• Title/Summary/Keyword: Neuroimaging

Search Result 218, Processing Time 0.028 seconds

Understanding of Neuroimaging and Its Perspectives in Mental Illnesses (정신질환에서 뇌영상의 이해와 전망)

  • Kim, Jae-Jin;Han, Ki-Wan;Lee, Jung-Suk;Choi, Soo-Hee
    • Korean Journal of Biological Psychiatry
    • /
    • v.18 no.1
    • /
    • pp.5-14
    • /
    • 2011
  • Neuroimaging in psychiatry encompasses the powerful tools available for the in vivo study of brain structure and function. MRI including the volumetry, voxel-base morphometry(VBM) and diffusion tensor imaging (DTI) are useful for assessing brain structure, whereas function MRI, positron emission tomography(PET) and magnetoencephalography(MEG) are well established for probing brain function. These tools are well tolerated by the vast majority of psychiatric patients because they provide a powerful but noninvasive means to directly evaluate the brain. Although neuroimaging technology is currently used only to rule in or rule out general medical conditions as opposed to diagnosing primary mental disorders, it may be used to confirm or make psychiatric diagnoses in the future. In addition, neuroimaging may be valuable for predicting the natural course of psychiatric illness as well as treatment response.

Functional Neuroimaging in Migraine (편두통의 기능적 뇌영상)

  • Kim, Ji Hyun
    • Annals of Clinical Neurophysiology
    • /
    • v.10 no.1
    • /
    • pp.13-24
    • /
    • 2008
  • Functional neuroimaging, especially positron emission tomography (PET) and functional magnetic resonance imaging (MRI), is the main tool that allows the unveiling of the neurovascular events during a migraine attack. In migraine with aura, functional neuroimaging has contributed greatly to the understanding of the fundamental pathophysiology of the visual aura, whereas in migraine without aura, the PET findings of brainstem activation suggest a pivotal role of brainstem in the generation of migraine headache. In addition, voxel-based morphometry (VBM) method has provided an insight into the morphometric changes of the brain, which might be considered as a consequence of repeated migraine attacks. In this article, I will briefly discuss the main neuroimaging findings pertaining to the pathophysiology of migraine.

  • PDF

Recent Neuroimaging Study in Schizophrenia (정신분열병의 최신 뇌영상 연구)

  • Jeong, Bum-Seok;Choi, Jee-Wook
    • Korean Journal of Biological Psychiatry
    • /
    • v.18 no.2
    • /
    • pp.55-60
    • /
    • 2011
  • Neuroimaging studies in schizophrenia have remarkably increased and provided some clues to understand its pathophysiology. Here, we reviewed the neuroimaging, studies including volume analysis, functional magnetic resonance imaging (MRI) and diffusion tensor imaging, and findings in both early stage schizophrenia and high-risk group. The reviewed studies suggested that the brain with schizophrenia showed both regional deficits and dysconnectivity of neural circuit in the first episode, even high-risk group as well as chronic schizophrenia. Multimodal neuroimaging or combined approach with genetic, electro-or magneto-encephalographic data could provide promising results to understand schizophrenia in the near future.

Neuroimaging-Based Deep Learning in Autism Spectrum Disorder and Attention-Deficit/Hyperactivity Disorder

  • Song, Jae-Won;Yoon, Na-Rae;Jang, Soo-Min;Lee, Ga-Young;Kim, Bung-Nyun
    • Journal of the Korean Academy of Child and Adolescent Psychiatry
    • /
    • v.31 no.3
    • /
    • pp.97-104
    • /
    • 2020
  • Deep learning (DL) is a kind of machine learning technique that uses artificial intelligence to identify the characteristics of given data and efficiently analyze large amounts of information to perform tasks such as classification and prediction. In the field of neuroimaging of neurodevelopmental disorders, various biomarkers for diagnosis, classification, prognosis prediction, and treatment response prediction have been examined; however, they have not been efficiently combined to produce meaningful results. DL can be applied to overcome these limitations and produce clinically helpful results. Here, we review studies that combine neurodevelopmental disorder neuroimaging and DL techniques to explore the strengths, limitations, and future directions of this research area.

