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REMARKS ON THE PAPER: ORTHOGONALLY
ADDITIVE AND ORTHOGONALLY QUADRATIC
FUNCTIONAL EQUATION

HARK-MAHN Kiv*, KIL-WOUNG JUN** AND AHYOUNG Kim***

ABSTRACT. The main goal of this paper is to present the addi-
tional stability results of the following orthogonally additive and
orthogonally quadratic functional equation

FGHD+ G =)+ 1(G+2) TG ~2)

= 27@) = 3H (=) + 1) + (=) + F() + F(=2),

for all x,y,z with L y, which has been introduced in the pa-
per [11], in orthogonality Banach spaces and in non-Archimedean
orthogonality Banach spaces.

1. Introduction

In 1897, K. Hensel [7] has provided a normed space which does not
have the Archimedean property. It turned out that non-Archimedean
spaces have many nice applications([2, 9, 10, 15]). Let K be a field
equipped with a function (valuation) |-| from K into [0, 00). The field K
is called a non-Archimedean field if the function |- | : K — [0, 00), called
the non-Archimedean valuation, satisfies the following conditions:

(1) |r| = 0 if and only if r = 0;
(2) [rs| =Irlls| (r € K, z € X);
(3) the strong triangle inequality: |r + s| < max{|r|,|s|}, Vr,s € K.
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Clearly [1| =|—1|=1and |n| <1 for alln € N.

Let X be a vector space over a non-Archimedean field K with a non-
Archimedean valuation | - |. A function || - || : X — [0, 00) is said to be
a non-Archimedean norm if it satisfies the following conditions:

(1) ||z|| = 0 if and only if z = 0;
(2) [[re] = Irllz] (r €K, z € X);
(3) the strong triangle inequality

[z +yll < max{|[z]], [yll}, Vz,y € X.

In this case, (X, || - ) is called a non-Archimedean normed space.

DEFINITION 1.1. Let {z,,} be a sequence in a non-Archimedean normed
space X. Then the sequence {x,} is called Cauchy if for a given £ > 0
there is a positive integer ng such that

|20 — zm|| <€

for all n,m > ng. The sequence {x,} is called convergent if for a given
€ > 0 there is a positive integer ng and an x € X such that

[en —xf| <e

for all n > mng. Then we call x € X a limit of the sequence {z,}, and
denote by lim, 0 z, = z. If every Cauchy sequence in X converges,
then the non-Archimedean normed space X is called a non-Archimedean
Banach space.

A.G. Pinsker [16] have investigated properties of orthogonally addi-
tive functionals on inner product spaces. K. Sundaresan [20] generalized
these results to arbitrary Banach spaces equipped with the Birkhoff-
James orthogonality [1, 8]. The orthogonal Cauchy functional equation

fle+y)=f(x)+ fly), =Ly,

was first investigated by S. Gudder and D. Strawther [6], where L is an
abstract orthogonality relation.

In 1985, J. Rtz [18] introduced a new definition of orthogonality by
using more restrictive axioms than those of S. Gudder and D. Strawther.
Moreover, he investigated the structure of orthogonally additive map-
pings. J. Rétz and Gy. Szabé [19] investigated the problem in a rather
more general framework.

We introduce the definition of the orthogonality space in the sense of
J. Rétz; cf. [18].

Suppose X is a real vector space with dimX > 2 and L is a binary
relation on X with the following properties:
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(O1) totality of L for zero: x L 0,0 L z for all x € X;

(O2) independence: if z,y € X — 0,2 L y, then z,y are linearly inde-
pendent;

(O3) homogeneity: if x,y € X — 0,2 L y, then az L By for all a, 8 € R;

(O4) the Thalesian property: if P is a 2-dimensional subspace of X,
x € P and A € Ry, which is the set of nonnegative real numbers,
then there exists yg € P such that x 1L yg and = + yo L Ax — yo.

In this case, the pair (X, 1) is called an orthogonality space and we
denote an orthogonality normed space by an orthogonality space with a
norm. There are some well-known interesting examples as follows:

(i) The trivial orthogonality on a vector space X defined by (O1), and
for non-zero elements z,y € X, x L y if and only if z, y are linearly
independent.

