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ON A CHANGE OF RINGS FOR MIXED MULTIPLICITIES

Truong Thi Hong Thanh and Duong Quoc Viet

Abstract. This paper establishes a formula changing the ring from a

Noetherian local ring A of dimension d > 0 containing the residue field

k to the polynomial ring in d variables k[X1, X2, . . . , Xd] for mixed mul-
tiplicities. And as consequences, we get a formula for the multiplicity of

Rees rings and formulas for mixed multiplicities and the multiplicity of
Rees rings of quotient rings of A by highest dimensional associated prime

ideals of A.

1. Introduction

Let (A,m, k) be a Noetherian local ring with maximal ideal m and the residue
field k = A/m. Let M be a finitely generated A-module. Let J, I1, . . . , Is be
ideals of A such that J is an m-primary ideal and I = I1 · · · Is is not contained in
√

AnnM . Set dimM/0M : I∞ = q. Then `A

[
Jn0I

n1
1 ···I

ns
s M

Jn0+1I
n1
1 ···I

ns
s M

]
is a polynomial

of degree q− 1 for all large n0, n1, . . . , ns [18, Proposition 3.1(i)]. The terms of
total degree q − 1 in this polynomial have the form∑

k0 +k1+ ··· + ks = q−1

eA(J [k0+1], I
[k1]
1 , . . . , I [ks]

s ;M)
nk0
0 nk1

1 · · ·nks
s

k0!k1! · · · ks!
.

Then eA(J [k0+1], I
[k1]
1 , . . . , I

[ks]
s ;M) is called the mixed multiplicity of M with

respect to ideals J, I1, . . . , Is of the type (k0 + 1, k1, . . . , ks).
It has been known that mixed multiplicities are an important object of Alge-

braic Geometry and Commutative Algebra. In past years, one obtained inter-
esting results for this theory. Apart from the results for the positivity and char-
acterizations mixed multiplicities in terms of the Hilbert-Samuel multiplicity
(see e.g. [4–6,10–16,18–22,24,25,27–29]) and the Euler-Poincare characteristic
(see e.g. [15,32]), the representation of the multiplicity of Rees modules as the
sum of mixed multiplicities has been established (see e.g. [7, 9, 16, 17, 23, 26]).
Moreover, recent papers showed that many important properties of the Hilbert-
Samuel multiplicity can be expanded to mixed multiplicities (see e.g. [30,31]).
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In this paper, we study mixed multiplicities and the multiplicity of Rees rings
over a Noetherian local ring A containing the residue field k. Let a1, a2, . . . , ad
be a system of parameters for A. Denote by S = k[X1, X2, . . . , Xd] the polyno-
mial ring in d variables X1, X2, . . . , Xd over k, and by R = S(X1,X2,...,Xd) the
localization of S at the maximal ideal (X1, X2, . . . , Xd). For any ideal I of S,
put IR = IR and IA the ideal of A generated by {f(a1, a2, . . . , ad) | f ∈ I}.

Boda and Schenzel in [3] investigated the relationship between the Hilbert-
Samuel multiplicity of A and the Hilbert-Samuel multiplicity of R.

Being inspired by the main result of [3], we want to build formulas for the
relationship between mixed multiplicities of A and R. In fact, we obtain the
following.

Theorem 1.1 (Theorem 2.2). Let (A,m, k) be a Noetherian local ring of di-
mension d > 0 containing the residue field k. Let q = a1, a2, . . . , ad be a system
of parameters for A. Assume that J, I1, . . . , Is ⊂ (X1, X2, . . . , Xd)S are ideals
of S with JR being (X1, X2, . . . , Xd)R-primary and I1 · · · Is 6= 0. Then we have

eA(J
[k0+1]
A , I1

[k1]
A , . . . , Is

[ks]
A ;A) = eR(J

[k0+1]
R , I1

[k1]
R , . . . , Is

[ks]
R ;R)eA(q;A).

Using this theorem one can transfer the computation of a class of mixed
multiplicities satisfying the assumptions of Theorem 1.1 from Noetherian local
rings containing the residue field k to polynomial rings over k. As corollaries
of Theorem 1.1, we obtain a formula on the relationship between the multi-
plicity of Rees rings of A and R (see Corollary 2.3), and formulas for mixed
multiplicities and the multiplicity of Rees rings in the case of A/p for p-highest
dimensional associated prime ideal of A (see Corollary 2.4).

