition ([10]). Let g ∈ Ω. An N. A. Menger PM-space (X,F , T ) is said to
be of type (D)g if

g(T (t1, t2)) ≤ g(t1) + g(t2)

for all t1, t2 ∈ [0, 1].

Remark 2.3 ([10]). If an N. A. Menger PM-space (X,F , T ) is of type (D)g ,
then

(1) it is of type (C)g;
(2) it is metrizable, where the metric d on X is defined by

d(x, y) =

∫ 1

0

g(Fx,y(t)) dt

for all x, y ∈ X .

Throughout this paper (X,F , T ) will be an N. A. Menger PM-space with a
continuous strictly increasing t-norm T .

Definition ([9]). Two self mappings A and S of an N. A. Menger PM-space
(X,F , T ) are said to be compatible if limn→∞ g(FASxn,SAxn

(t)) = 0 for all
t > 0 and g ∈ Ω, whenever {xn} is a sequence in X such that limn→∞ Axn =
limn→∞ Sxn = z for some z ∈ X .

Definition. A pair (A,S) of self mappings of an N. A. Menger PM-space
(X,F , T ) is said to satisfy (E.A) property if there exists a sequence {xn} in X

such that
lim
n→∞

Axn = lim
n→∞

Sxn = z

for some z ∈ X .

Definition ([23]). A pair (A,S) of self mappings of a non-empty set X is said
to be weakly compatible (or coincidentally commuting) if they commute at
their coincidence points, i.e., if Az = Sz for some z ∈ X , then ASz = SAz.
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If two self mappings A and S of an N. A. Menger PM-space (X,F , T ) are
compatible then they are weakly compatible but the converse need not be true
(see [29, Example 12]). It can be noticed that the notions of weak compatibility
and property (E.A) are independent to each other [28, Example 2.2].

Definition. Two pairs (A,S) and (B, T ) of self mappings of an N. A. Menger
PM-space (X,F , T ) are said to satisfy the common property (E.A), if there
exist two sequences {xn}, {yn} in X for some z in X such that

lim
n→∞

Axn = lim
n→∞

Sxn = lim
n→∞

Byn = lim
n→∞

Tyn = z.

Definition ([37]). A pair (A,S) of self mappings of an N. A. Menger PM-space
(X,F , T ) is said to satisfy the common limit range property with respect to
mapping S, denoted by (CLRS), if there exists a sequence {xn} in X such that

lim
n→∞

Axn = lim
n→∞

Sxn = z

for some z ∈ S(X).

Definition ([8]). Two pairs (A,S) and (B, T ) of self mappings of an N. A.
Menger PM-space (X,F , T ) are said to satisfy the common limit range property
with respect to mappings S and T , denoted by (CLRST ), if there exist two
sequences {xn} and {yn} in X such that

lim
n→∞

Axn = lim
n→∞

Sxn = lim
n→∞

Byn = lim
n→∞

Tyn = z,

where z ∈ S(X) ∩ T (X).

Definition ([17]). Two families of self mappings {Ai} and {Sj} are said to be
pairwise commuting if:

(1) AiAj = AjAi, i, j ∈ {1, 2, . . . ,m},
(2) SkSl = SlSk, k, l ∈ {1, 2, . . . , n},
(3) AiSk = SkAi, i ∈ {1, 2, . . . ,m}, k ∈ {1, 2, . . . , n}.

3. Main results

In what follows, we denote by Φ the collection of all functions ϕ : [0,∞) →
[0,∞) which are upper semicontinuous from the right and satisfy ϕ(t) < t, for
all t > 0.

For completion of our results, we need the following lemma.

Lemma 3.1 ([10]). If a function φ : [0,∞) → [0,∞) belongs to the class Φ,
then we have:

(1) for all t ≥ 0, limn→∞ φn(t) = 0, where φn(t) is the nth iteration of

φ(t);
(2) if {tn} is a non-decreasing sequence of real numbers and tn+1 ≤ φ(tn)

where n = 1, 2, . . ., then limn→∞ tn = 0. In particular, if t ≤ φ(t) for

each t ≥ 0, then t = 0.

Now we state and prove our first main result.
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Theorem 3.2. Let A,B, S and T be four self mappings of an N. A. Menger

PM-space (X,F , T ), where T is a continuous t-norm, satisfying

g(FAx,By(t))

(3.1)

≤ φ



max







g(FSx,Ty(t)), g(FSx,Ax(t)), g(FTy,By(t)),
1
2 [g(FAx,Sx(t)) + g(FBy,Ty(t))],

1
2 [g(FAx,Sx(t)) + g(FSx,Ty(t))],

1
2 [g(FBy,Ty(t)) + g(FSx,Ty(t))],

1
2 [g(FSx,By(t)) + g(FTy,Ax(t))]











for all x, y ∈ X, t > 0, where g ∈ Ω and φ ∈ Φ.
If the pairs (A,S) and (B, T ) share the (CLRST ) property, then (A,S) and

(B, T ) have a coincidence point each. Moreover, A,B, S and T have a unique

common fixed point provided both pairs (A,S) and (B, T ) are weakly compatible.