(ii) The ordinary orthogonality on an inner product space (X, (,))
given by x L y if and only if < z,y >= 0.

(iii) The Birkhoff-James orthogonality on a normed space (X, ||.||) de-
fined by x L y if and only if ||z + Ay|| > ||z|| for all A € R.

R. Ger and J. Sikorska [5] have proved the orthogonal stability of the
Cauchy functional equation f(z+y) = f(z)+ f(y), namely, they proved
that if f is a mapping from an orthogonality space X into a real Banach
space Y and ||f(z+y)— f(x)— f(y)|| < eforall z,y € X withz L y and
some € > 0, then there exists exactly one orthogonally additive mapping
g: X — Y such that ||f(z) — g(z)|| < e for all z € X.

Now, the following orthogonally quadratic equation

fle+y)+ fle—y)=2f(2)+2f(y), =Ly

was first investigated by F. Vajzovi¢ [22] when X is a Hilbert space,
Y is the scalar field, f is continuous and 1 means the Hilbert space
orthogonality. After that H. Drljevié¢ [3], M. Fochi [4], M.S. Moslehian
[12, 13], M.S. Moslehian and Th.M. Rassias [14], L. Paganoni and J.
Rétz [17] and Gy. Szabé [21] generalized this result.

The authors in the paper [11] have proved the stability results for the
following orthogonally additive and orthogonally quadratic functional
equation

0 = Df(z,y,2)
= JGHDHIG -0+ G+ + (5 -2)

3

— S @)+ (=) = f) — (=)~ £(2) - f(=2)
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for all z,y,z € X with z L y. If a mapping f with Df(x,y,z) = 0 is
odd, then

x x x x
f(§+y)+f(§—y)+f(§+2)+f(§—z) =2f(z),
and if f is an even mapping satisfying D f(x,y, z) = 0, then

f( +y)+f(*—y)+f( +Z)+f(*—2) f(x) +2f(y) +2f(2),

for all z,y,z € X with x L y. Therefore the authors [11] have introduced
the following definitions.

DEFINITION 1.2. [11] A mapping f : X — Y is called an orthogonally
additive mapping if
f(2+y)+f(*—y)+f( +Z)+f( —z2) =2f(z)
for all z,y,z € X with z L y.

DEFINITION 1.3. [11] A mapping f : X — Y is called an orthogonally
quadratic mapping if

f(2 +y)+f(* —y)+f( +Z)+f(* —z) = flz) +2f(y) +2/(2)
for all z,y,z € X with z L y.

In this paper, we are going to introduce some additional stability re-
sults of the orthogonally additive and orthogonally quadratic functional
equation Df(x,y,z) = 0.

2. Approximate orthogonally additive and orthogonally qua-
dratic mappings

Throughout this section, assume that (X, L) is an orthogonality space
and that (Y, |- ||y) is a Banach space.
We observe that if a mapping f satisfies

f(2+y)+f(*—y)+f( +Z)+f(*—2)—2f( )

for all x,y,z € X with z L y, then we easily see that (i) f(0) = 0; (ii)
fl=y) = —fly); (i) f(5) = 3f(x); (iv) f(5+2)+ f(5—2) = f(z)
for all z,y,z € X, and so f is additive. The converse is trivially true.
Similarly, if a mapping f : X — Y satisfies

f(2+y)+f(*—y)+f( +Z)+f(*—2) flx) +2f(y) +2f(2)
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for all z,y,z € X with x L y, then we obtain that (i) f(0) = 0; (ii)
f(=y) = f(y); (i) £(5) = 3 (@); (i) f(5+2)+f(5—2) = § f(2)+2f(2)
for all z,y,z € X, and so f is quadratic. The converse is trivially true.

At first, we state some stability results of the functional equation
Df(x,y,z) =0 in the reference [11].

