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A NOTE ON ZERO DIVISORS

IN w-NOETHERIAN-LIKE RINGS

Hwankoo Kim, Tae In Kwon, and Min Surp Rhee

Abstract. We introduce the concept of w-zero-divisor (w-ZD) rings and
study its related rings. In particular it is shown that an integral domain R

is an SM domain if and only if R is a w-locally Noetherian w-ZD ring and
that a commutative ring R is w-Noetherian if and only if the polynomial
ring in one indeterminate R[X] is a w-ZD ring. Finally we characterize
universally zero divisor rings in terms of w-ZD modules.

1. Introduction

As natural generalizations of Noetherian rings, various important classes of

rings were defined and studied in the literature. Let R be a commutative ring

with identity. An ideal Q of R is strongly primary if Q is primary and contains

a power of its radical. The ring R is said to be Laskerian if each ideal of R is

a finite intersection of primary ideals, and R is said to be strongly Laskerian if

each ideal of R is a finite intersection of strongly primary ideals. These rings

are investigated systemically in [8]. Evans in [3] showed that a Laskerian ring

is what he calls a ZD-ring (for zero-divisor ring), which is defined as follows. A

ring R is a ZD ring if the set ZR(R/I) of zero divisors on the R-module R/I

is a finite union of prime ideals for each ideal I of R. A nonzero R-module M

is called a zero divisor module (ZD module), if ZR(M/N) is a finite union of

prime ideals for all submodules N of M . It was shown in [6] that a Laskerian

ring has Noetherian spectrum. Thus we have the following implications:

Noetherian +3 strongly Laskerian +3 Laskerian +3
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In [10], Heinzer and Ohm proved that R is Noetherian if R[X ] is a ZD-ring,

and hence the conditions Noetherian, strongly Laskerian, Laskerian and ZD

are equivalent in R[X ].

Based on a star-operation theoretical approach, Wang and McCasland in-

troduced the concept of strong Mori domains (SM domains), which generalize

Noetherian domains. Since then, this concept has been extended to commu-

tative rings (which is so-called a w-Noetherian ring) and studied extensively.

Thus a natural question arises as follows: If we define the corresponding rings

with respect to the w-operation, are the properties and their implications of

original rings preserved in the corresponding ones? In this paper, we explore

this question.

We first introduce some definitions and notations. Let R be an integral

domain with quotient field K. For a nonzero fractional ideal I of R, set I−1 :=

{x ∈ K | xI ⊆ R}, Iv := (I−1)−1, It :=
⋃{Jv | J ⊆ I finitely generated

subideal of I}, and Id := I. An ideal J of R is called a GV-ideal, denoted

by J ∈ GV(R), if J is a finitely generated ideal of R with J−1 = R. For

a torsion-free R-module M , Wang and McCasland defined the w-envelope of

M as Mw := {x ∈ M ⊗R K | Jx ⊆ M for some J ∈ GV(R)} ([19], cf.,

[13]). A torsion-free R-module is called a w-module (or semidivisorial module)

if Mw = M .

The above concepts can be extended to commutative rings ([22]). Let J be

a finitely generated ideal of a commutative ring R. In [22] J is called a Glaz-

Vasconcelos ideal or a GV-ideal if the natural homomorphism ϕ : R → J♭ :=

HomR(J,R) is an isomorphism. Note that the set GV(R) of GV-ideals of R is a

multiplicative system of ideals of R. It is obvious that a finitely generated ideal

J of R is a GV-ideal if and only if HomR(R/J,R) = 0 and Ext1R(R/J,R) = 0.

Let M be an R-module with the injective envelope E(M). Define

torGV(M) = {x ∈ M | Jx = 0 for some J ∈ GV(R)}.

Then torGV(M) is a submodule of M and is called a GV-torsion submodule of

M . M is called a GV-torsion (resp., GV-torsion-free) module if torGV(M) =

M (resp., torGV(M) = 0). A GV-torsion-free R-module M is called a w-module

if Ext1R(R/J,M) = 0 for any J ∈ GV(R). For any GV-torsion-free module M ,

Mw = {x ∈ E(M) | Jx ⊆ M for some J ∈ GV(R)}

is a w-submodule of E(M) containing M and is called the w-envelope of M . It

is clear that a GV-torsion-free module M is a w-module if and only if Mw = M .