Proof. In view of the fact that the pairs (A,S) and (B, T ) share the (CLRST )
property, there exist two sequences {xn} and {yn} in X such that

lim
n→∞

Axn = lim
n→∞

Sxn = lim
n→∞

Tyn = lim
n→∞

Byn = z,

where z ∈ S(X) ∩ T (X). As z ∈ S(X), there exists a point υ ∈ X such that
Sυ = z. First we assert that Aυ = Sυ. On using inequality (3.1) with x = υ,
y = yn, we get

g(FAυ,Byn
(t))

≤ φ



max







g(FSυ,Tyn
(t)), g(FSυ,Aυ(t)), g(FTyn,Byn

(t)),
1
2 [g(FAυ,Sυ(t)) + g(FByn,Tyn

(t))], 1
2 [g(FAυ,Sυ(t)) + g(FSυ,Tyn

(t))],
1
2 [g(FByn,Tyn

(t)) + g(FSυ,Tyn
(t))], 1

2 (g(FSυ,Byn
(t)) + g(FTyn,Aυ(t)))









.

Passing to the limit as n → ∞, this reduces to

g(FAυ,z(t))

≤ φ



max







g(Fz,z(t)), g(Fz,Aυ(t)), g(Fz,z(t)),
1
2 [g(FAυ,Sυ(t)) + g(Fz,z(t))],

1
2 [g(FAυ,Sυ(t)) + g(FSυ,z(t))],

1
2 [g(Fz,z(t)) + g(FSυ,z(t))],

1
2 (g(Fz,z(t)) + g(Fz,Aυ(t)))











= φ

(

max

{

g(1), g(Fz,Aυ(t)), g(1),
1
2 [g(1) + g(1)], 1

2 [g(1) + g(FAυ,z(t))],
1
2 [g(1) + g(FAυ,z(t))],

1
2 (g(1) + g(Fz,Aυ(t)))

})

= φ
(

max
{

0, g(Fz,Aυ(t)), 0, 0,
1
2g(FAυ,z(t)),

1
2g(FAυ,z(t)),

1
2g(Fz,Aυ(t))

})

= φ (g(Fz,Aυ(t))) .

Making use of Lemma 3.1, we get Aυ = Sυ = z, which shows that υ is a
coincidence point of the pair (A,S).

As z ∈ T (X), there exists a point ϑ ∈ X such that Tϑ = z. We show that
Bϑ = Tϑ. Using inequality (3.1) with x = υ, y = ϑ, we get

g(FAυ,Bϑ(t))
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≤ φ



max







g(FSυ,Tϑ(t)), g(FSυ,Aυ(t)), g(FTϑ,Bϑ(t)),
1
2 [g(FAυ,Sυ(t)) + g(FBϑ,Tϑ(t))],

1
2 [g(FAυ,Sυ(t)) + g(FSυ,Tϑ(t))],

1
2 [g(FBϑ,Tϑ(t)) + g(FSυ,Tϑ(t))],

1
2 (g(FSυ,Bϑ(t)) + g(FTϑ,Aυ(t)))









,

that is,

g(Fz,Bϑ(t))

≤ φ



max







g(Fz,z(t)), g(Fz,z(t)), g(Fz,Bϑ(t)),
1
2 [g(Fz,z(t)) + g(FBϑ,z(t))],

1
2 [g(Fz,z(t)) + g(Fz,z(t))],

1
2 [g(FBϑ,z(t)) + g(Fz,z(t))],

1
2 (g(Fz,Bϑ(t)) + g(Fz,z(t)))











= φ
(

max
{

g(1), g(1), g(Fz,Bv(t)),
1
2g(FBϑ,z(t)), g(1),

1
2g(FBϑ,z(t)),

1
2g(Fz,Bv(t))

})

= φ
(

max
{

0, 0, g(Fz,Bv(t)),
1
2g(FBϑ,z(t)), 0,

1
2g(FBϑ,z(t)),

1
2g(Fz,Bv(t))

})

= φ (g(Fz,Bv(t))) .

Hence, by Lemma 3.1, we have Bϑ = Tϑ = z, which shows that ϑ is a coinci-
dence point of the pair (B, T ).

In the case when the pair (A,S) is weakly compatible, Aυ = Sυ, imply that
Az = ASυ = SAυ = Sz. Now, we show that z is a common fixed point of the
pair (A,S). Putting x = z and y = ϑ in inequality (3.1), we have

g(FAz,Bv(t))

≤ φ



max







g(FSz,Tv(t)), g(FSz,Az(t)), g(FTv,Bv(t)),
1
2 [g(FAz,Sz(t)) + g(FBϑ,Tϑ(t))],

1
2 [g(FAz,Sz(t)) + g(FSz,Tϑ(t))],

1
2 [g(FBϑ,Tϑ(t)) + g(FSz,Tϑ(t))],

1
2 (g(FSz,Bv(t)) + g(FTv,Az(t)))











implying that

g(FAz,z(t))

≤ φ



max







g(FAz,z(t)), g(FAz,Az(t)), g(Fz,z(t)),
1
2 [g(FAz,Az(t)) + g(Fz,z(t))],

1
2 [g(FAz,Az(t)) + g(FAz,z(t))],

1
2 [g(Fz,z(t)) + g(FAz,z(t))],

1
2 (g(FAz,z(t)) + g(Fz,Az(t)))











= φ
(

max
{

g(FAz,z(t)), g(1), g(1), g(1),
1
2g(FAz,z(t)),

1
2g(FAz,z(t)), g(FAz,z(t))

})

= φ
(

max
{

g(FAz,z(t)), 0, 0, 0,
1
2g(FAz,z(t)),

1
2g(FAz,z(t)), g(FAz,z(t))

})

= φ (g(FAz,z(t))) .