THEOREM 2.1. [11] Let ¢ : X® — [0,00) be a function such that
there exists an 0 < a1 <1 (0 < ay < 1,resp.) with

57 275)7

(p(z,y,2) < %sO(%,?y,?Z), resp.)

for all x,y,z € X withx 1L y. Let f : X — Y be an odd mapping
satisfying

(21) ||Df(l‘,y,2)”y < Qp(mayaz)

for all x,y,z € X with x L y. Then there exists a unique orthogonally
additive mapping L1 : X —Y (Lg : X — Y, resp.) such that

1f (@) = Lai(z)]ly <

90($,?/7 Z) < 2051@(

aq

———(2,0,0
2_201(70(:'E’ Y )7

(If(x) = La(a)lly

forallxz € X.

IN

mﬂ% 0,0), resp.)

THEOREM 2.2. [11] Let ¢ : X® — [0,00) be a function such that
there exists an 0 < a3 <1 (0 < ayq < 1,resp.) with
< 4 - —
plz,y.2) = daze(5, 5. 5)
(p(z,y,2) < %w(%% 2z), resp.)
forall x,y,z € X withxz 1L y. Let f : X — Y be an even mapping satis-
fying (2.1). Then there exists a unique orthogonally quadratic mapping
Q1:X =Y (Qa: X — Y, resp.) such that
[f(z) = Qi(@)|ly <
(If (@) = Q2(2)lly

for all x € X.

a3
1—0[3

QO(ZL" 0’ 0)7

IN

—(.0,0), resp)
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THEOREM 2.3. Let ¢ : X3 — [0,00) be a function such that there
exists an 0 < a < 1 with

Ty z
<2ap(=, 2,2
pl,y,2) < 200(5, 5, 5)
for all z,y,z € X withx L y. Let f: X — Y be a mapping satisfying
(22) IDf(z,y,2)lly < ¢(z,y,2)

for all x,y,z € X with x | y. Then there exist an orthogonally additive
mapping L1 : X — Y and an orthogonally quadratic mapping Q1 : X —
Y such that

(2.3) 1f(2) = Li(z) = Qu(2)]ly

< (4g = * 2@ =) 9 0.0) + #(=2,0,0)]

for all x € X. The functions Ly and @) are given by

Li(e) = lim o f(25), Qu(x) = lim o f(2),

for all z € X.
Proof. Let fo(x) = w and fo(x) = W Then f, is an

odd mapping and f. is an even mapping such that f = f, + f.. From
(2.2), we get that

@4) DLyl < sleley.2) +e(-a, -y -2)

IDfele2)ly < Glo(ey2) + ol(—2,—y, —2)

for all z,y,z € X with « L y.

Then by Theorem 2.1 (a1 := «) and by Theorem 2.2 (a3 := §), there
exist a unique orthogonally additive mapping L1 : X — Y, defined by
Li(z) = limg_ 2% f(2Fz), and a unique orthogonally quadratic map-
ping Q1 : X — Y, defined by Q1(z) = limg_. 2%,6]“(2”%), such that

I1o(a) = La(@)lly < = 570(@:0,0) +¢(=2,0,0)]

I17.0) = @@y < 5= 53 [6(w0,0) + (=2, 0,0)

for all z € X, respectively. Therefore, we obtain the desired inequality
(2.3), which completes the proof. O
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COROLLARY 2.4. [11] Assume that (X, 1) is an orthogonality normed
space. Let 6 be a positive real number and p a real number with 0 <
p<1. Let f: X — Y be a mapping satisfying

(2.5) 1Df(@,y, 2)lly < Ox]” + [lyl|” + [|[")

for all x,y,z € X with x L y. Then there exist orthogonally additive
mapping Ly : X — Y and orthogonally quadratic mapping Q1 : X — Y
such that

or—1 P

1£@) = Li@) = u@)lly < (555 + 1) Ollall”

for all x € X.

