DOI QR코드

DOI QR Code

ON A CHANGE OF RINGS FOR MIXED MULTIPLICITIES

  • Received : 2019.10.14
  • Accepted : 2020.03.26
  • Published : 2020.09.30

Abstract

This paper establishes a formula changing the ring from a Noetherian local ring A of dimension d > 0 containing the residue field k to the polynomial ring in d variables k[X1, X2, …, Xd] for mixed multiplicities. And as consequences, we get a formula for the multiplicity of Rees rings and formulas for mixed multiplicities and the multiplicity of Rees rings of quotient rings of A by highest dimensional associated prime ideals of A.

Keywords

References

  1. M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley Publishing Co., Reading, MA, 1969.
  2. W. Bruns and J. Herzog, Cohen-Macaulay Rings, Cambridge Studies in Advanced Mathematics, 39, Cambridge University Press, Cambridge, 1993.
  3. E. Boda and P. Schenzel, A note on the computation of multiplicities, Beitrage Algebra Geom. 45 (2004), no. 1, 183-190.
  4. R. Callejas-Bedregal and V. H. Jorge Perez, Mixed multiplicities and the minimal number of generator of modules, J. Pure Appl. Algebra 214 (2010), no. 9, 1642-1653. https://doi.org/10.1016/j.jpaa.2009.12.009
  5. L. V. Dinh, N. T. Manh, and T. T. H. Thanh, On some superficial sequences, Southeast Asian Bull. Math. 38 (2014), no. 6, 803-811.
  6. L. V. Dinh and D. Q. Viet, On two results of mixed multiplicities, Int. J. Algebra 4 (2010), no. 1-4, 19-23.
  7. M. Herrmann, E. Hyry, J. Ribbe, and Z. Tang, Reduction numbers and multiplicities of multigraded structures, J. Algebra 197 (1997), no. 2, 311-341. https://doi.org/10.1006/jabr.1997.7128
  8. C. Huneke and I. Swanson, Integral Closure of Ideals, Rings, and Modules, London Mathematical Society Lecture Note Series, 336, Cambridge University Press, Cambridge, 2006.
  9. D. Katz and J. K. Verma, Extended Rees algebras and mixed multiplicities, Math. Z. 202 (1989), no. 1, 111-128. https://doi.org/10.1007/BF01180686
  10. S. Kleiman and A. Thorup, Mixed Buchsbaum-Rim multiplicities, Amer. J. Math. 118 (1996), no. 3, 529-569. https://doi.org/10.1353/ajm.1996.0026
  11. N. T. Ma.nh and D. Q. Viet, Mixed multiplicities of modules over Noetherian local rings, Tokyo J. Math. 29 (2006), no. 2, 325-345. https://doi.org/10.3836/tjm/1170348171
  12. D. Rees, Generalizations of reductions and mixed multiplicities, J. London Math. Soc. (2) 29 (1984), no. 3, 397-414. https://doi.org/10.1112/jlms/s2-29.3.397
  13. I. Swanson, Mixed multiplicities, joint reductions and quasi-unmixed local rings, J. London Math. Soc. (2) 48 (1993), no. 1, 1-14. https://doi.org/10.1112/jlms/s2-48.1.1
  14. B. Teissier, Cycles evanescents, sections planes et conditions de Whitney, in Singularites a Cargese (Rencontre Singularites Geom. Anal., Inst. Etudes Sci., Cargese, 1972), 285-362. Asterisque, Nos. 7 et 8, Soc. Math. France, Paris, 1973.
  15. T. T. H. Thanh and D. Q. Viet, Mixed multiplicities of maximal degrees, J. Korean Math. Soc. 55 (2018), no. 3, 605-622. https://doi.org/10.4153/cmb-2011-108-1
  16. T. T. H. Thanh and D. Q. Viet, Mixed multiplicities and the multiplicity of Rees modules of reductions, J. Algebra Appl. 18 (2019), no. 9, 1950176, 13 pp. https://doi.org/10.1142/S0219498819501767
  17. J. K. Verma, Multigraded Rees algebras and mixed multiplicities, J. Pure Appl. Algebra 77 (1992), no. 2, 219-228. https://doi.org/10.1016/0022-4049(92)90087-V
  18. D. Q. Viet, Mixed multiplicities of arbitrary ideals in local rings, Comm. Algebra 28 (2000), no. 8, 3803-3821. https://doi.org/10.1080/00927870008827059
  19. D. Q. Viet, Sequences determining mixed multiplicities and reductions of ideals, Comm. Algebra 31 (2003), no. 10, 5047-5069. https://doi.org/10.1081/AGB-120023147
  20. D. Q. Viet, Reductions and mixed multiplicities of ideals, Comm. Algebra 32 (2004), no. 11, 4159-4178. https://doi.org/10.1081/AGB-200034021
  21. D. Q. Viet, The multiplicity and the Cohen-Macaulayness of extended Rees algebras of equimultiple ideals, J. Pure Appl. Algebra 205 (2006), no. 3, 498-509. https://doi.org/10.1016/j.jpaa.2005.07.018
  22. D. Q. Viet, On the Cohen-Macaulayness of fiber cones, Proc. Amer. Math. Soc. 136 (2008), no. 12, 4185-4195. https://doi.org/10.1090/S0002-9939-08-09438-0
  23. D. Q. Viet and L. V. Dinh, On the multiplicity of Rees algebras of good filtrations, Kyushu J. Math. 66 (2012), no. 2, 261-272. https://doi.org/10.2206/kyushujm.66.261
  24. D. Q. Viet and L. V. Dinh, On mixed multiplicities of good filtrations, Algebra Colloq. 22 (2015), no. 3, 421-436. https://doi.org/10.1142/S1005386715000371
  25. D. Q. Viet, L. V. Dinh, and T. T. H. Thanh, A note on joint reductions and mixed multiplicities, Proc. Amer. Math. Soc. 142 (2014), no. 6, 1861-1873. https://doi.org/10.1090/S0002-9939-2014-11916-2
  26. D. Q. Viet and N. T. Manh, On the multiplicity of multigraded modules over Artinian local rings, Tokyo J. Math. 33 (2010), no. 2, 341-360. https://doi.org/10.3836/tjm/1296483474
  27. D. Q. Viet and N. T. Manh, Mixed multiplicities of multigraded modules, Forum Math. 25 (2013), no. 2, 337-361. https://doi.org/10.1515/form.2011.120
  28. D. Q. Viet and T. T. H. Thanh, Multiplicity and Cohen-Macaulayness of fiber cones of good filtrations, Kyushu J. Math. 65 (2011), no. 1, 1-13. https://doi.org/10.2206/kyushujm.65.1
  29. D. Q. Viet and T. T. H. Thanh, On (FC)-sequences and mixed multiplicities of multi-graded algebras, Tokyo J. Math. 34 (2011), no. 1, 185-202. https://doi.org/10.3836/tjm/1313074450
  30. D. Q. Viet and T. T. H. Thanh, On some multiplicity and mixed multiplicity formulas, Forum Math. 26 (2014), no. 2, 413-442. https://doi.org/10.1515/form.2011.168
  31. D. Q. Viet and T. T. H. Thanh, A note on formulas transmuting mixed multiplicities, Forum Math. 26 (2014), no. 6, 1837-1851. https://doi.org/10.1515/forum-2011-0147
  32. D. Q. Viet and T. T. H. Thanh, The Euler-Poincare characteristic and mixed multiplicities, Kyushu J. Math. 69 (2015), no. 2, 393-411. https://doi.org/10.2206/kyushujm.69.393