2. On some formulas transferring multiplicities

This section states and proves the main theorem together with corollaries
for the multiplicity of Rees rings and mixed multiplicities in the case of A/p
for p-highest dimensional associated prime ideal of A. And to prove the main
theorem we show in Note 2.1 that mixed multiplicities of a module are the
same as that of its completion.

Let (A,m) be a Noetherian local ring with maximal ideal m and the residue
field k = A/m. Let M be a finitely generated A-module. Let I1, . . . , Is be

ideals of A such that I = I1 · · · Is is not contained in
√

AnnM . Let J be an
m-primary ideal. We put 0 = (0, . . . , 0); k = (k1, . . . , ks);n = (n1, . . . , ns) ∈ Ns

and k! = k1! · · · ks!; | k |= k1 + · · ·+ ks; n
k = nk1

1 · · ·nks
s . Moreover, set

I = I1, . . . , Is; I[k] = I
[k1]
1 , . . . , I [ks]

s ; In = In1
1 · · · Ins

s .

Suppose that dimM/0M : I∞ = q. Recall that the author of [18, Proposition

3.1(i)] in 2000 (see [11, Proposition 3.1(i)]) proved that `A

[
Jn0 InM

Jn0+1InM

]
is a

polynomial of degree q − 1 for all large n0,n. The terms of total degree q − 1
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in this polynomial have the form∑
k0 +|k| = q−1

eA(J [k0+1], I[k];M)
nk0
0 nk

k0!k!
.

Then eA(J [k0+1], I[k];M) is called the mixed multiplicity of M with respect to
ideals J, I of the type (k0 + 1,k).

We need the following note which will be used in the proof of the main result.

Note 2.1. For any A-module N , denote by N̂ the m-adic completion of N .
Now assume that `A(N) = t <∞, i.e., N has a composition series of length t:

N = N0 ⊃ N1 ⊃ · · · ⊃ Nt = {0},
where Ni−1/Ni

∼= k for all 1 ≤ i ≤ t. Then we get a decreasing sequence of

Â-submodules of N̂ :

(1) N̂ = N̂0 ⊃ N̂1 ⊃ · · · ⊃ N̂t = {0}.

Note that N̂i−1/N̂i
∼= ̂Ni−1/Ni

∼= k̂ and k̂ ∼= k for all 1 ≤ i ≤ t. Therefore (1)

is also a composition series of N̂ . Hence N̂ is an Â-module of finite length and

`A(N) = `Â(N̂). From this it follows that

`A

[
Jn0InM

Jn0+1InM

]
= `Â

[ ̂Jn0InM
̂Jn0+1InM

]
= `Â

[
Ĵn0 În1

1 · · · Îns
s M̂

Ĵn0+1În1
1 · · · Î

ns
s M̂

]
.

Consequently eA(J [k0+1], I[k];M) = eÂ(Ĵ [k0+1], Î
[k1]
1 , . . . , Î

[ks]
s ; M̂).

Next suppose further that A contains the residue field k. Let a1, a2, . . . , ad
be a system of parameters for A. Denote by S = k[X1, X2, . . . , Xd] the polyno-
mial ring in d variables X1, X2, . . . , Xd over k, and by R = S(X1,X2,...,Xd) the
localization of S at the maximal ideal (X1, X2, . . . , Xd).

For any ideal I of S, put IR = IR and IA the ideal of A generated by

{f(a1, a2, . . . , ad) | f ∈ I}.
Now assume that J, I1, . . . , Is ⊂ (X1, X2, . . . , Xd)S are ideals of S with JR
being (X1, X2, . . . , Xd)R-primary. We need to determine the relationship be-
tween mixed multiplicities of A with respect to ideals JA, I1A, . . . , IsA and
mixed multiplicities of R with respect to ideals JR, I1R, . . . , IsR of the same
type.

And as one might expect, the our aim is achieved by the following theorem.

Theorem 2.2. Let (A,m, k) be a Noetherian local ring of dimension d > 0 con-
taining the residue field k. Let q = a1, a2, . . . , ad be a system of parameters for
A. Assume that J, I1, . . . , Is ⊂ (X1, X2, . . . , Xd)S are ideals of S with I1 · · · Is 6=
0 and JR being (X1, X2, . . . , Xd)R-primary. Set IA = I1A, . . . , IsA; IR =
I1R, . . . , IsR. Then we have

eA(J
[k0+1]
A , I

[k]
A ;A) = eR(J

[k0+1]
R , I

[k]
R ;R)eA(q;A).
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Proof. Set A′ = k[a1, a2, . . . , ad] and n = (a1, a2, . . . , ad)A′. Define

F : S → A′ by F (f(X1, X2, . . . , Xd)) = f(a1, a2, . . . , ad).