Proof. The proof follows from Theorem 2.3 by taking ¢(z,y,z) =
0(||z]|P + |ly|IP + ||z|[P) for all z,y, 2 € X withz Ly, and o = 2P~ [

THEOREM 2.5. Let ¢ : X3 — [0,00) be a function such that there
exist an 0 < o < 1 with

o(2,y,2) < T0(2,2y,22)

for all z,y,z € X withx L y. Let f: X — Y be a mapping satisfying
(2.2). Then there exist an orthogonally additive mapping Lo : X — Y
and an orthogonally quadratic mapping Qs : X — Y such that

(2.6) 1f(x) — La(z) — Q2(2)[ly
1 1
< (2(2 _ Ol) + 2(1 . Oé)) [90(:1:)070) + SO(_$,0,0)]
for all x € X. The functions Lo and Q)2 are given by
Ly(w) = lim 2°f(55), Qa(a) = lim 2% f(0),

for all x € X.

Proof. It follows from Theorem 2.1 (a3 := §) and from Theorem 2.2
(a4 := «) that there exist a unique orthogonally additive mapping Ly :
X — Y, defined by Lo(z) = limg_ 2kf(2£k), and a unique orthogonally
quadratic mapping Q2 : X — Y, defined by Q2(x) = limg_, o 22kf(2%),
such that

1fo(x) = La(2)[ly < [p(2,0,0) + ¢(=,0,0)],

(2—a)2

Iele) = Qa@)lly € g e(w.0.0) + (—.0.0)
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for all z € X, respectively. Therefore, we obtain the inequality (2.6),
which completes the proof. ]

COROLLARY 2.6. [11] Assume that (X, 1) is an orthogonality normed
space. Let 6 be a positive real number and p a real number with p >
2. Let f: X — Y be a mapping satisfying (2.5). Then there exist
an orthogonally additive mapping Lo : X — Y and an orthogonally
quadratic mapping Q2 : X — Y such that

p—1 D
17(@) = Lae) ~ Qa@)lly < (5 + 5 ) Ollall?

20 — 2 20 — 4
forallx € X.

Proof. The proof follows from Theorem 2.5 by taking ¢(z,y,2) =
0(||z]|P + |ly|IP + ||z|[P) for all z,y, 2 € X with z L y, and o = 227P. [

THEOREM 2.7. Let ¢ : X3 — [0,00) be a function such that there
exist 0 < aq, o < 1 with
x
2 )
for all x,y,z € X withx L y. Let f: X — Y be a mapping satisfying
(2.2). Then there exist an orthogonally additive mapping Lo : X — Y
and an orthogonally quadratic mapping Q1 : X — Y such that

(2.7) 1f () = La(z) — Qu(2)|ly

= <4(1 i a2) T 2(1Oila1>>[(p(x7070) + @(—lﬁ,0,0)]

for all x € X. The functions Lo and Q1 are given by
Ly(z) = lim 2°f(5p), Qi(z) = lim o5p f(2%2),
for all x € X.

Proof. 1t follows from Theorem 2.1 and from Theorem 2.2 that there
exist a unique orthogonally additive mapping Ly : X — Y defined by
Lo(z) = limy_,o 2F f (57) and a unique orthogonally quadratic mapping
Q1 : X — Y defined by Q1(z) = limg_. 22%]“(2";3:) such that

1

o(x,y,2) < darp( <

Yy =z Qa3
5,5) and (x,y,2) < ?cp(2x,2y, 22)

||f0(1:) _L2($)||Y < m[@(ﬂf,o,())—F@D(—IE,0,0)],
Qa2
aq
er<$) - QI(CC)HY < m[@(m7070) + 90(_‘%7070)]

for all z € X, respectively. Therefore, we obtain the inequality (2.7),
which completes the proof. O
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COROLLARY 2.8. Assume that (X, 1) is an orthogonality normed
space. Let 6 be a positive real number and p a positive real number with
1<p<2 Let f: X —Y bea mapping satisfying (2.5). Then there
exist an orthogonally additive mapping Lo : X — Y and an orthogonally
quadratic mapping Q1 : X — Y such that

p—1 P
17(@) ~ L) = @)y < (5o + gy )Ollall?

20 —2 4 —2p
for all x € X.