Again making use of Lemma 3.1, we have Az = z = Sz which shows that z is
a common fixed point of the pair (A,S).

Again, when the pair (B, T ) is weakly compatible, then Bϑ = Tϑ implies
that Bz = BTϑ = TBϑ = Tz. Putting x = υ, y = z in inequality (3.1), we
have

g(FAυ,Bz(t))

≤ φ



max







g(FSυ,Tz(t)), g(FSυ,Aυ(t)), g(FTz,Bz(t)),
1
2 [g(FAz,Sz(t)) + g(FBϑ,Tϑ(t))],

1
2 [g(FAz,Sz(t)) + g(FSz,Tϑ(t))],

1
2 [g(FBϑ,Tϑ(t)) + g(FSz,Tϑ(t))],

1
2 (g(FSυ,Bz(t)) + g(FTz,Aυ(t)))









,
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that is,

g(Fz,Bz(t))

≤ φ



max







g(Fz,Bz(t)), g(Fz,z(t)), g(FBz,Bz(t)),
1
2 [g(FAz,Az(t)) + g(Fz,z(t))],

1
2 [g(FAz,Az(t)) + g(FSz,z(t))],

1
2 [g(Fz,z(t)) + g(FAz,z(t))],

1
2 (g(Fz,Bz(t)) + g(FBz,z(t)))











= φ

(

max

{

g(Fz,Bz(t)), g(1), g(1),
1
2 [g(1) + g(1)], 1

2 [g(1) + g(FAz,z(t))],
1
2 [g(1) + g(1)], 1

2 (g(Fz,Bz(t)) + g(FBz,z(t)))

})

= φ
(

max
{

g(Fz,Bz(t)), 0, 0, 0,
1
2g(FAz,z(t)), 0, g(FBz,z(t))

})

= φ (g(Fz,Bz(t))) .

Using Lemma 3.1, we have Bz = z = Tz which shows that z is a common fixed
point of the pair (B, T ) and in all z is a common fixed point of the pairs (A,S)
and (B, T ). The uniqueness of common fixed point is an easy consequence of
inequality (3.1) in view of Lemma 3.1. This concludes the proof. �

The following proposition will help us to get further results.

Proposition 3.3. Let A,B, S and T be four self mappings of an N. A. Menger

PM-space (X,F , T ), where T is a continuous t-norm. Suppose that

(1) the pair (A,S) satisfies the (CLRS) property
(

or the pair (B, T ) sat-

isfies the (CLRT ) property
)

,

(2) A(X) ⊂ T (X)
(

or B(X) ⊂ S(X)
)

,

(3) T (X)
(

or S(X)
)

is a closed subset of X,

(4) {Byn} converges for every sequence {yn} in X whenever {Tyn} con-

verges
(

or {Axn} converges for every sequence {xn} in X whenever

{Sxn} converges
)

,

(5) the mappings A,B, S and T satisfy inequality (3.1) of Theorem 3.2.

Then the pairs (A,S) and (B, T ) enjoy the (CLRST ) property.

Proof. If the pair (A,S) satisfies the (CLRS) property, then there exists a
sequence {xn} in X such that

lim
n→∞

Axn = lim
n→∞

Sxn = z,

where z ∈ S(X). Since A(X) ⊂ T (X), hence for each {xn} ⊂ X there cor-
responds a sequence {yn} ⊂ X such that Axn = Tyn. Therefore, due to
closedness of T (X),

lim
n→∞

Tyn = lim
n→∞

Axn = z,

where z ∈ S(X)∩T (X). Thus in all, we have Axn → z, Sxn → z and Tyn → z

as n → ∞. By (4), the sequence {Byn} converges and we just need to show



FIXED POINT THEOREMS VIA COMMON LIMIT RANGE PROPERTY 797

that Byn → z as n → ∞. Putting x = xn, y = yn in inequality (3.1), we get

g(FAxn,Byn
(t))

≤ φ



max







g(FSxn,Tyn
(t)), g(FSxn,Axn

(t)), g(FTyn,Byn
(t)),

1
2 [g(FAxn,Sxn

(t)) + g(FByn,Tyn
(t))], 1

2 [g(FAxn,Sxn
(t)) + g(FSxn,Tyn

(t))],
1
2 [g(FByn,Tyn

(t)) + g(FSxn,Tyn
(t))], 1

2 [g(FSxn,Byn
(t)) + g(FTyn,Axn

(t))]









.