An R-module M is said to be of w-finite type if there exists a finitely generated

submodule B of M such that Mw = Bw. A prime ideal which is a w-ideal is

called a prime w-ideal. We denote by w-Spec(R) the set of prime w-ideals of R.

A w-ideal is called a maximal w-ideal of R if it is maximal among integral w-

ideals of R. It is known that a maximal w-ideal is a prime ideal [22, Proposition

3.8].



ZERO DIVISORS IN w-NOETHERIAN-LIKE RINGS 1853

A commutative ring R is said to be w-Noetherian if R satisfies the ACC on

its w-ideals ([22, Definition 4.1]). An integral domain is called a strong Mori

domain (SM domain) if it is w-Noetherian. A commutative ring R is said to be

w-locally Noetherian if Rm is Noetherian for every maximal w-ideal m of R. A

commutative ring R is called a DW ring if every ideal of R is a w-ideal. In [18,

Theorem 3.8], it was shown that R is a DW ring if and only if every maximal

ideal of R is a w-ideal.

Any undefined terminology is standard, as in [5].

2. Main results

Let M be an R-module. A prime ideal p of R is called an associated prime

ideal of M if there exists x ∈ M \ {0} such that p is a prime ideal minimal over

ann(x). We denote by Ass(M) the set of associated prime ideals of M . It is

clear that if M 6= 0, then Ass(M) is nonempty. It was shown in [20, Lemma

3.1] that if p ∈ Ass(M) for a GV-torsion-free R-module, then p is a w-ideal of

R.

Theorem 2.1 ([20, Theorem 3.9, Theorem 3.17, and Corollary 3.18]). Let R

be a w-Noetherian ring and let M be a GV-torsion-free module. Then we have

(a) Z (M) =
⋃

p∈Ass(M)

p;

(b) in addition, if M is a w-finite type w-module, then Ass(M) is a finite

set;

(c) if I is a w-ideal of R, then there are only finitely many prime ideals of

R minimal over I.

We say that a ring R is a w-ZD ring if the set of zero divisors on the R-

module R/A is a finite union of prime w-ideals for each w-ideal A of R. Then

it follows from Theorem 2.1 that if R is a w-Noetherian ring, then R is a w-ZD

ring.

Given an ideal I of a commutative ring R, a prime ideal p is said to be a weak

Bourbaki associated prime ideal for I (or simply a Bw-prime) if p is minimal

over (I :R x) for some x ∈ R \ I. Moreover, if I is a w-ideal of R, then p is

a w-ideal of R (cf. [7, Proposition 1.1]). A prime ideal p of R such that p is

maximal with respect to the property of being contained in ZR(R/I) is called

a maximal N-prime (for Nagata-prime) of I. As pointed out in [10], such a

prime ideal contains I and ZR(R/I) is the union of the maximal N-primes of

I. Moreover, if I is a w-ideal of R, then such a prime ideal is also a w-ideal of

R.

We say that a commutative ring R is w-Laskerian if each proper w-ideal of

R may be expressed as a finite intersection of primary w-ideals of R. Then it

was shown in [14, Theorem 2.7] that a domain R is an SM domain if and only

if R is a w-locally Noetherian and w-Laskerian domain. It was also shown in

[10, Proposition] that a commutative ring R is Noetherian if and only if R is a
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locally Noetherian ZD-ring. Thus the following result, which is a w-analogue

of [10, Proposition], strengthens [14, Theorem 2.7].

Proposition 2.2. Let R be a domain. Then R is an SM domain if and only

if R is a w-locally Noetherian w-ZD ring.

Proof. By [4, Theorem 4.5] it suffices to show that every w-ideal I of R has

only finitely many Bw-primes. If p is a Bw-prime of I, then p is contained in

a maximal N-prime of I. Since R is a w-ZD ring, I has only a finite number

of maximal N-primes, say q1, . . . , qn. Moreover, since p is a Bw-prime of I in

R and p ⊂ qi, we have that pRqi is a Bw-prime of IRqi ([9, Proposition 1.2]).

Since Rqi is Noetherian, IRqi has only finitely many Bw-primes. Hence I has

only finitely many Bw-primes. �

In [22, Proposition 2.6], it was shown that for a GV-torsion-free R-module

M and a directed family {Mi | i ∈ Γ} of w-submodules of M ,
⋃

i∈Γ Mi is a

w-submodule of M .

A commutative ring R is said to be strongly w-Laskerian if R is w-Laskerian

and every primary w-ideal of R contains a power of its radical.