Proof. The proof follows from Theorem 2.7 by taking ¢(z,y,z) =
O(|||[P+ |yl +|2||P) for all z,y,z € X withx L y, and a1 = 2P7%, az =
217, O

3. Approximate orthogonally additive and orthogonally qua-
dratic mappings in non-Archimedean spaces

Throughout this section, assume that (X, L) is a non-Archimedean
orthogonality space and that (Y, || - ||y) is a non-Archimedean Banach
space. In this section, we introduce the stability results for the equa-
tion D f(z,y,z) = 0 in non-Archimedean spaces with valuation |2| < 1.
Above all, we state the main stability theorems given in the reference

[11].
THEOREM 3.1. [11] Let ¢ : X3 — [0,00) be a function such that
there exists an 0 < a1 < 1 (0 < ay < 1,resp.) with
Ty 2
2°2727
a2
(@('xvyv Z) < m@(2x7 2ya 22),7"68]9.)

QD(CL',y,Z) < |2|a1g0(

for all x,y,z € X withx L y. Let f : X — Y be an odd mapping
satisfying

(3.1) IDf(z,y,2)lly < o(x,y,2)

for all x,y,z € X with x 1 y. Then there exists a unique orthogonally
additive mapping L1 : X —Y (Lg : X — Y, resp.) such that

a1
[f(z) = Li(z)[ly < M@(%an),

(IIf(z) = La(x)]ly <
for allx € X.

1
m@(% 0,0),resp.)
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THEOREM 3.2. [11] Let ¢ : X® — [0,00) be a function such that
there exists an 0 < a3 <1 (0 < ayq < 1,7esp.) with

T Y z

< |4 Z gz
QO(JZ‘,y,Z) = ’ |043Q0(2,2,2),
(80(3% y,z) < %90(230, 2y,2z), resp.)

forall x,y,z € X withx L y. Let f: X — Y be an even mapping satis-
fying (3.1). Then there exists a unique orthogonally quadratic mapping
Q1:X =Y (Qa: X — Y, resp.) such that

1) = @@y < 12 e(,0,0)
(If@) = @@y < =59(0,0),resp)

forallz € X.

Now, we introduce some additional stability results of orthogonally
additive and orthogonally quadratic functional equation Df(x,y,2) =0
in non-Archimedean spaces.

THEOREM 3.3. Let ¢ : X3 — [0,00) be a function such that there
exists an 0 < o < 1 with
Ty z
2729
for all z,y,z € X withx L y. Let f : X — Y be a mapping satisfying
(3.1). Then there exist an orthogonally additive mapping L1 : X — Y
and an orthogonally quadratic mapping ()1 : X — Y such that

Hf(x) - Ll(w) - Ql(l')”y < maX{QO(mv 0, 0)7 90(_'%07(])}

p(,y,2) < |4]op(

e
2|/(1 - )
for all x € X.

Proof. We note that

1
19l max{cp(:p, Y, Z)a QD(_:L‘a -Y, —Z)},

(32) ||Dfo(:l:ay7 Z)HY |2‘

IN

1
||Dfe(.’IJ, Y, Z)HY < m max{cp(x, Y, Z)a (P(—-’E, —-Y, _Z)}

for all z,y,z € X with L y. It follows from Theorem 3.1 (a7 := |2|«)
and from Theorem 3.2 (a3 := «) that there exist a unique orthogonally
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additive mapping L1 : X — Y and a unique orthogonally quadratic
mapping 1 : X — Y such that

[fo(z) = Li(z)]ly < MmaX{SO(SUa(LO)’SO(—fB,O,O)}’
||f6($)—Q1(.T)HY < mmax{gp(:c,0,0),gp(—x,0,0)}

for all x € X, respectively. Therefore, we obtain that
If(x) = Li(z) — Qu(2)[ly

< ma{ G ey T =)

max{p(x,0,0), p(—z,0,0)}

} max{¢(z,0,0),o(—z,0,0)}

B «
2[(1 — o)
for all x € X, which completes the proof. ]

COROLLARY 3.4. [11] Assume that (X, 1) is a non-Archimedean or-
thogonality normed space. Let 6 be a positive real number and p a pos-
itive real number with p > 2. Let f : X — Y be a mapping satisfying
(2.5). Then there exist an orthogonally additive mapping L1 : X — Y

and an orthogonally quadratic mapping Q1 : X — Y such that
15) — Lifa) - @a(a)ly < 27
YT TR = fap P

forallz € X.