Artificial Intelligence in Neuroimaging: Clinical Applications

  • Choi, Kyu Sung;Sunwoo, Leonard
    • Investigative Magnetic Resonance Imaging
    • /
    • v.26 no.1
    • /
    • pp.1-9
    • /
    • 2022
  • Artificial intelligence (AI) powered by deep learning (DL) has shown remarkable progress in image recognition tasks. Over the past decade, AI has proven its feasibility for applications in medical imaging. Various aspects of clinical practice in neuroimaging can be improved with the help of AI. For example, AI can aid in detecting brain metastases, predicting treatment response of brain tumors, generating a parametric map of dynamic contrast-enhanced MRI, and enhancing radiomics research by extracting salient features from input images. In addition, image quality can be improved via AI-based image reconstruction or motion artifact reduction. In this review, we summarize recent clinical applications of DL in various aspects of neuroimaging.

Clinical Studies of Acupuncture Treatment for Alzheimer's Disease Using Neuroimaging Method: A Review of Literature (알츠하이머병의 신경영상 기법을 이용한 침치료 임상연구: 문헌고찰)

  • Lee, Dong Hyuk;Kim, Joo-Hee;Kwon, Bo-In
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.34 no.5
    • /
    • pp.222-228
    • /
    • 2020
  • The purpose of this article was to investigate the current state of studies on clinical trials of acupuncture treatment for Alzheimer's disease using neuroimaging method. We searched for clinical trials of acupuncture treatment for Alzheimer's disease(AD) and mild cognitive impairment(MCI) using neuroimaging method in the MEDLINE (Pubmed) database on March 18, 2020. Once the online search was finished, studies were selected manually by the inclusion criteria. Finally, we analyzed the characteristics of selected articles and reviewed the neural substrates of acupuncture treatment in AD. Total ten studies were included in this study. The most frequently applied modality for AD was functional MRI. The most frequently selected acupoints for AD were KI3, LR3 and LI4. One of studies showed that acupuncture treatment could improve the symptoms of MCI. Through the analysis, we demonstrated that neuroimaging method could capture the neural substrates associated with AD. Moreover, acupuncture may induce differential response according to the disease status. Finally, real acupuncture could produce more extensive activation/deactivation than sham acupuncture. We hope that neuroimaging method can contribute to the clinical research of acupuncture treatment for AD through large-scale RCT and diverse imaging modality.

Correlation between Cephalhematomas and Intracranial Hematomas (신생아 두혈종과 두개내 혈종과의 연관성)

  • Park, Sun-Min;Oh, Ki-Won;Kim, Heng-Mi
    • Neonatal Medicine
    • /
    • v.15 no.2
    • /
    • pp.160-165
    • /
    • 2008
  • Purpose : Cephalhematomas rarely lead to serious complications, such as skull fractures and intracranial hematomas, so CT and/or MRI scans are indicated only in cases in which depressed fractures are suspected or neurologic symptoms develop. Nevertheless, we have experienced several cases of cephalhematomas associated with intracranial hematomas in the absence of remarkable neurologic symptoms. The aim of this study was to evaluate the correlation between cephalhematomas and intracranial hematomas and determine the need for neuroimaging in infants with cephalhematomas. Methods : Infants who were admitted to the NICU with cephalhematomas and underwent neuroimaging (CT and/or MRI) between January 2002 and July 2006 were evaluated. Neuroimaging was done when the symptoms suggested the development of an intracranial hematoma. Results : Among 54 infants with cephalhematomas, 18 infants underwent neuroimaging. Six of 18 infants (33.3%) had intracranial hematomas, 4 infants had epidural hematomas, and 2 infants had subdural hematomas. Four of these 6 infants had neurologic symptoms or depressed skull fractures; 2 infants had no neurologic symptoms or depressed skull fractures. The neuroimaging was done to evaluate the cause of an excessive elevation of serum bilirubin and unexplained anemia. There were no remarkable differences between the infants with and without intracranial hematomas with respect to gestational age, birth weight, head circumference, diameter of the cephalhematoma, neurologic symptoms, and other clinical signs and symptoms. Conclusion : Based on this study, intracranial hematomas are common complications of cephalhematomas, thus more careful inspection and neuroimaging may be needed in cases of cephalhematomas in newborns.