Remember that the system of parameters a1, a2, . . . , ad for A is algebraically
independent over k (see e.g. [1, Corollary 11.21]), so F is an isomorphism.
Moreover

F ((X1, X2, . . . , Xd)) = n.

Hence dimA′ = d and n is a maximal ideal of A′. Set C = A′n. It is clear that
n = m

⋂
A′. From this it follows that C is a subring of Am. Note that Am = A

because A is a local ring with maximal ideal m. Hence C is a subring of A.
It can be verified that the isomorphism F yields an isomorphism F ∗ : R→ C

given by

F ∗(
f

g
) =

f(a1, a2, . . . , ad)

g(a1, a2, . . . , ad)
.

Consequently, C is a d-dimensional Noetherian local domain with maximal
ideal nC and the residue field k. Now for any ideal I of S, we put IC = F (I)C
and IC = I1C , . . . , IsC . Then F ∗(IR) = IC for any ideal I of S. So JC is
nC-primary since JR is (X1, X2, . . . , Xd)R-primary. Moreover, we get

eC(a1, a2, . . . , ad;C) = eR(X1, X2, . . . , Xd;R);

eC(J
[k0+1]
C , I

[k]
C ;C) = eR(J

[k0+1]
R , I

[k]
R ;R).

It can easily be seen that ICA = IA for any ideal I of S. Since a1, a2, . . . , ad
is a system of parameters for A, we get mn ⊂ (a1, a2, . . . , ad)A for a certain
integer n. On the other hand [(a1, a2, . . . , ad)C]u ⊂ JC for a certain integer u
because JC is nC-primary. So we have

[(a1, a2, . . . , ad)A]u = [(a1, a2, . . . , ad)C]uA ⊂ JCA = JA.

Hence mnu ⊂ JA. Consequently JA is m-primary.
Set InA = I1

n1

A · · · Is
n1

A and InC = I1
n1

C · · · Is
n1

C . Note that any A-module is also
a C-module. Moreover, for any composition series of an A-module U is also a
composition series of U as a C-module because the residue fields of A and C
are the same. So

`A

[
JA

n0InAA
JA

n0+1InAA

]
= `C

[
JA

n0InAA
JA

n0+1InAA

]
.

Now, consider A as a C-module, then since ICA = IA for any ideal I of S, it
follows that

`C

[
JA

n0InAA
JA

n0+1InAA

]
= `C

[
JC

n0InCA
JC

n0+1InCA

]
.

Therefore

(2) `A

[
JA

n0InAA
JA

n0+1InAA

]
= `C

[
JC

n0InCA
JC

n0+1InCA

]
.
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By Note 2.1, without loss of generality, in this proof, we can consider A = Â;

C = Ĉ and R = R̂. Then we have

k[[a1, a2, . . . , ad]] = C ∼= R = R̂ = k[[X1, X2, . . . , Xd]].

So in this case, A is a Noetherian complete local ring containing the residue
field k and C = k[[a1, a2, . . . , ad]]. Hence A is a finite generated C-module (see
e.g. [2, Theorem A.22]). Consequently, by (2) and the definition of the mixed
multiplicity, it shows that

eA(J
[k0+1]
A , I

[k]
A ;A) = eC(J

[k0+1]
C , I

[k]
C ;A).

As well as this formula, we have the following formula for the Hilbert-Samuel
multiplicity

eA(a1, a2, . . . , ad;A) = eC(a1, a2, . . . , ad;A).

Denote by K the field of fractions of C. Then by [31, Corollary 3.6] we have

eC(J
[k0+1]
C , I

[k]
C ;A) = eC(J

[k0+1]
C , I

[k]
C ;C) dimK(K ⊗A).

Consequently, since eC(J
[k0+1]
C , I

[k]
C ;C) = eR(J

[k0+1]
R , I

[k]
R ;R),

eA(J
[k0+1]
A , I

[k]
A ;A) = eR(J

[k0+1]
R , I

[k]
R ;R) dimK(K ⊗A).

Recall that

eC(a1, a2, . . . , ad;A) = eC(a1, a2, . . . , ad;C) dimK(K ⊗A)

(see e.g. [2, Corollary 4.7.9] or [8, Corollary 11.2.6]). On the other hand,

eC(a1, a2, . . . , ad;C) = eR(X1, X2, . . . , Xd;R) = 1

because R is a regular local ring. Hence

eA(a1, a2, . . . , ad;A) = dimK(K ⊗A).

