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CHARACTERIZING ABELIAN GENERALIZED REGULAR

RINGS THAT ARE NOETHERIAN

Juncheol Han and Hyo-Seob Sim∗

Abstract. A ring R is called generalized regular if for every nonzero x

in R there exists y in R such that xy is a nonzero idempotent. In this

paper, we observe some equivalent conditions for the generalized regular
rings that are abelian in terms of idempotents, and we also investigate the

primitivity of an idempotent for such a ring. By using the investigation,

we characterize such a kind of rings that are noetherian by showing that
an abelian generalized regular ring R is noetherian if and only if R is

isomorphic to a direct product of finitely many division rings. We also

observe some interesting consequences of our results.

1. Introduction

Throughout this paper, all rings are associative with identity unless otherwise
specified. Most of notation and terminology not defined in this paper may be
found in, for example, [6].

A ring R is called generalized regular if for every nonzero x in R there exists y
in R such that xy is a nonzero idempotent. As a generalization of von Neumann
regular rings, generalized regular rings are introduced in [2] with some basic
properties. A ring R is called strongly generalized regular if for every nonzero
x in R there exists y in R such that 0 6= xy = x2y2.

A ring R is called abelian if every idempotent of R is central. A ring R is
called abelian generalized regular if R is abelian and generalized regular. It is
known in [2, Theorem 2.5] that a ring R is abelian generalized regular if and
only if R is strongly generalized regular.

Let R be a ring. Then R is called reduced if R has no nonzero nilpotent
elements; R is called reversible if ab = 0 implies ba = 0 for a, b in R; and R is
called symmetric if abc = 0 implies acb = 0 for a, b, c in R. In addition, R is
called e-reversible for an idempotent e of R if ab = e implies ba = e for a, b in
R.
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It is easy to see that every reduced ring is reversible. In fact, it follows
easily from the fact that xy = 0 implies (yx)2 = 0 for x, y in R. As proved
in [1, Theorem 1.3], every reduced ring is symmetric as well; a more general
observation can be found in [4, Theorem 2.3].

It is obvious that every symmetric ring is reversible. Moreover, it is also easy
to see that every reversible ring is abelian. In fact, if R is reversible, for every
idempotent e of R, ex(1 − e) = 0, (1 − e)xe = 0 for all x in R, and so every
idempotent is central.

We shall continue to characterize abelian generalized regular rings in the sub-
sequent section. In the section 3, we study some properties about idempotents
of generalized regular rings. In the section 4, we investigate several equivalent
conditions to the primitivity of idempotents in abelian generalized regular rings.
In the section 4, we shall observe the cases when an abelian generalized regular
ring is noetherian. Our observation indeed characterizes such rings, by using the
results obtained in the previous section. Finally, we also verify some interesting
properties as consequences of the characterization.

2. Abelian generalized regular rings

We continue to investigate several equivalent conditions under which a gen-
eralized regular ring is abelian.

By observing for strongly generalized regular ring in [2], they show that if
a generalized regular ring R is abelian then R is reduced in [2, Corollary 2.6].
In fact, for every nonzero x in R there exists y in R such that xy is a nonzero
idempotent, since R is a generalized regular ring. If R is abelian, since the
idempotent xy is central, it follows that 0 6= xy = xnyn, and so xn 6= 0;
thus every nonzero element is not nilpotent. This implies that every abelian
generalized regular ring is reduced. Consequently, from our observation in the
previous section, we see that the conditions to be reduced, symmetric, reversible
and abelian are equivalent each other.

Moreover, it follows from Proposition 2.1 in [3] that a ring R is reversible if
and only if R is e-reversible for every idempotent e. We notice that this result
was also shown already in [5]. We now summarize our observations so far as
follows:

Theorem 2.1. Let R be a generalized regular ring. The following conditions
are equivalent:

(1) R is abelian.
(2) R is reduced.
(3) R is symmetric.
(4) R is reversible.
(5) R is e-reversible for every idempotent e.