Lemma 2.3. Let R ⊆ T be an extension of commutative rings such that

(IT )w ∩ R = Iw for every ideal I of R. If T is w-Laskerian, strongly w-

Laskerian, or w-ZD, then so is R.

Proof. For w-Laskerian or strongly w-Laskerian, this is trivial. For the w-ZD

case, consider a w-ideal A of R. Let C := {C | C is a w-ideal of T such that

C ∩R = A}. Then by hypothesis C is nonempty. Thus by Zorn’s lemma there

is a maximal element in C , say B. Then ZR(R/A) = ZT (T/B) ∩ R. Indeed,

if r ∈ ZT (T/B) ∩ R, then there exists t ∈ T such that rt ∈ B and t 6∈ B.

Thus t ∈ (B :T (r)) and so B ( (B :T (r)). Note that (B :T (r)) is a w-ideal.

Indeed, let J ∈ GV (T ) and x ∈ T such that xJ ⊆ (B :T (r)). Then xrJ ⊆ B.

Hence, since B is a w-ideal, it follows that xr ∈ B, i.e., x ∈ (B :T (r)). Thus,

(B :T (r)) is a w-ideal. Hence (B :T (r))∩R ) A. So there is r′ ∈ (B :T (r))∩R
but r′ 6∈ A. Therefore rr′ ∈ A and hence r ∈ ZR(R/A). The other inclusion is

straightforward. �

Let R be an integral domain. Recall that R is a strong Mori domain if it

satisfies the ascending chain condition on integral w-ideals. The strong Mori

property can be extended to the spectrum of integral domains. We define R

to have strong Mori spectrum if it satisfies the descending chain condition on

the sets of the form W (I) := {P ∈ w-Spec(R) | I ⊆ P}, where I runs over w-

ideals of R (or equivalently, the induced topology on w-Spec(R) by the Zariski

topology on Spec(R) is Noetherian). Note that for every nonzero ideal I of R,

V (I) ∩w-Spec(R) = W (Iw), where V (I) := {P ∈ Spec(R) | I ⊆ P} is a closed

set in Spec(R). For all w-ideals I, J of R, we have W (I) ∪W (J) = W (I ∩ J)

and W (I) ∩ W (J) = W ((I + J)w). This concept extends that of Noether-

ian spectrum and certainly an integral domain with Noetherian spectrum has
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strong Mori spectrum. In the case when w = d (for example, Prüfer domains

or one-dimensional domains), the notions of Noetherian spectrum and strong

Mori spectrum coincide.

The following two lemmas can be proved easily from the proofs of [1, Lemma

3.7 and Lemma 3.8] by substituting the w-operation for both the v-operation

and the t-operation.

Lemma 2.4. Let R be an integral domain. Then the following are equivalent.

(1) Each prime w-ideal of R is the radical of a w-finite type ideal.

(2) Each radical w-ideal of R is the radical of a w-finite type ideal.

(3) R satisfies the ascending chain condition on radical w-ideals.

Lemma 2.5. Let R be an integral domain satisfying the ascending chain con-

dition on radical w-ideals. Then

(1) Any radical w-ideal of R is the intersection of a finite number of prime

w-ideals.

(2) If I is a w-ideal of R, then the set of minimal prime (w-)ideals of I is

finite.

In the following, we give some characterizations of integral domains with

strong Mori spectrum. The proof of this result closely follows the proof in the

Mori spectrum case [2, Proposition 2.1]. Yet for the sake of completeness we

include a proof. Note that (
√
I)w =

√
Iw for each ideal I of R ([19, Proposition

2.4]).

Theorem 2.6. Let R be an integral domain. Then the following conditions

are equivalent.

(1) R has strong Mori spectrum.

(2) R satisfies the ascending chain condition on radical w-ideals.

(3) For every nonzero ideal I of R,
√
Iw =

√
Jw for some finitely generated

subideal J of I.

(4) Each radical w-ideal of R is the radical of a w-finite type ideal.

(5) Each prime w-ideal of R is the radical of a w-finite type ideal.

(6) R satisfies the ascending chain condition on prime w-ideals and each

proper w-ideal has only finitely many minimal (w-)primes.

(7) R satisfies the ascending chain condition on radicals of w-ideals.

Proof. (1) ⇔ (2) This follows from the fact that for every w-ideals I, J of R,

W (J) ⊆ W (I) if and only if
√
J ⊇

√
I.