Neuroimaging in Nuclear Medicine: Drug Addicted Brain (약물 중독 환자의 뇌신경계 핵의학 영상)

  • Chung, Yong-An;Kim, Dae-Jin
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.40 no.1
    • /
    • pp.1-8
    • /
    • 2006
  • Addiction to illicit drugs is one of today's most important social issues. Most addictive drugs lead to irreversible parenchymal changes in the human brain. Neuroimaging data bring to light the pharmacodynamics and pharmacokinetics of the abused drugs, and demonstrate that addiction is a disease of the brain. Continuous researches better illustrate the neurochemical alterations in brain function, and attempt to discover the links to consequent behavioral changes. Newer hypotheses and theories follow the numerous results, and more rational methods of approaching therapy are being developed. Substance abuse is on the rise in Korea, and social interest in the matter as well. On the other hand, diagnosis and treatment of drug addiction is still very difficult, because how the abused substance acts in the brain, or how it leads to behavioral problems is not widely known. Therefore, understanding the mechanism of drug addiction can improve the process of diagnosing addict patients, planning therapy, and predicting the prognosis. Neuroimaging approaches by nuclear medicine methods are expected to objectively judge behavioral and neurochemical changes, and response to treatment. In audition, as genes associated with addictive behavior are discovered, functional nuclear medicine images will aid in the assessment of individuals. Reviewing published literature on neuroimaging regarding nuclear medicine is expected to be of assistance to the management of drug addict patients. What's more, means of applying nuclear medicine to the care of drug addict patients should be investigated further.

Visual Perception in Autism Spectrum Disorder: A Review of Neuroimaging Studies

  • Chung, Seungwon;Son, Jung-Woo
    • Journal of the Korean Academy of Child and Adolescent Psychiatry
    • /
    • v.31 no.3
    • /
    • pp.105-120
    • /
    • 2020
  • Although autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social impairments, patients with ASD frequently manifest atypical sensory behaviors. Recently, atypical sensory perception in ASD has received much attention, yet little is known about its cause or neurobiology. Herein, we review the findings from neuroimaging studies related to visual perception in ASD. Specifically, we examined the neural underpinnings of visual detection, motion perception, and face processing in ASD. Results from neuroimaging studies indicate that atypical visual perception in ASD may be influenced by attention or higher order cognitive mechanisms, and atypical face perception may be affected by disrupted social brain network. However, there is considerable evidence for atypical early visual processing in ASD. It is likely that visual perceptual abnormalities are independent of deficits of social functions or cognition. Importantly, atypical visual perception in ASD may enhance difficulties in dealing with complex and subtle social stimuli, or improve outstanding abilities in certain fields in individuals with Savant syndrome. Thus, future research is required to elucidate the characteristics and neurobiology of autistic visual perception to effectively apply these findings in the interventions of ASD.

Contribution of Genetic and Neuroimaging Studies towards a Better Understanding of Post-Traumatic Stress Disorder (외상 후 스트레스 장애의 이해에 있어서 유전학 및 뇌영상 연구의 기여)

  • Kim, Ji-Eun E.;Lyoo, In-Kyoon;Jun, Chan-Soo;Lee, Yu-Sang
    • Korean Journal of Biological Psychiatry
    • /
    • v.17 no.4
    • /
    • pp.177-193
    • /
    • 2010
  • Significant advances have been made in understanding the biological underpinnings of post-traumatic stress disorder(PTSD), particularly in the field of genetics and neuroimaging. Association studies in candidate genes related with hypothalamic-pituitary-adrenal axis, monoamines including serotonin, dopamine and noradrenaline, and proteins including FK506-binding protein 5 and brain-derived neurotrophic factor have provided important insights with regard to the vulnerability factors in PTSD. Genome-wide association studies and epigenetic studies may provide further information for the role of genes in the pathophysiology of PTSD. Hippocampus, medial prefrontal cortex, anterior cingulated cortex and amygdala have been considered as key structures that underlie PTSD pathophysiology. Future research that combines genetic and neuroimaging information may provide an opportunity for a more comprehensive understanding of PTSD.