[]?

Proof. Taking ¢(z,y, 2) := 0((jal[? + Ily|/” +||2[17) and & = 2172, we
get the desired result by Theorem 3.3. O

THEOREM 3.5. Let ¢ : X3 — [0,00) be a function such that there
exists an 0 < o < 1 with

o
Qp(l’, Y, Z) g ’2750(2337 23/7 2’2)

for all x,y,z € X withx 1L y. Let f: X — Y be a mapping satisfying
(3.1). Then there exist an orthogonally additive mapping Ly : X — Y
and an orthogonally quadratic mapping Qs : X — Y such that

[ f(x) — La(x) — Q2()[ly <

for all x € X.

|2’2(11_a) max{y(z,0,0), p(—z,0,0)}

Proof. 1t follows from Theorem 3.1 (a3 := «) and from Theorem 3.2
(aq := |2]cr) that there exist a unique orthogonally additive mapping
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Lo : X — Y and a unique orthogonally quadratic mapping Q2 : X — Y
such that

1
[fo(z) = La(z)]ly < mmax{go(a:,0,0),go(—x,0,0)},
1
er(x)_QQ(x)HY < m

for all x € X, respectively. Therefore, we obtain that

[f(z) = La(x) — Q2(z)|ly

max{p(x,0,0), p(—z,0,0)}

1 1
1
= BRI —a) max{y(z,0,0), o(—,0,0)}

for all x € X, which completes the proof. O

COROLLARY 3.6. [11] Assume that (X, 1) is a non-Archimedean or-
thogonality normed space. Let 6 be a positive real number and p a pos-
itive real number with p < 1. Let f : X — Y be a mapping satisfying
(2.5). Then there exist an orthogonally additive mapping Lo : X — Y
and an orthogonally quadratic mapping ()3 : X — Y such that

2726
@) = Lofa) = Qa(@)ly < o —rllal?
for all x € X.

Proof. The proof follows from Theorem 3.5 by taking ¢(z,y,2) =
O(||z||P + |ly||P + ||z||P) for all z,y,z € X withz L y, and o = [2]'7P. O

THEOREM 3.7. Let ¢ : X3 — [0,00) be a function such that there
exist 0 < aq, s < 1 with

z
279 2)
for all z,y,z € X withx L y. Let f: X — Y be a mapping satisfying

(3.1). Then there exist an orthogonally additive mapping L; : X — Y
and an orthogonally quadratic mapping ()2 : X — Y such that

1 f(x) = Li(x) — Q2(2)[ly

< { (o] 1
max ,
- 122(1 —a1)” 2|(1 — a2)

«
o2, y,2) < 2larp(Z, mdwm%@sﬁ%@awa@

}max{ap(x, 0,0), o(—,0,0)}

for all x € X.
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Proof. 1t follows from Theorem 3.1 and from Theorem 3.2 that there
exist a unique orthogonally additive mapping L; : X — Y and a unique
orthogonally quadratic mapping Qs : X — Y such that

||fo(33) - L1($)||y < mmax{@($7070)7@(_x70’0)}7
1
[fe(z) = Q(@)ly < mmax{w(%ovo)a@(—%(),o)}

for all x € X, respectively. Therefore, we obtain that

1£(2) = Lix) = @a(@)lly
o 1
e I ey ) @ 0.0 0(=2,0,0)}

for all x € X, which completes the proof. ]

< max{

COROLLARY 3.8. Assume that (X, 1) is a non-Archimedean orthog-
onality normed space. Let 6 be a positive real number and p a positive
real number with 1 < p < 2. Let f : X — Y be a mapping satisfying
(2.5). Then there exist an orthogonally additive mapping L1 : X — Y
and an orthogonally quadratic mapping ()3 : X — Y such that

1£(@) ~ Li(@) ~ Qa(a)ly < max {2 B Vg
ST - 2P
forallx € X.

Proof. The proof follows from Theorem 3.7 by taking ¢(z,y,2) =
O(||z||P+|ly||P+||2||P) for all z,y, 2 € X withz L y, and oy = 2|7, ag =
|22, O
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