(2) ⇔ (3) ⇔ (4) ⇔ (5) These follow from Lemma 2.4 and the fact that
√
Iw

is a radical w-ideal of R.

(2) ⇒ (6) Lemma 2.5.

(6) ⇒ (2) Let {Ik}k≥1 be a properly ascending chain of radical w-ideals, and

let I1 = P1 ∩ · · ·∩Pr for some prime (w-)ideals P1, . . . , Pr. For i = 1, . . . , r, set

Ik,i :=
√

(Ik + Pi)w. We get a family of r ascending chains of radical w-ideals

{Ik,i}k≥1 with I1,i = Pi for every i = 1, . . . , r. Assume that all these chains



1856 H. KIM, T. I. KWON, AND M. S. RHEE

stop, and let n be a positive integer such that In,i = In+1,i for all i = 1, . . . , r.

Choose any x ∈ In+1. Since In+1 ⊆ In,i, there exists an integer m ≥ 1 such

that xm ∈ (In + Pi)w for every i = 1, . . . , r. Therefore we obtain

xmr ∈ (In + P1)w · · · (In + Pr)w

⊆ ((In + P1) · · · (In + Pr))w

⊆ (In + P1 · · ·Pr)w

⊆ (In + I1)w

= In.

Hence x ∈ In, and so In = In+1, a contradiction. Say that {Ik,1}k≥1 is a

properly ascending chain of radical w-ideals. Then P1 = I1,1 ⊂ I2,1 ⊂ I3,1 ⊂
· · · . By the same argument applied to the chain of radical w-ideals {Ik,1}k≥2,

there exists a prime w-ideal Q1 such that P1 ⊂ Q1. By iterating this process,

we get a properly ascending chain of prime w-ideals.

(2) ⇔ (7) This can be shown using (3). �

In [6, Theorem 4], it was shown that every Laskerian ring has Noetherian

spectrum. The following result is the w-theoretic analogue of [6, Theorem 4].

Theorem 2.7. A w-Laskerian domain has strong Mori spectrum.

Proof. By Theorem 2.6, it is enough to prove that the ascending chain condition

on prime w-ideals is satisfied in R. Let R be a w-Laskerian ring and assume

that R does not have strong Mori spectrum. Then there exists an infinite

strictly ascending sequence

P1 ⊂ P ′
1 ⊂ P2 ⊂ P ′

2 ⊂ · · ·
of proper prime w-ideals of R. Since every localization of a w-Laskerian domain

at a prime w-ideal is Laskerian, as in the proof of [6, Theorem 4], we can find

w-ideals Q1, . . . , Qn, An, Bn of R and elements x1, x2, . . . , xn of R with the

following properties.

(i) Qi is Pi-primary for each i, and An = Q1 ∩ · · · ∩Qn.

(ii) For 1 ≤ i ≤ n, xi ∈
⋂

j 6=i Qj and xi 6∈ Qi.

(iii) (x1, . . . , xn) ⊆ Bn, An 6⊆ Bn and each belonging prime of Bn is con-

tained in P ′
n.

Now we define A =
⋂∞

i=1 Qi. Then the proof of [6, Theorem 4] shows that A

admits no representation as a finite intersection of primary w-ideals. Therefore

R is not w-Laskerian, as desired. �

If R is an integral domain, we set R{X} := R[X ]Nv
, where Nv := {f ∈

R[X ] | c(f)v = R}, a multiplicative set in R[X ] (c(f) is the ideal of R generated

by the coefficients of f). R{X} is called the t-Nagata ring of R ([11]).

Proposition 2.8. Let R be a domain with w-dim(R) = 1. Then the following

statements are equivalent.
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(1) R is a w-ZD domain.

(2) R has strong Mori spectrum.

(3) R is w-Laskerian.

(4) R{X} is a ZD domain.

Proof. (1) ⇒ (3) Let r be a nonzero nonunit of R. Let I := (r). By hypothesis,

we have that there are only a finite number of prime w-ideals minimal over I.

Thus any nonzero nonunit of the domain R with w-dim(R) = 1 belongs to only

a finite number of prime w-ideals of R. Hence R is w-Laskerian.

(3) ⇒ (2) Theorem 2.7.

(2) ⇒ (1) Let I be a w-ideal of R. Then note that ZR(R/I) is a union of

prime w-ideals of R ([12, Theorem 2]). Now the assertion follows from Theorem

2.6(5).