Moreover, it follows from Proposition 2.3 in [2] that a ring R is abelian
generalized regular if and only if every principal nonzero right(left) ideal of R
contains a nonzero central idempotent.
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We now observe some basic properties about the center of an abelian gener-
alized regular ring as follows:

Proposition 2.2. The center of an abelian generalized regular ring is abelian
generalized regular.

Proof. Let R be an abelian generalized regular ring, and let Z be the center of
R. Let x be a nonzero element in Z. Then there exists y in R such that e = xy
is a nonzero idempotent, and so e = xy = yx. Let z = yxy. Then

rz = r(yx)y = y(xr)y = yr(xy) = (yxy)r = zr

for all r in R, and so z ∈ Z. Moreover, xz = xyxy = e is a nonzero idempotent.
So Z is generalized regular. It is obvious that Z is abelian. �

A nonzero ring R is called indecomposable if R can not be a direct sum of
two nonzero ideals. It is well known that R is indecomposable if and only if R
has no nontrivial central idempotents.

Proposition 2.3. A nonzero abelian generalized regular ring R is indecompos-
able if and only if the center of R is a field.

Proof. Let R be a nonzero abelian generalized regular ring, and let Z be the
center of R. Then from Proposition 2.2, Z is also abelian generalized regular.
Suppose that R indecomposable. Let x be a nonzero element in Z. The there
exists z in Z such that e = xz is a nonzero idempotent of Z. Since R is
indecomposable, xz = 1. It follows that Z is a field. The converse is clear. �

3. Primitive idempotents of abelian generalized regular rings

In this section, we investigate primitive idempotents of generalized regular
rings, especially for such abelian rings.

Lemma 3.1. Let R be a generalized regular ring, and let e be an idempotent of
R. If e is primitive, then e is right(left) irreducible.

Proof. Suppose that e is primitive. Let I be a nonzero right ideal contained in
eR. Since R is generalized regular, there exists a nonzero idempotent f in I.
Then f = ea for some a in R, and so ef = f . Thus fe and e−fe are orthogonal
idempotents such that e = fe + (e− fe). Since e is primitive, either fe = 0 or
e = fe. Assume that fe = 0. Then f ∈ fI ⊆ feR = {0}, which yields f = 0, a
contradiction. Hence, e = fe ∈ fR ⊆ I. It follows that eR ⊆ I, and so eR = I.
Therefore, eR is right irreducible module, and so e is a right irreducible. By
the same argument, e is left irreducible. �

As an immediate consequence of the above lemma, we have the following
theorem.
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Lemma 3.2. Let R be a generalized regular ring, and let e be an idempotent of
R. The following conditions are equivalent:

(1) e is primitive.
(2) e is local.
(3) e is right(left) irreducible.

Proof. First of all, the implications (3)⇒ (2)⇒ (1) are true as known in general.
It follows from Lemma 3.1 that (1) implies (3). �

Theorem 3.3. Let R be an abelian generalized regular ring, and let e be an
idempotent of R. The following conditions are equivalent:

(1) e is primitive.
(2) e is local.
(3) e is irreducible.
(4) ann(e) is a maximal ideal of R.
(5) ann(e) is a prime ideal of R.

Proof. First of all, (1), (2) and (3) are equivalent from Lemma 3.2. Therefore, it
suffices to show that (3), (4) and (5) are equivalent. To show that (3) implies (4),
assume that e is irreducible. Since e is central, eR = eRe, and so eR is a division
ring by Schur’s lemma. On the other hand, R/ann(e) ∼= eR because ann(e) is
the kernel of a homomorphism from R onto eR, and so ann(e) is a maximal
ideal of R. It is well known that (4) implies (5) in general. To show that (5)
implies (3), we finally assume that ann(e) is a prime ideal of R. Let e = x + y
for some orthogonal idempotents x, y in R. Then xry = rxy = 0 ∈ ann(e)
for all r ∈ R. Since ann(e) is a prime ideal, either x ∈ ann(e) or y ∈ ann(e),
and so either x = xe = 0 or y = ye = 0. Thus, e is primitive and hence e is
irreducible. �

4. Abelian generalized regular rings that are noetherian

In this section, we shall give a characterization of the abelian generalized regular
rings that are noetherian.