Let Byn → l(6= z) as n → ∞. Then, passing to the limit as n → ∞, we get

g(Fz,l(t))

≤ φ



max







g(Fz,z(t)), g(Fz,z(t)), g(Fz,l(t)),
1
2 [g(Fz,z(t)) + g(Fl,z(t))],

1
2 [g(Fz,z(t)) + g(Fz,z(t))],

1
2 [g(Fl,z(t)) + g(Fz,z(t))],

1
2 (g(Fz,l(t)) + g(Fz,z(t)))









 ,

= φ

(

max

{

g(1), g(1), g(Fz,l(t)),
1
2 [g(1) + g(Fl,z(t))],

1
2 [g(1) + g(1)],

1
2 [g(Fl,z(t)) + g(1)], 12 (g(Fz,l(t)) + g(1))

})

= φ
(

max
{

0, 0, g(Fz,l(t)),
1
2 (g(Fz,l(t)), 0,

1
2 (g(Fz,l(t))),

1
2 (g(Fz,l(t)))

})

= φ (g(Fz,l(t))) .

So, by Lemma 3.1, we have z = l. Hence the pairs (A,S) and (B, T ) share the
(CLRST ) property. �

The converse of Proposition 3.3 is not true. For a counterexample see [17,
Example 3.5].

Theorem 3.4. Let A,B, S and T be four self mappings of an N. A. Menger

PM-space (X,F , T ), where T is a continuous t-norm, satisfying all the hy-

potheses of Proposition 3.3. Then A,B, S and T have a unique common fixed

point provided that both pairs (A,S) and (B, T ) are weakly compatible.

Proof. This follows by combining Theorem 3.2 with Proposition 3.3. �

Obviously, if the pairs (A,S) and (B, T ) satisfy the common property (E.A),
and, at the same time, S(X) and T (X) are closed subsets of X , then the pairs
(A,S) and (B, T ) share the (CLRST ) property. Hence, we have the following
variant of Theorem 3.2.

Theorem 3.5. Let A,B, S and T be four self mappings of an N. A. Menger

PM-space (X,F , T ), where T is a continuous t-norm, satisfying inequality (3.1)
and the following hypotheses hold:

(1) the pairs (A,S) and (B, T ) satisfy the common property (E.A);
(2) S(Y ) and T (Y ) are closed subsets of X.

Then (A,S) and (B, T ) have a coincidence point each. Moreover, A,B, S and

T have a unique common fixed point provided both pairs (A,S) and (B, T ) are
weakly compatible.

Next, we state two more variants of our results, which can be proved on the
lines of the proofs of Theorems 3.4 and 3.5.
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Corollary 3.6. The conclusions of Theorem 3.5 remain true if condition (2)
is replaced by the following:

(2′) A(X) ⊂ T (X) and B(X) ⊂ S(X),

where A(X) and B(X) denote the closure of ranges of the mappings A and B.

Corollary 3.7. The conclusions of Theorem 3.5 remain true if the condition

(2) is replaced by the following:

(2′′) A(X) and B(X) are closed subsets of X, and A(X) ⊂ T (X), B(X) ⊂
S(X).

By choosing A,B, S and T suitably in Theorem 3.2, we can deduce some
corollaries for a pair as well as for a triple of self mappings. Since the formula-
tions of these results are similar to those in [15, 17], we omit the details here.
Now we utilize this notion for six self mappings in an N. A. Menger PM-space.

Theorem 3.8. Let A,B,R, S,H and T be six self mappings of an N.A. Menger

PM-space (X,F , T ), where T is a continuous t-norm. Suppose that

(1) the pairs (A,SR) and (B, TH) satisfy the (CLR(SR)(TH)) property,
(2)

g(FAx,By(t))

(3.2)

≤ φ



max







g(FSRx,THy(t)), g(FSRx,Ax(t)), g(FTHy,By(t)),
1
2 [g(FAx,SRx(t)) + g(FBy,THy(t))],

1
2 [g(FAx,SRx(t)) + g(FSRx,THy(t))],

1
2 [g(FBy,THy(t)) + g(FSRx,THy(t))],

1
2 (g(FSRx,By(t)) + g(FTHy,Ax(t)))











for all x, y ∈ X, t > 0, where g ∈ Ω and φ ∈ Φ.

Then (A,SR) and (B, TH) have a coincidence point each. Moreover, A, B, H,

R, S and T have a unique common fixed point provided AS = SA, AR = RA,

SR = RS, BT = TB, BH = HB and TH = HT .