(4) ⇒ (1) Since R{X} is a faithfully flat R-module, this follows from Lemma

2.3 and the fact that R{X} is a DW domain.

(1) ⇒ (4) Note first that the maximal ideals of R{X} are the extensions

of the maximal w-ideals of R, and that any nonzero ideal of R{X} is con-

tained in only finitely many maximals (by the strong Mori spectrum in R).

So we may assume (R,m) is w-local. Let A be a nonzero ideal of R{X}. If

m{X} ⊆ ZR{X}(R{X}/A), then they are equal, and we are done. Otherwise

ZR{X}(R{X}/A)∩R = (0). But then we may localize at the nonzero elements

of R, and transfer the problem to a localization of a polynomial ring over the

quotient field of R, where the result is clear. �

In [10, Theorem], it was shown that a commutative ring R is Noetherian

if and only if the polynomial ring R[X ] in one indeterminate X is a ZD-ring.

Now we explore the w-theoretic analogue of [10, Theorem]. To do so, we first

recall the following easy observation [15, p. 363]. Let A be an R-submodule of

the total quotient ring T (R) of R. Set A−1 := {u ∈ T (R) | uA ⊆ R}. Define

ξ : A−1 → A♭ = HomR(A,R) by ξ(u)(a) = au, a ∈ A, u ∈ A−1. Then ξ

is a homomorphism. It is easy to see that if I is a regular ideal of R, then

ξ : I−1 → I♭ is an isomorphism. Thus we have that for a finitely generated

regular ideal J of R, J ∈ GV(R) if and only if J−1 = R. Moreover, if I is a

regular ideal of R, then I is a w-ideal if and only if Jx ⊆ I implies that x ∈ I,

where J is a regular GV-ideal of R and x ∈ R.

Let I be an ideal of R[X ]. Then we denote by c(I) the ideal of R generated

by the coefficients of all polynomials in I. In [21, Corollary 2.5], it was shown

that if J ∈ GV(R[X ]), then c(J) ∈ GV(R), and hence there exists a non-zero-

divisor f ∈ J of R[X ] such that c(f)w = R. Therefore, every GV-ideal of R[X ]

is regular.

Theorem 2.9. R is w-Noetherian if and only if R[X ] is a w-ZD ring.

Proof. Suppose that R is not w-Noetherian. Then there exists a strictly as-

cending chain (0) ⊂ (a1)w ⊂ (a1, a2)w ⊂ · · · ⊂ (a1, . . . , an)w ⊂ · · · of w-ideals

of R. Let f0 = X, f1 = 1 + X, . . . , fi = 1 + f0f1 · · · fi−1, . . . . We wish to
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show that the w-ideal I := (a1f1, a2f1f2, . . . , anf1 · · · fn, . . . )W in R[X ] has an

infinite number of maximal N-primes, where W is the w-operation on R[X ],

and hence has the property that ZR[X](R[X ]/I) is not a finite union of prime

w-ideals.

Claim. Each fi ∈ ZR[X](R[X ]/I).

Since f1 is not a zero divisor, we have that I ⊆ (f1). Since f1 is a monic

polynomial of positive degree in R[X ], it follows that I ∩ R = (0). Hence

a1 6∈ I, so a1f1 ∈ I implies that f1 ∈ ZR[X](R[X ]/I). Similarly, to show

that fn ∈ ZR[X](R[X ]/I), we wish to show that anf1 · · · fn−1 6∈ I. Con-

sider the residue ring R := R/(a1, . . . , an−1)w. For f ∈ R[X ] (resp., I ⊆
R[X ]), we denote by f (resp., I) the image of f (resp., I) in R[X ]. Thus

by above remarks, for an ideal J of R[X ], J ∈ GV(R[X ]) if and only if

J ∈ GV(R[X ]). Then I = (anf1 · · · fn, an+1f1 · · · fn+1, . . .)W , where W is

the w-operation on R[X ]. It will suffice to show that anf1 · · · fn−1 6∈ I ;

and since f1 · · · fn−1 is a monic polynomial in R[X ], this is equivalent to

showing that an 6∈ (anfn, an+1fnfn+1, . . . )W ⊆ (fn). Since fn is a monic

polynomial of positive degree in R[X ], we have that (fn) ∩ R = (0). Thus

an 6∈ (anfn, an+1fnfn+1, . . . )W ; hence we have proved fn ∈ ZR[X](R[X ]/I).

