• 제목/요약/키워드: Noetherian rings

검색결과 89건 처리시간 0.026초

COUSIN COMPLEXES AND GENERALIZED HUGHES COMPLEXES

  • Kim, Dae-Sig;Song, Yeong-Moo
    • 대한수학회논문집
    • /
    • 제9권3호
    • /
    • pp.503-511
    • /
    • 1994
  • In this paper, the ring A will mean a commutative Noetherian ring with non-zero multiplicative identity, it is understood that the ring homomorphisms respect identity elements and M will denote an A-module. Throughout this paper A and B will denote rings, $f : A \to B$ a ring homomorphism. C(A) (resp. C(B)) presents the category of all A-modules (resp. B-modules) and A-homomorphisms (resp. B-homorphisms) between them. The following ideas will be used without further explanation. B can be regarded as an A-module by means of f and $M\otimesB$ can be regarded as a B-module in the natural way. Furthermore the restriction of scalars provides a functor from C(B) to C(A).

  • PDF

PF-rings of Generalized Power Series

  • Kim, Hwankoo;Kwon, Tae In
    • Kyungpook Mathematical Journal
    • /
    • 제47권1호
    • /
    • pp.127-132
    • /
    • 2007
  • In this paper, we show that if R is a commutative ring with identity and (S, ${\leq}$) is a strictly totally ordered monoid, then the ring [[$R^{S,{\leq}}$]] of generalized power series is a PF-ring if and only if for any two S-indexed subsets A and B of R such that $B{\subseteq}ann_R(|A)$, there exists $c{\in}ann_R(A)$ such that $bc=b$ for all $b{\in}B$, and that for a Noetherian ring R, $[[R^{S,{\leq}}$]] is a PP ring if and only if R is a PP ring.

  • PDF

A NOTE OF PI-RINGS WITH RESTRICTED DESCENDING

  • Hong, Chan-Yong
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제1권1호
    • /
    • pp.1-6
    • /
    • 1994
  • In this paper, some properties for a PI-ring satisfying the descending chain condition on essential left ideals are studied: Let R be a ring with a polynomial identity satisfying the descending chain condition on essential ideals. Then all minimal prime ideals in R are maximal ideals. Moreover, if R has only finitely many minimal prime ideals, then R is left and right Artinian. Consequently, if every primeideal of R is finitely generated as a left ideal, then R is left and right Artinian. A finitely generated PI-algebra over a commutative Noetherian ring satisfying the descending chain condition on essential left ideals is a finite module over its center.(omitted)

  • PDF

THE DIMENSION GRAPH FOR MODULES OVER COMMUTATIVE RINGS

  • Shiroyeh Payrovi
    • 대한수학회논문집
    • /
    • 제38권3호
    • /
    • pp.733-740
    • /
    • 2023
  • Let R be a commutative ring and M be an R-module. The dimension graph of M, denoted by DG(M), is a simple undirected graph whose vertex set is Z(M) ⧵ Ann(M) and two distinct vertices x and y are adjacent if and only if dim M/(x, y)M = min{dim M/xM, dim M/yM}. It is shown that DG(M) is a disconnected graph if and only if (i) Ass(M) = {𝖕, 𝖖}, Z(M) = 𝖕 ∪ 𝖖 and Ann(M) = 𝖕 ∩ 𝖖. (ii) dim M = dim R/𝖕 = dim R/𝖖. (iii) dim M/xM = dim M for all x ∈ Z(M) ⧵ Ann(M). Furthermore, it is shown that diam(DG(M)) ≤ 2 and gr(DG(M)) = 3, whenever M is Noetherian with |Z(M) ⧵ Ann(M)| ≥ 3 and DG(M) is a connected graph.

SQUAREFREE ZERO-DIVISOR GRAPHS OF STANLEY-REISNER RINGS

  • Nikseresht, Ashkan
    • 대한수학회지
    • /
    • 제55권6호
    • /
    • pp.1381-1388
    • /
    • 2018
  • Let ${\Delta}$ be a simplicial complex, $I_{\Delta}$ its Stanley-Reisner ideal and $K[{\Delta}]$ its Stanley-Reisner ring over a field K. Assume that ${\Gamma}(R)$ denotes the zero-divisor graph of a commutative ring R. Here, first we present a condition on two reduced Noetherian rings R and R', equivalent to ${\Gamma}(R){\cong}{\Gamma}(R{^{\prime}})$. In particular, we show that ${\Gamma}(K[{\Delta}]){\cong}{\Gamma}(K^{\prime}[{\Delta}^{\prime}])$ if and only if ${\mid}Ass(I_{\Delta}){\mid}={\mid}Ass(I_{{{\Delta}^{\prime}}}){\mid}$ and either ${\mid}K{\mid}$, ${\mid}K^{\prime}{\mid}{\leq}{\aleph}_0$ or ${\mid}K{\mid}={\mid}K^{\prime}{\mid}$. This shows that ${\Gamma}(K[{\Delta}])$ contains little information about $K[{\Delta}]$. Then, we define the squarefree zero-divisor graph of $K[{\Delta}]$, denoted by ${\Gamma}_{sf}(K[{\Delta}])$, and prove that ${\Gamma}_{sf}(K[{\Delta}){\cong}{\Gamma}_{sf}(K[{\Delta}^{\prime}])$ if and only if $K[{\Delta}]{\cong}K[{\Delta}^{\prime}]$. Moreover, we show how to find dim $K[{\Delta}]$ and ${\mid}Ass(K[{\Delta}]){\mid}$ from ${\Gamma}_{sf}(K[{\Delta}])$.