Proof. By Theorem 3.2, A,B, SR and TH have a unique common fixed point
z in X . We show that z is a unique common fixed point of the self mappings
A,B,R, S,H and T . Putting x = Rz and y = z in inequality (3.2), we have

g(FA(Rz),Bz(t))

≤ φ













max























g(FSR(Rz),THz(t)), g(FSR(Rz),A(Rz)(t)), g(FTHz,Bz(t)),
1
2 [g(FA(Rz),SR(Rz)(t)) + g(FBz,THz(t))],

1
2 [g(FA(Rz),SR(Rz)(t)) + g(FSR(Rz),THz(t))],

1
2 [g(FBz,THz(t)) + g(FSR(Rz),THz(t))],

1
2

(

g(FSR(Rz),Bz(t)) + g(FTHz,A(Rz)(t))
)



































,

g(FRz,z(t))

≤ φ



max







g(FRz,z(t)), g(FRz,Rz(t)), g(Fz,z(t)),
1
2 [g(FRz,Rz(t)) + g(Fz,z(t))],

1
2 [g(FRz,Rz(t)) + g(FRz,z(t))],

1
2 [g(Fz,z(t)) + g(FRz,z(t))],

1
2 (g(FRz,z(t)) + g(Fz,Rz(t)))
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= φ

(

max

{

g(FRz,z(t)), g(1), g(1), g(1)),
1
2g(FRz,z(t)),

1
2g(FRz,z(t)),

1
2 (g(FRz,z(t)) + g(Fz,Rz(t)))

})

= φ
(

max
{

g(FRz,z(t)), 0, 0, 0,
1
2g(FRz,z(t)),

1
2g(FRz,z(t)), g(FRz,z(t))

})

= φ (g(FRz,z(t))) .

Using Lemma 3.1, we have z = Rz. Hence Sz = S(Rz) = z. Therefore we have
z = Az = Sz = Rz. Now we assert that z is a common fixed point of B, T and
H . To accomplish this, we use inequality (3.2) with x = z, y = Hz, and get

g(FAz,B(Hz)(t))

≤ φ













max























g(FSRz,TH(Hz)(t)), g(FSRz,Az(t)), g(FTH(Hz),B(Hz)(t)),
1
2 [g(FAz,SRz(t)) + g(FB(Hz),TH(Hz)(t))],

1
2 [g(FA(Hz),SR(Hz)(t)) + g(FSRz,TH(Hz)(t))],
1
2 [g(FB(Hz),TH(Hz)(t)) + g(FSRz,TH(Hz)(t))],

1
2

(

g(FSRz,B(Hz)(t)) + g(FTH(Hz),Az(t))
)



































,

that is,

g(Fz,Hz(t))

≤ φ



max







g(Fz,Hz(t)), g(Fz,z(t)), g(FHz,Hz(t)),
1
2 [g(Fz,z(t)) + g(FHz,Hz(t))],

1
2 [g(FHz,Hz(t)) + g(Fz,Hz(t))],

1
2 [g(FHz,Hz(t)) + g(Fz,Hz(t))],

1
2 (g(Fz,Hz(t)) + g(FHz,z(t)))











= φ
(

max
{

g(Fz,Hz(t)), g(1), g(1), g(1),
1
2g(Fz,Hz(t)),

1
2g(Fz,Hz(t)), g(FHz,z(t))

})

= φ
(

max
{

g(Fz,Hz(t)), 0, 0, 0,
1
2g(Fz,Hz(t)),

1
2g(Fz,Hz(t)), g(FHz,z(t))

})

= φ (g(Fz,Hz(t))) .

Thus, by Lemma 3.1, we have z = Hz. Hence Tz = T (Hz) = z. Therefore z

is a common fixed point of self mappings A,B,R, S,H and T . Uniqueness of
common fixed point is an easy consequence of inequality (3.2). �

In view of Theorem 3.4, we can derive a fixed point theorem for four finite
families of self mappings.

Corollary 3.9. Let {Ai}
m
i=1, {Br}

n
r=1, {Sk}

p
k=1 and {Th}

q
h=1 be four finite

families of self mappings of an N. A. Menger PM-space (X,F , T ), where

T is a continuous t-norm, with A = A1A2 · · ·Am, B = B1B2 · · ·Bn, S =
S1S2 · · ·Sp and T = T1T2 · · ·Tq satisfying inequality (3.1) of Theorem 3.2 such

that the pairs (A,S) and (B, T ) share the (CLRST ) property. Then {Ai}
m
i=1,

{Br}
n
r=1, {Sk}

p
k=1 and {Th}

q
h=1 have a unique common fixed point provided

the pairs of families ({Ai}, {Sk}) and ({Br}, {Th}) commute pairwise, where

i ∈ {1, 2, . . . ,m}, k ∈ {1, 2, . . . , p}, r ∈ {1, 2, . . . , n} and h ∈ {1, 2, . . . , q}.

By setting A1 = A2 = · · · = Am = A, B1 = B2 = · · · = Bp = B, S1 = S2 =
· · · = Sn = S and T1 = T2 = · · · = Tq = T in Corollary 3.9, we deduce the
following:
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Corollary 3.10. Let A,B, S and T be self mappings of an N. A. Menger

PM-space (X,F , T ), where T is a continuous t-norm. Suppose that

(1) the pairs (Am, Sp) and (Bn, T q) satisfy the (CLRSp,T q ) property, where
m,n, p, q are fixed positive integers,

(2)

g(FAmx,Bny(t))

≤ φ



max







g(FSpx,T qy(t)), g(FSpx,Amx(t)), g(FT qy,Bny(t)),
1
2 [g(FAmx,Spx(t)) + g(FBny,T qy(t))],

1
2 [g(FAmx,Spx(t)) + g(FSpx,T qy(t))],

1
2 [g(FBny,T qy(t)) + g(FSpx,T qy(t))],

1
2 (g(FSpx,Bny(t)) + g(FT qy,Amx(t)))











for all x, y ∈ X, t > 0, g ∈ Ω where φ ∈ Φ.