Let E(R) be the set of all idempotents of a ring R. Define a relation ≤ on
E(R) by e ≤ f if and only if e = ef = fe for every e, f in E(R). Clearly, E(R) is
a partially ordered set with respect to the relation ≤. By e < f we here means
both e ≤ f and e 6= f .

Lemma 4.1. Let R be a ring, and let e, f be central idempotents in R.
(1) e ≤ f if and only if 1− f ≤ 1− e.
(2) e ≤ f if and only if ann(f) ⊆ ann(e).

Proof. (1) Clear.
(2) Suppose that e ≤ f . Then e = ef = fe, and so ann(f) ⊆ ann(ef) =

ann(e). Conversely, suppose that ann(f) ⊆ ann(e). Then ann(f) ⊆ ann(e) ⊆
ann(ef). If x ∈ ann(ef) then xe ∈ ann(f) ⊆ ann(e) and so xe = (xe)e = 0,
which implies that x ∈ ann(e). Therefore, ann(ef) ⊆ ann(e), and so ann(e) =
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ann(ef). Since 1 − ef = 1 − fe ∈ ann(e), it follows that e = ef = fe and so
e ≤ f . �

Lemma 4.2. Let R be a ring, and let e be a nonzero idempotent in R. Then e
is primitive if and only if there exists no nonzero idempotent f such that f < e.

Proof. Suppose that e is not primitive. Then there exist nonzero orthogonal
idempotents f, g such that e = f + g. Then it is easy to see that f < e.
Conversely, if there exists a nonzero idempotent f such that f < e, then e−f is
a nonzero idempotent such that f and e−f are orthogonal and e = f + (e−f),
which implies that e is not primitive. �

Lemma 4.3. Every distinct primitive central idempotents of a ring are orthog-
onal.

Proof. Let e and f be primitive central idempotents in a ring R. Since both
e and f are central, ef, e(1 − f), (1 − e)f are idempotents. Thus, both e =
ef + e(1 − f) and f = ef + (1 − e)f are sums of orthogonal idempotents.
Therefore, either ef = 0 or e = ef = f . Consequently, either ef = 0 or
e = f . �

A complete set of primitive idempotents of a ring R is a finite set of pairwise
orthogonal primitive idempotents whose sum is the identity 1.

Theorem 4.4. Let R be an abelian generalized regular ring. The following
conditions are equivalent:

(1) R is noetherian.
(2) R satisfies the ascending chain condition on annihilators of idempotents.
(3) R has a complete set of primitive idempotents.
(4) R is isomorphic to a direct product of finitely many division rings.
(5) R is semisimple.
(6) R is artinian.

Proof. First of all, (4) ⇒ (5) ⇒ (6) ⇒ (1) ⇒ (2) are true as known in general.
To show (2) ⇒ (3), let e1 ≤ e2 ≤ · · · ≤ ei ≤ · · · be a maximal chain in E(R).

Since 0 is the least element and 1 is the greatest element of E(R), the maximal
chain should contain 0 and 1, and so

0 = e1 ≤ e2 ≤ · · · ≤ ei ≤ · · · ≤ 1.

Therefore, from Lemma 4.1, we have an ascending chain of annihilators:

〈 0 〉 = ann (1− e1) ⊆ ann (1− e2) ⊆ · · · ⊆ ann (1− ei) ⊆ · · · ⊆ ann (0) = R.