MAXIMAL IDEALS IN POLYNOMIAL RINGS

  • Cho, Young-Hyun
    • 대한수학회보
    • /
    • 제22권2호
    • /
    • pp.117-119
    • /
    • 1985
  • Let R be a commutative noetherian ring with 1.neq.0, denoting by .nu.(I) the cardinality of a minimal basis of the ideal I. Let A be a polynomial ring in n>0 variables with coefficients in R, and let M be a maximal ideal of A. Generally it is shown that .nu.(M $A_{M}$).leq..nu.(M).leq..nu.(M $A_{M}$)+1. It is well known that the lower bound is not always satisfied, and the most classical examples occur in nonfactional Dedekind domains. But in many cases, (e.g., A is a polynomial ring whose coefficient ring is a field) the lower bound is attained. In [2] and [3], the conditions when the lower bound is satisfied is investigated. Especially in [3], it is shown that .nu.(M)=.nu.(M $A_{M}$) if M.cap.R=p is a maximal ideal or $A_{M}$ (equivalently $R_{p}$) is not regular or n>1. Hence the problem of determining whether .nu.(M)=.nu.(M $A_{M}$) can be studied when p is not maximal, $A_{M}$ is regular and n=1. The purpose of this note is to provide some conditions in which the lower bound is satisfied, when n=1 and R is a regular local ring (hence $A_{M}$ is regular)./ is regular).

  • PDF

TIGHT CLOSURES AND INFINITE INTEGRAL EXTENSIONS

  • Moon, Myung-In;Cho, Young-Hyun
    • 대한수학회보
    • /
    • 제29권1호
    • /
    • pp.65-72
    • /
    • 1992
  • All rings are commutative, Noetherian with identity and of prime characteristic p, unless otherwise specified. First, we describe the definition of tight closure of an ideal and the properties about the tight closure used frequently. The technique used here for the tight closure was introduced by M. Hochster and C. Huneke [4,5, or 6]. Using the concepts of the tight closure and its properties, we will prove that if R is a complete local domain and F-rational, then R is Cohen-Macaulay. Next, we study the properties of R$^{+}$, the integral closure of a domain in an algebraic closure of its field of fractions. In fact, if R is a complete local domain of characteristic p>0, then R$^{+}$ is Cohen-Macaulay [8]. But we do not know this fact is true or not if the characteristic of R is zero. For the special case we can show that if R is a non-Cohen-Macaulay normal domain containing the rationals Q, then R$^{+}$ is not Cohen-Macaulay. Finally we will prove that if R is an excellent local domain of characteristic p and F-ratiional, then R is Cohen-Macaulay.aulay.

  • PDF

A GENERALIZATION OF THE PRIME RADICAL OF IDEALS IN COMMUTATIVE RINGS

  • Harehdashti, Javad Bagheri;Moghimi, Hosein Fazaeli
    • 대한수학회논문집
    • /
    • 제32권3호
    • /
    • pp.543-552
    • /
    • 2017
  • Let R be a commutative ring with identity, and ${\phi}:{\mathfrak{I}}(R){\rightarrow}{\mathfrak{I}}(R){\cup}\{{\varnothing}\}$ be a function where ${\mathfrak{I}}(R)$ is the set of all ideals of R. Following [2], a proper ideal P of R is called a ${\phi}$-prime ideal if $x,y{\in}R$ with $xy{\in}P-{\phi}(P)$ implies $x{\in}P$ or $y{\in}P$. For an ideal I of R, we define the ${\phi}$-radical ${\sqrt[{\phi}]{I}}$ to be the intersection of all ${\phi}$-prime ideals of R containing I, and show that this notion inherits most of the essential properties of the usual notion of radical of an ideal. We also investigate when the set of all ${\phi}$-prime ideals of R, denoted $Spec_{\phi}(R)$, has a Zariski topology analogous to that of the prime spectrum Spec(R), and show that this topological space is Noetherian if and only if ${\phi}$-radical ideals of R satisfy the ascending chain condition.

ON n-ABSORBING IDEALS AND THE n-KRULL DIMENSION OF A COMMUTATIVE RING

  • Moghimi, Hosein Fazaeli;Naghani, Sadegh Rahimi
    • 대한수학회지
    • /
    • 제53권6호
    • /
    • pp.1225-1236
    • /
    • 2016
  • Let R be a commutative ring with $1{\neq}0$ and n a positive integer. In this article, we introduce the n-Krull dimension of R, denoted $dim_n\;R$, which is the supremum of the lengths of chains of n-absorbing ideals of R. We study the n-Krull dimension in several classes of commutative rings. For example, the n-Krull dimension of an Artinian ring is finite for every positive integer n. In particular, if R is an Artinian ring with k maximal ideals and l(R) is the length of a composition series for R, then $dim_n\;R=l(R)-k$ for some positive integer n. It is proved that a Noetherian domain R is a Dedekind domain if and only if $dim_n\;R=n$ for every positive integer n if and only if $dim_2\;R=2$. It is shown that Krull's (Generalized) Principal Ideal Theorem does not hold in general when prime ideals are replaced by n-absorbing ideals for some n > 1.