Then A,B, S and T have a unique common fixed point provided AS = SA and

BT = TB.

Remark 3.11. The conclusions of Theorem 3.2 remain true if we replace the
inequality (3.1) by any of the following (for all x, y ∈ X , t > 0, where g ∈ Ω
and φ belongs to the class Φ):

g(FAx,By(t))(3.3)

≤ φ

(

max

{

g(FSx,Ty(t)), g(FSx,Ax(t)), g(FTy,By(t)), g(FSx,By(t))
1
2 [g(FBy,Ty(t)) + g(FSx,Ty(t))]

})

,

or

g(FAx,By(t)) ≤ φ

(

max

{

g(FSx,Ty(t)), g(FSx,Ax(t)), g(FTy,By(t)),
1
2 [g(FAx,Sx(t)) + g(FBy,Ty(t))]

})

,

(3.4)

or

g(FAx,By(t)) ≤ φ

(

max

{

g(FSx,Ty(t)), g(FSx,Ax(t)), g(FTy,By(t)),
1
2 [g(FAx,Sx(t)) + g(FSx,Ty(t))]

})

,

(3.5)

or

g(FAx,By(t)) ≤ φ

(

max

{

g(FSx,Ty(t)), g(FSx,Ax(t)), g(FTy,By(t)),
1
2 [g(FSx,By(t)) + g(FTy,Ax(t))]

})

.

(3.6)

Remark 3.12. The results similar to Theorem 3.4, Theorem 3.5, Theorem 3.8,
Corollary 3.9 and Corollary 3.10 can also be outlined in view of inequalities
(3.3)–(3.6).

Remark 3.13. Our Theorems 3.2, 3.4, 3.5 and 3.8, as well as Corollaries 3.6,
3.7, 3.9 and 3.10 extend and improve the following:

(1) the results of Chauhan and Vujaković [8] in the sense of using more
general contractive condition and relaxing closedness of mappings.

(2) the results of Chauhan et al. [7] in the sense of using more general con-
tractive condition and relaxing closedness of mappings in non-integral
version.
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(3) the results of Khan and Sumitra [26, Theorem 2, Corollary 1], Singh
et al. [32, Theorem 3.1, Corollary 3.3], Singh et al. [33, Theorem 3.1,
Corollary 3.1] and Rao and Ramudu [29, Theorem 14].

4. Illustrative examples

Now we furnish examples demonstrating the validity of the hypotheses and
degree of generality of our results over some recently established results.

Example 4.1. Let (X,F , T ) be an N. A. Menger PM-space, where X =
[2, 11) and metric d is defined as in condition (2) of Remark 2.3. Consider the
mappings A,B, S, T : X → X given by

Ax =

{

2, if x ∈ {2} ∪ (5, 11),

8, if x ∈ (2, 5];
Bx =

{

2, if x ∈ {2} ∪ (5, 11),

4, if x ∈ (2, 5];

Sx =











2, if x = 2,

9, if x ∈ (2, 5],
x+1
3 , if x ∈ (5, 11);

Tx =











2, if x = 2,

6, if x ∈ (2, 5],

x− 3, if x ∈ (5, 11).

Then we have A(X) = {2, 8} * [2, 8) = T (X) and B(X) = {2, 4} * [2, 4) ∪
{9} = S(X), moreover S(X) and T (X) are not closed subsets of X .

The pairs (A,S) and (B, T ) satisfy the (CLRST ) property. Indeed, taking
two sequences, {xn} =

{

5 + 1
n

}

n∈N
, {yn} = {2}, we have

lim
n→∞

Axn = lim
n→∞

Sxn = lim
n→∞

Byn = lim
n→∞

Tyn = 2 ∈ S(X) ∩ T (X).

Now, define a function ϕ : [0,+∞) → [0,+∞) by

ϕ(t) = ht, with
6

7
< h < 1, for all t ≥ 0.

Clearly, ϕ ∈ Φ. By a routine calculation, one can check that the inequality
(3.1) is satisfied for all x, y ∈ X . Thus, all the conditions of Theorem 3.2 are
satisfied, and 2 is a unique common fixed point of the pairs (A,S) and (B, T ).
Note that all the involved mappings are discontinuous at their unique common
fixed point.

In the following illustration the importance of weakly compatible assumption
for validity of the result is shown.

Example 4.2. Let (X,F , T ) be an N. A. Menger PM-space, where X =
[0,+∞) and the metric d is defined as in condition (2) of Remark 2.3. Consider
the mappings A,B, S, T : X → X given by

Ax = Bx = x+ 3 and Sx = Tx = 2(1 + x).