Thus, eA(J
[k0+1]
A , I

[k]
A ;A) = eR(J

[k0+1]
R , I

[k]
R ;R)eA(a1, a2, . . . , ad;A). �

Denote by R(I;A) =
⊕

n≥0 In the Rees algebra of ideals I and by

R(I;M) =
⊕
n≥0

InM

the Rees module of ideals I with respect to M. Set R(I;A)+ =
⊕
|n| >0 In.

Then as a corollary of Theorem 2.2, we get the following formula for Rees
rings.

Corollary 2.3. Set JA =
(
JA,R(IA;A)+

)
; JR =

(
JR,R(IR;R)+

)
. Then with

the previous notions and the assumptions as in Theorem 2.2 we have

e
(
JA;R

(
IA;A

))
= e
(
JR;R

(
IR;R)

)
eA(q;A).
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Proof. By Theorem 2.2, we have

eA(J
[k0+1]
A , I

[k]
A ;A) = eR(J

[k0+1]
R , I

[k]
R ;R)eA(q;A).

Now, since C ∼= R are domains and I1 · · · Is 6= 0 in S, htR(I1R · · · IsR) > 0 and
htC(I1C · · · IsC) > 0, here C as in the proof of Theorem 2.2. Note that A is
integral over C since q = a1, a2, . . . , ad is a system of parameters for A. Then
it is easily seen that htA(I1A · · · IsA) > 0 since htC(I1C · · · IsC) > 0 and A is
integral over C. Hence by [17, Theorem 1.4], we get

e
(
JA;R

(
IA;A)

)
=

∑
k0 +|k|= d−1

eA
(
J
[k0+1]
A , I

[k]
A ;A

)
=

∑
k0 +|k|= d−1

eR(J
[k0+1]
R , I

[k]
R ;R)eA(q;A)

= [
∑

k0 +|k|= d−1

eR(J
[k0+1]
R , I

[k]
R ;R)]eA(q;A)

= e
(
JR;R

(
IR;R)

)
eA(q;A).

Consequently, e
(
JA;R

(
IA;A

))
= e
(
JR;R

(
IR;R)

)
eA(q;A). �

Finally, denote by Π the set of all prime ideals p of A such that p ∈ MinA and
dimA/p = dimA. For any p ∈ Π, denote by ā1, ā2, . . . , ād; JA/p; IA/p the images

of a1, a2, . . . , ad; JA; IA in A/p, respectively. Set JA/p =
(
JA/p,R(IA/p;A/p)+

)
.

Then since dimA/p = dimA, it follows that ā1, ā2, . . . , ād is a system of param-
eters for A/p. Since C is a domain and A is integral over C, we get p ∩ C = 0

for any p ∈ Π, here C as in the proof of Theorem 2.2. Consequently, C+p
p
∼= C.

Hence we can consider C as a subring of A/p.
So one can replace A by A/p in Theorem 2.2 and Corollary 2.3, that means

eA/p(J
[k0+1]
A/p , I

[k]
A/p;A/p)=eR(J

[k0+1]
R , I

[k]
R ;R)eA/p((a1, a2, . . . , ad)A/p;A/p) and

e
(
JA/p;R

(
IA/p;A/p

))
=e
(
JR;R

(
IR;R)

)
eA/p((a1, a2, . . . , ad)A/p;A/p).

Hence we get the following result.

Corollary 2.4. Denote by Π the set of all prime ideals p ∈ MinA such that
dimA/p = dimA. Then with the previous notions and the assumptions as in
Theorem 2.2, for any p ∈ Π we have

(i) eA/p(J
[k0+1]
A/p , I

[k]
A/p;A/p) = eR(J

[k0+1]
R , I

[k]
R ;R)eA/p((q)A/p;A/p).