It follow from the assumption (2) that there exists a positive integer n such that

ann (1− en+1) = ann (1− ei) = R,

and so en+1 = ei = 1 for all i > n. Now, without loss of generality, we may
assume that 0 = e1 < e2 < · · · < en+1 = 1. Denote ai := ei+1 − ei for each
i = 1, 2, ..., n. We then wan to show that a1, ..., an are primitive idempotents
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such that a1+· · ·+an = 1. In fact, for every i = 1, 2, ..., n, each is an idempotent,
since ei < ej , that is, ei = eiej = ejei for all j > i. Suppose that ak is not
primitive for some k = 1, 2, ..., n. Then, from Lemma 4.2, there exists a nonzero
idempotent bk such that bk < ak. Therefore, it follows from bk < ek+1 and
bkek = 0 that bk + ek is an idempotent such that ek < ek + bk < ek+1; this
yields a contradiction, since 0 = e1 < e2 < · · · < en+1 = 1 is a maximal chain
in E(R). Consequently, a1, ..., an are primitive such that a1 + · · · + an = 1.
Moreover, from Lemma 4.3, a1, ..., an are pairwise orthogonal, and so R has a
complete set of primitive idempotents.

To show (3) ⇒ (4), let a1 + · · · + an = 1 be a decomposition of pairwise
orthogonal primitive idempotents in R. By Theorem 3.3, each ei is irreducible
central idempotent, and so eiR = eiRei is a division ring by Schur’s lemma.
Therefore, R is isomorphic to the direct product of finitely many division rings
e1R, ..., enR. �

We have an immediate consequence of Theorem 4.4, as follows:

Corollary 4.5. Let R be an abelian ring. The followings are equivalent:
(1) R is von Neumann regular and noetherian.
(2) R is generalized regular and noetherian.
(3) R is semisimple.

Finally, we observe some interesting consequences of Theorem 4.4.

Corollary 4.6. Let R be an abelian generalized regular ring.
(1) E(R) is finite if and only if R is noetherian.
(2) R is finite if and only if R is isomorphic to a direct product of finitely

many finite fields.

Proof. (1) If E(R) is finite, then R satisfies the ascending chain condition on
annihilators of idempotents. It follows from Theorem 4.4 that R is isomorphic
to a direct product of finitely many division rings, and equivalently, R is noe-
therian. The converse is clear, since R is isomorphic to a direct product of
finitely many division rings.

(2) It follows immediately from (1). �

We recall that a prime ideal P of a ring R is called an associated prime if
P = ann(x) for some x in R. It is known that if R is noetherian, there exist
only finitely many associated primes.

Lemma 4.7. Let R be a symmetric ring, and Λ := {ann(x) : 0 6= x ∈ R}. If
P = ann(x) is maximal as subsets in Λ, then P is a prime ideal of R.

Proof. Suppose that P = ann(x) is maximal in Λ. Then since R is reversible,
P is an ideal of R. Since x 6= 0, it follows that P 6= R. Let a, b be elements in
R such that bc ∈ P . Assume that c /∈ P . Then cx 6= 0 and b ∈ ann(cx). Thus
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P ⊆ ann(cx) because R is symmetric. It follows that P = ann(cx) since P is
maximal in Λ. Therefore, b ∈ P . Consequently, P is a prime ideal of R. �

We then have a consequence of Lemma 4.7 as follows:

Corollary 4.8. Let R be an abelian generalized regular ring. If R is noetherian,
then

(1) there exists at least one associated prime in R;
(2) a is a zero-divisor of R if and only if a is contained in some associated

prime in R.

Proof. (1) It follows from Theorem 4.4 that R has at least one primitive idem-
potent e if R is noetherian, and so ann(e) is a prime ideal of R by Theorem 3.3.

(2) Suppose that R is noetherian, and let a be a nonzero zero-divisor. Note
that ann(x) is an ideal of R for every x in R since R is reversible. Then R satisfies
the ascending chain condition on annihilators of nonzero elements. Therefore,
there exists a maximal element P = ann(x) of Λ such that a ∈ P . From
Lemma 4.7, P is an associated prime containing a. The converse is clear. �
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