Then the pairs (A,S), (B, T ) satisfy the (CLRST ) property. Indeed, consider
two sequences, {xn} = {1 + 1

n
}n∈N, {yn} =

{

1− 1
n

}

n∈N
. Then

lim
n→∞

Axn = lim
n→∞

Sxn = lim
n→∞

Byn = lim
n→∞

Tyn = 4,
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where 4 ∈ S(X) ∩ T (X).
By a routine calculation, taking ϕ(t) = ht with a suitable value of h, one

can check that inequality (3.1) is satisfied. Thus, all the conditions of the
first part of Theorem 3.2 are satisfied. It can be noted that, indeed, 1 is a
coincidence point of (A,S), as well as of (B, T ). However, these pairs are not
weakly compatible and there is no common fixed point of the pairs (A,S) and
(B, T ).

Theorem 3.4 cannot be applied in the case of mappings from Example 4.1
since conditions (2) and (3) of Proposition 3.3 are not fulfilled. The following
example shows the situation when Theorem 3.4 can be used.

Example 4.3. In the setting of Example 4.1, replace the mappings S and T

by the following, besides retaining the rest:

Sx =











2, if x = 2,

5, if x ∈ (2, 5],
x−1
2 , if x ∈ (5, 11);

Tx =











2, if x = 2,

8, if x ∈ (2, 5],

x− 3, if x ∈ (5, 11).

Then A(X) = {2, 8} ⊂ [2, 8] = T (X) and B(X) = {2, 4} ⊂ [2, 5] = S(X)
hold; now S(X) and T (X) are closed subsets of X . Thus, all the conditions of
Theorem 3.4 are satisfied, and 2 is a unique common fixed point of the pairs
(A,S) and (B, T ).

Now we furnish an example demonstrating that the condition (3.1) of The-
orem 3.2 is only sufficient and not necessary.

Example 4.4. Let (X,F , T ) be an N. A. Menger PM-space, where X =
[2, 20] and metric d be defined as in condition (2) of Remark 2.3. Consider the
mappings A,B, S, T : X → X given by

Ax = Bx =











2 if x = 2,

7 if 2 < x ≤ 5,

2, if 5 < x ≤ 20,

Sx = Tx =











2 if x = 2,

7 if 2 < x ≤ 5,
x+1
3 if 5 < x ≤ 20.

Then the pairs (A,S) and (B, T ) satisfy all the conditions of Theorem 3.2,
except the inequality (3.1) (take, e.g., x ∈ (2, 5] and y = 2). However, these
four mappings have a coincidence at x = 2 which also remains their common
fixed point. This confirms that condition (3.1) of Theorem 3.2 is sufficient and
not necessary.

Our last example highlights the non-closedness of ranges of S and T in X

in Corollaries 3.6 and 3.7.
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Example 4.5. In the setting of Example 4.1, replace the mappings S and T

by the following, besides retaining the rest:

Sx = Tx =











2 if x = 2,

10 if x ∈ (2, 5],
7x−23

6 if x ∈ (5, 11).

Then A(X) = {2, 8} ⊂ [2, 9)∪{10} = T (X) andB(X) = {2, 4} ⊂ [2, 9)∪{10} =
S(X). Now, S(X) and T (X) are not closed subspaces of X , but condition (2′),
resp. (2′′) of Corollary 3.6, resp. 3.7 is satisfied. Again, 2 is a unique common
fixed point of A,B, S and T .

5. An application to a multistage process

In this section, we study, along with [2, 3, 16, 39] and some other papers,
the existence and uniqueness of solutions for a certain system of functional
equations arising in dynamic programming. We consider the following system
of functional equations, to which a multistage process can be reduced

(5.1) q(x) = sup
y∈D

{f(x, y) +Gi(x, y, q(τ(x, y)))}, x ∈ W, i ∈ {1, 2, 3, 4},

where U and V are Banach spaces, W ⊆ U is a state space, D ⊆ V is a decision
space, while τ : W × D → W , f : W × D → R, Gi : W × D × R → R are
mappings, i ∈ {1, 2, 3, 4}.

Denote by X the set of all bounded real-valued functions on W and, for
h ∈ X , define ‖h‖ = supx∈W |h(x)|. Clearly, (X, ‖·‖) is a Banach space, and the
convergence in this space is uniform. Therefore, if {hn} is a Cauchy sequence
in X , then it converges uniformly to a function h∗ ∈ X . The respective metric
will be denoted by d.

Further, consider operators A,B, S, T : X → X given by

(5.2)







































Ah(x) = sup
y∈D

{f(x, y) +G1(x, y, h(τ(x, y)))},

Bh(x) = sup
y∈D

{f(x, y) +G2(x, y, h(τ(x, y)))},

Sh(x) = sup
y∈D

{f(x, y) +G3(x, y, h(τ(x, y)))},

Th(x) = sup
y∈D

{f(x, y) +G4(x, y, h(τ(x, y)))},

for h ∈ X , x ∈ W ; these mappings are well-defined if the functions f and Gi

are bounded.