Consider now fi and fj for i 6= j. Clearly no prime w-ideal of R[X ] contains

both fi and fj . Since each fi ∈ ZR[X](R[X ]/I) and hence is in some maximal

N-prime of I, it then follows that I has infinitely many maximal N-primes. �

Corollary 2.10. Let R be a commutative ring. Then the following statements

are equivalent.

(1) R[X ] is a w-ZD ring.

(2) R[X ] is w-Laskerian.

(3) R[X ] is strongly w-Laskerian.

(4) R[X ] is w-Noetherian.

We say that a nonzero GV-torsion-freeR-moduleM is called a w-zero divisor

module (w-ZD module), if ZR(M/N) is a finite union of prime w-ideals for all

w-submodules N of M . Recall that a commutative ring R is a universally

zero-divisor ring (UZD ring) if every R-module is a ZD R-module. In [17,

Proposition 1], it was shown that a commutative ring R is a UZD ring if and

only if the union of any family of prime ideals of R is the union of a finite

number of prime ideals of R (not necessarily belonging to the same family). In

the following, we give a new characterization of a UZD ring.

Theorem 2.11. Let R be a commutative ring. Then the following are equiva-

lent.

(1) R is a UZD ring.

(2) Every GV-torsion-free R-module is a w-ZD R-module.

(3) The union of any family of prime w-ideals of R is the union of a finite

number of prime w-ideals of R.
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Proof. (2) ⇒ (3) Assume that every GV-torsion-free R-module is a w-ZD R-

module. Let {pα}α∈Λ be any family of prime w-ideals ofR. LetM :=
⊕

α∈Λ

R/pα.

Then it is easy to see that Z (M) =
⋃

α∈Λ

pα. Note that M is GV-torsion-free.

By hypothesis, M is a w-ZD R-module and so Z (M) =
⋃t

i=1 qi for some finite

number of prime w-ideals q1, . . . , qt of R. Thus Z (M) =
⋃

α∈Λ

pα =
⋃t

i=1 qi.

(3) ⇒ (2) Assume that the union of any family of prime w-ideals of R is the

union of a finite number of prime w-ideals of R. Let M be any GV-torsion-

free R-module. Let N be a w-submodule of M with N 6= M . Note that

R \ Z (M/N) is a saturated multiplicatively closed subset of R. Hence by [12,

Theorem 2], Z (M/N) is a union of prime w-ideals of R. By assumption it

follows that Z (M/N) is the union of a finite number of prime w-ideals of R.

Thus M is a w-ZD R-module.

(3) ⇒ (1) We first prove that if R satisfies (3), then R has only a finite

number of maximal w-ideals. Let {mα}α∈Λ be the family of all maximal w-

ideals of R. By hypothesis,
⋃

α∈Λ

mα =
⋃s

i=1 qi for some finite number of prime

w-ideals q1, . . . , qs of R. For each i = 1, . . . , s, let mi be a maximal w-ideal of R

such that qi ⊆ mi. Then it is clear that
⋃

α∈Λ

mα =
⋃s

i=1 qi =
⋃s

i=1 mi. Now it is

evident that distinct elements among m1, . . . ,ms are all the maximal w-ideals

of R.

Now if m is a maximal ideal of R, then m ⊆ ⋃

mi, where the union runs

through all maximal w-ideals of R, since it follows from [22, Corollary 3.3

and Proposition 3.5] that (r)w 6= R for every nonunit r ∈ R. By the Prime

Avoidance Theorem, we have that m ⊆ mi for some i, and so by the maximality

of m, we have that m = mi. Therefore every maximal ideal of R is a w-ideal,

and so R is a DW ring, that is, every ideal of R is a w-ideal.

(1) ⇒ (3). This follows from [17, Proposition 1] and the fact that Z (M/N)

is a union of prime w-ideals of R for every proper w-submodule N of a GV-

torsion-free R-module M . �

In [6, Theorem 1], it was shown that for a commutative ring R with identity,

the power series ring R[[X ]] in one variable over R is Laskerian if and only if

R is Noetherian. In [16], Park showed that there exists an SM domain R such

that R[[X ]] is not an SM domain. Thus we have the following.

Question. For a commutative ring (or an integral domain) R, is it true that

R[[X ]] is w-Laskerian if and only if R is w-Noetherian?
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