(ii) e
(
JA/p;R

(
IA/p;A/p

))
= e
(
JR;R

(
IR;R)

)
eA/p((q)A/p;A/p).
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362. Astérisque, Nos. 7 et 8, Soc. Math. France, Paris, 1973.
[15] T. T. H. Thanh and D. Q. Viet, Mixed multiplicities of maximal degrees, J. Korean

Math. Soc. 55 (2018), no. 3, 605–622. https://doi.org/10.4153/cmb-2011-108-1
[16] , Mixed multiplicities and the multiplicity of Rees modules of reductions,

J. Algebra Appl. 18 (2019), no. 9, 1950176, 13 pp. https://doi.org/10.1142/

S0219498819501767

[17] J. K. Verma, Multigraded Rees algebras and mixed multiplicities, J. Pure Appl. Algebra

77 (1992), no. 2, 219–228. https://doi.org/10.1016/0022-4049(92)90087-V

[18] D. Q. Viet, Mixed multiplicities of arbitrary ideals in local rings, Comm. Algebra 28
(2000), no. 8, 3803–3821. https://doi.org/10.1080/00927870008827059

[19] , Sequences determining mixed multiplicities and reductions of ideals, Comm.
Algebra 31 (2003), no. 10, 5047–5069. https://doi.org/10.1081/AGB-120023147

[20] , Reductions and mixed multiplicities of ideals, Comm. Algebra 32 (2004), no. 11,

4159–4178. https://doi.org/10.1081/AGB-200034021
[21] , The multiplicity and the Cohen-Macaulayness of extended Rees algebras of

equimultiple ideals, J. Pure Appl. Algebra 205 (2006), no. 3, 498–509. https://doi.

org/10.1016/j.jpaa.2005.07.018

[22] , On the Cohen-Macaulayness of fiber cones, Proc. Amer. Math. Soc. 136 (2008),
no. 12, 4185–4195. https://doi.org/10.1090/S0002-9939-08-09438-0

[23] D. Q. Viet and L. V. Dinh, On the multiplicity of Rees algebras of good filtrations,
Kyushu J. Math. 66 (2012), no. 2, 261–272. https://doi.org/10.2206/kyushujm.66.

261

https://doi.org/10.1016/j.jpaa.2009.12.009
https://doi.org/10.1006/jabr.1997.7128
https://doi.org/10.1006/jabr.1997.7128
https://doi.org/10.1007/BF01180686
https://doi.org/10.3836/tjm/1170348171
https://doi.org/10.1112/jlms/s2-29.3.397
https://doi.org/10.1112/jlms/s2-48.1.1
https://doi.org/10.4153/cmb-2011-108-1
https://doi.org/10.1142/S0219498819501767
https://doi.org/10.1142/S0219498819501767
https://doi.org/10.1016/0022-4049(92)90087-V
https://doi.org/10.1080/00927870008827059
https://doi.org/10.1081/AGB-120023147
https://doi.org/10.1081/AGB-200034021
https://doi.org/10.1016/j.jpaa.2005.07.018
https://doi.org/10.1016/j.jpaa.2005.07.018
https://doi.org/10.1090/S0002-9939-08-09438-0
https://doi.org/10.2206/kyushujm.66.261
https://doi.org/10.2206/kyushujm.66.261


1258 T. T. H. THANH AND D. Q. VIET

[24] , On mixed multiplicities of good filtrations, Algebra Colloq. 22 (2015), no. 3,

421–436. https://doi.org/10.1142/S1005386715000371

[25] D. Q. Viet, L. V. Dinh, and T. T. H. Thanh, A note on joint reductions and mixed
multiplicities, Proc. Amer. Math. Soc. 142 (2014), no. 6, 1861–1873. https://doi.org/

10.1090/S0002-9939-2014-11916-2

[26] D. Q. Viet and N. T. Manh, On the multiplicity of multigraded modules over Artinian

local rings, Tokyo J. Math. 33 (2010), no. 2, 341–360. https://doi.org/10.3836/tjm/

1296483474

[27] , Mixed multiplicities of multigraded modules, Forum Math. 25 (2013), no. 2,

337–361. https://doi.org/10.1515/form.2011.120

[28] D. Q. Viet and T. T. H. Thanh, Multiplicity and Cohen-Macaulayness of fiber cones
of good filtrations, Kyushu J. Math. 65 (2011), no. 1, 1–13. https://doi.org/10.2206/

kyushujm.65.1

[29] , On (FC)-sequences and mixed multiplicities of multi-graded algebras, Tokyo J.
Math. 34 (2011), no. 1, 185–202. https://doi.org/10.3836/tjm/1313074450

[30] , On some multiplicity and mixed multiplicity formulas, Forum Math. 26 (2014),
no. 2, 413–442. https://doi.org/10.1515/form.2011.168

[31] , A note on formulas transmuting mixed multiplicities, Forum Math. 26 (2014),

no. 6, 1837–1851. https://doi.org/10.1515/forum-2011-0147
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