• 제목/요약/키워드: Noetherian rings

검색결과 89건 처리시간 0.034초

ON SOME GENERALIZATIONS OF CLOSED SUBMODULES

  • DURGUN, YILMAZ
    • 대한수학회보
    • /
    • 제52권5호
    • /
    • pp.1549-1557
    • /
    • 2015
  • Characterizations of closed subgroups in abelian groups have been generalized to modules in essentially dierent ways; they are in general inequivalent. Here we consider the relations between these generalizations over commutative rings, and we characterize the commutative rings over which they coincide. These are exactly the commutative noetherian distributive rings. We also give a characterization of c-injective modules over commutative noetherian distributive rings. For a noetherian distributive ring R, we prove that, (1) direct product of simple R-modules is c-injective; (2) an R-module D is c-injective if and only if it is isomorphic to a direct summand of a direct product of simple R-modules and injective R-modules.

CHARACTERIZING ABELIAN GENERALIZED REGULAR RINGS THAT ARE NOETHERIAN

  • Han, Juncheol;Sim, Hyo-Seob
    • East Asian mathematical journal
    • /
    • 제36권1호
    • /
    • pp.73-79
    • /
    • 2020
  • A ring R is called generalized regular if for every nonzero x in R there exists y in R such that xy is a nonzero idempotent. In this paper, we observe some equivalent conditions for the generalized regular rings that are abelian in terms of idempotents, and we also investigate the primitivity of an idempotent for such a ring. By using the investigation, we characterize such a kind of rings that are noetherian by showing that an abelian generalized regular ring R is noetherian if and only if R is isomorphic to a direct product of finitely many division rings. We also observe some interesting consequences of our results.

HILBERT BASIS THEOREM FOR RINGS WITH ∗-NOETHERIAN SPECTRUM

  • PARK, MIN JI;LIM, JUNG WOOK
    • Journal of applied mathematics & informatics
    • /
    • 제38권3_4호
    • /
    • pp.271-276
    • /
    • 2020
  • Let R be a commutative ring with identity, R[X] the polynomial ring over R, ∗ a radical operation on R and ⋆ a radical operation of finite character on R[X]. In this paper, we give Hilbert basis theorem for rings with ∗-Noetherian spectrum. More precisely, we show that if (IR[X]) = (IR[X]) and (IR[X]) ∩ R = I for all ideals I of R, then R has ∗-Noetherian spectrum if and only if R[X] has ⋆-Noetherian spectrum. This is a generalization of a well-known fact that R has Noetherian spectrum if and only if R[X] has Noetherian spectrum.

ON A CHANGE OF RINGS FOR MIXED MULTIPLICITIES

  • Thanh, Truong Thi Hong;Viet, Duong Quoc
    • 대한수학회보
    • /
    • 제57권5호
    • /
    • pp.1251-1258
    • /
    • 2020
  • This paper establishes a formula changing the ring from a Noetherian local ring A of dimension d > 0 containing the residue field k to the polynomial ring in d variables k[X1, X2, …, Xd] for mixed multiplicities. And as consequences, we get a formula for the multiplicity of Rees rings and formulas for mixed multiplicities and the multiplicity of Rees rings of quotient rings of A by highest dimensional associated prime ideals of A.

SOME REMARKS ON TYPES OF NOETHERIAN LOCAL RINGS

  • Lee, Kisuk
    • 충청수학회지
    • /
    • 제27권4호
    • /
    • pp.625-633
    • /
    • 2014
  • We study some results which concern the types of Noetherian local rings, and improve slightly the previous result: For a complete unmixed (or quasi-unmixed) Noetherian local ring A, we prove that if either $A_p$ is Cohen-Macaulay, or $r(Ap){\leq}depth$ $A_p+1$ for every prime ideal p in A, then A is Cohen-Macaulay. Also, some analogous results for modules are considered.

A NOTE ON ZERO DIVISORS IN w-NOETHERIAN-LIKE RINGS

  • Kim, Hwankoo;Kwon, Tae In;Rhee, Min Surp
    • 대한수학회보
    • /
    • 제51권6호
    • /
    • pp.1851-1861
    • /
    • 2014
  • We introduce the concept of w-zero-divisor (w-ZD) rings and study its related rings. In particular it is shown that an integral domain R is an SM domain if and only if R is a w-locally Noetherian w-ZD ring and that a commutative ring R is w-Noetherian if and only if the polynomial ring in one indeterminate R[X] is a w-ZD ring. Finally we characterize universally zero divisor rings in terms of w-ZD modules.

INJECTIVE MODULES OVER ω-NOETHERIAN RINGS, II

  • Zhang, Jun;Wang, Fanggui;Kim, Hwankoo
    • 대한수학회지
    • /
    • 제50권5호
    • /
    • pp.1051-1066
    • /
    • 2013
  • By utilizing known characterizations of ${\omega}$-Noetherian rings in terms of injective modules, we give more characterizations of ${\omega}$-Noetherian rings. More precisely, we show that a commutative ring R is ${\omega}$-Noetherian if and only if the direct limit of GV -torsion-free injective R-modules is injective; if and only if every R-module has a GV -torsion-free injective (pre)cover; if and only if the direct sum of injective envelopes of ${\omega}$-simple R-modules is injective; if and only if the essential extension of the direct sum of GV -torsion-free injective R-modules is the direct sum of GV -torsion-free injective R-modules; if and only if every $\mathfrak{F}_{w,f}(R)$-injective ${\omega}$-module is injective; if and only if every GV-torsion-free R-module admits an $i$-decomposition.

REDUCTIONS OF IDEALS IN COMMUTATIVE NOETHERIAN SEMI-LOCAL RINGS

  • Song, Yeong-Moo;Kim, Se-Gyeong
    • 대한수학회논문집
    • /
    • 제11권3호
    • /
    • pp.539-546
    • /
    • 1996
  • The purpose of this paper is to show that the Noetherian semi-local property of the underlying ring enables us to develope a setisfactory concep of the theory of reduction of ideals in a commutative Noetherian ring.

  • PDF

ω-MODULES OVER COMMUTATIVE RINGS

  • Yin, Huayu;Wang, Fanggui;Zhu, Xiaosheng;Chen, Youhua
    • 대한수학회지
    • /
    • 제48권1호
    • /
    • pp.207-222
    • /
    • 2011
  • Let R be a commutative ring and let M be a GV -torsionfree R-module. Then M is said to be a $\omega$-module if $Ext_R^1$(R/J, M) = 0 for any J $\in$ GV (R), and the w-envelope of M is defined by $M_{\omega}$ = {x $\in$ E(M) | Jx $\subseteq$ M for some J $\in$ GV (R)}. In this paper, $\omega$-modules over commutative rings are considered, and the theory of $\omega$-operations is developed for arbitrary commutative rings. As applications, we give some characterizations of $\omega$-Noetherian rings and Krull rings.

INJECTIVE COVERS OVER COMMUTATIVE NOETHERIAN RINGS WITH GLOBAL DIMENSION AT MOST TWO

  • Enochs, Edgar-E.;Kim, Hae-Sik;Song, Yeong-Moo
    • 대한수학회보
    • /
    • 제40권1호
    • /
    • pp.167-176
    • /
    • 2003
  • In [3], Del Valle, Enochs and Martinez studied flat envelopes over rings and they showed that over rings as in the title these are very well behaved. If we replace flat with injective and envelope with the dual notion of a cover we then have the injective covers. In this article we show that these injective covers over the commutative noetherian rings with global dimension at most 2 have properties analogous to those of the flat envelopes over these rings.