Theorem 5.1. Let A,B, S, T : X → X be given by (5.2) and suppose that the

following hypotheses hold:

(I) the functions Gi : W ×D × R → R, i ∈ {1, 2, 3, 4}, satisfy

exp

(

−
t

supx∈W supy∈D |G1(x, y, h(x)) −G2(x, y, k(x))|

)
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≤ φ



max







g(FSh,Tk(t)), g(FSh,Ah(t)), g(FTk,Bk(t)),
1
2 [g(FAh,Sh(t)) + g(FBk,Tk(t))],

1
2 [g(FAh,Sh(t)) + g(FSh,Tk(t))],

1
2 [g(FBk,Tk(t)) + g(FSh,Tk(t))],

1
2 [g(FSh,Bk(t)) + g(FTk,Ah(t))]









,

for all h, k ∈ X and t ∈ [0, 1], where g is given by g(t) = 1 − t for

t ∈ [0, 1];
(II) f : W ×D → R and Gi : W ×D × R → R are bounded functions, for

i ∈ {1, 2, 3, 4};
(III) there exist sequences {hn} and {kn} in X and h∗ ∈ X such that

lim
n→∞

Ahn = lim
n→∞

Bkn = lim
n→∞

Shn = lim
n→∞

Tkn = h∗;

(IV) ASh = SAh, whenever Ah = Sh for some h ∈ X ;
(V) BTk = TBk, whenever Bk = Tk for some k ∈ X.

Then the system of functional equations (5.1) has a unique bounded solution.

Proof. Define

Fh,k(t) =

{

1− exp
(

− t
d(h,k)

)

if 0 < t ≤ d(h, k), h 6= k,

1 otherwise,

where h, k ∈ X . Then (X,F , T ) is a complete N. A. Menger PM-space (induced
by the metric d) with T (a, b) = min{a, b}, for a, b ∈ [0, 1].

By hypothesis (III) the pairs (A,S) and (B, T ) share the common limit range
property with respect to (S, T ). Now, let ǫ be an arbitrary positive number,
x ∈ W and h, k ∈ X . Then there exist y1, y2 ∈ D such that

Ah(x) < f(x, y1) +G1(x, y1, h(τ(x, y1))) + ǫ,(5.3)

Ah(x) ≥ f(x, y2) +G1(x, y2, h(τ(x, y2))),(5.4)

Bk(x) < f(x, y2) +G2(x, y2, k(τ(x, y2))) + ǫ,(5.5)

Bk(x) ≥ f(x, y1) +G2(x, y1, k(τ(x, y1))).(5.6)

Using (5.3) and (5.6), we obtain

Ah(x) −Bk(x) < G1(x, y1, h(τ(x, y1)))−G2(x, y1, k(τ(x, y1))) + ǫ(5.7)

≤ |G1(x, y1, h(τ(x, y1)))−G2(x, y1, k(τ(x, y1)))|+ ǫ

≤ sup
y∈D

|G1(x, y, h(τ(x, y))) −G2(x, y, k(τ(x, y)))| + ǫ.

Analogously, by using (5.4) and (5.5), we get

(5.8) Bk(x) −Ah(x) < sup
y∈D

|G1(x, y, k(τ(x, y))) −G2(x, y, h(τ(x, y)))| + ǫ.

From (5.7) and (5.8), we deduce that

|Ah(x)−Bk(x)| < sup
y∈D

|G1(x, y, h(τ(x, y))) −G2(x, y, k(τ(x, y)))| + ǫ,

wherefrom it follows that

d(Ah,Bk) ≤ sup
x∈W

sup
y∈D

|G1(x, y, h(τ(x, y))) −G2(x, y, k(τ(x, y)))| + ǫ.
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Since ǫ > 0 was taken arbitrary, we obtain that

(5.9) d(Ah,Bk) ≤ sup
x∈W

sup
y∈D

|G1(x, y, h(τ(x, y))) −G2(x, y, k(τ(x, y)))| .

In view of hypothesis (I) and (5.9), it follows easily that

g(FAh,Bk(t))

≤ φ



max







g(FSh,Tk(t)), g(FSh,Ah(t)), g(FTk,Bk(t)),
1
2 [g(FAh,Sh(t)) + g(FBk,Tk(t))],

1
2 [g(FAh,SH1

(t)) + g(FSh,Tk(t))],
1
2 [g(FBk,Tk(t)) + g(FSh,Tk(t))],

1
2 [g(FSh,Bk(t)) + g(FTk,Ah(t))]









.

Moreover, in view of hypotheses (IV) and (V), the pairs (A,S) and (B, T ) are
weakly compatible. Hence, Theorem 3.2 is applicable, and so A,B, S and T

have a unique common fixed point, that is, the system of functional equations
(5.1) has a unique bounded solution. �

6. Concluding remarks

Coincidence and common fixed point results for a quadruple of self map-
pings satisfying common limit range property and weak compatibility under
generalized Φ-contractive conditions in Non-Archimedean Menger PM-spaces
are proved. In particular, using common limit range property, conditions like
continuity of mappings, closedness of the respective ranges, and containment of
these ranges are completely avoided. A new result on the existence and unique-
ness of solutions for certain system of functional equations arising in dynamic
programming is obtained as a consequence.

Acknowledgement. The authors would like to thank Professor Sunny
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