DOI QR코드

DOI QR Code

Visual Perception in Autism Spectrum Disorder: A Review of Neuroimaging Studies

  • Chung, Seungwon (Department of Psychiatry, Chungbuk National University Hospital) ;
  • Son, Jung-Woo (Department of Neuropsychiatry, College of Medicine, Chungbuk National University)
  • Received : 2020.04.24
  • Accepted : 2020.06.05
  • Published : 2020.07.01

Abstract

Although autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social impairments, patients with ASD frequently manifest atypical sensory behaviors. Recently, atypical sensory perception in ASD has received much attention, yet little is known about its cause or neurobiology. Herein, we review the findings from neuroimaging studies related to visual perception in ASD. Specifically, we examined the neural underpinnings of visual detection, motion perception, and face processing in ASD. Results from neuroimaging studies indicate that atypical visual perception in ASD may be influenced by attention or higher order cognitive mechanisms, and atypical face perception may be affected by disrupted social brain network. However, there is considerable evidence for atypical early visual processing in ASD. It is likely that visual perceptual abnormalities are independent of deficits of social functions or cognition. Importantly, atypical visual perception in ASD may enhance difficulties in dealing with complex and subtle social stimuli, or improve outstanding abilities in certain fields in individuals with Savant syndrome. Thus, future research is required to elucidate the characteristics and neurobiology of autistic visual perception to effectively apply these findings in the interventions of ASD.

Keywords

References

  1. American Psychiatric Association. Diagnostic and statistical manual of mental disorders (DSM-5). 5th ed. Arlington, VA: American Psychaitric Association;2013.
  2. Brothers L. The neural basis of primate social communication. Motiv Emot 1990;14:81-91. https://doi.org/10.1007/BF00991637
  3. Sato W, Uono S. The atypical social brain network in autism: advances in structural and functional MRI studies. Curr Opin Neurol 2019;32:617-621. https://doi.org/10.1097/WCO.0000000000000713
  4. Son JW, Ghim HR. Broken mirror or unbroken mirror?; an investigation for mirror neuron dysfunction of the autism spectrum disorder. J Korean Acad Child Adolesc Psychiatry 2013;24:109-123. https://doi.org/10.5765/jkacap.2013.24.3.109
  5. Kim SY, Choi US, Park SY, Oh SH, Yoon HW, Koh YJ, et al. Abnormal activation of the social brain network in children with autism spectrum disorder: an fMRI study. Psychiatry Investig 2015;12:37-45. https://doi.org/10.4306/pi.2015.12.1.37
  6. Chung S, Son JW, Lee S, Ghim HR, Lee SI, Shin CJ, et al. Neural correlates of cognitive and emotional empathy in patients with autism spectrum disorder. J Korean Acad Child Adolesc Psychiatry 2016;27:196-206. https://doi.org/10.5765/jkacap.2016.27.3.196
  7. Tomchek SD, Dunn W. Sensory processing in children with and without autism: a comparative study using the short sensory profile. Am J Occup Ther 2007;61:190-200. https://doi.org/10.5014/ajot.61.2.190
  8. Estes A, Zwaigenbaum L, Gu H, St John T, Paterson S, Elison JT, et al. Behavioral, cognitive, and adaptive development in infants with autism spectrum disorder in the first 2 years of life. J Neurodev Disord 2015;7:24. https://doi.org/10.1186/s11689-015-9117-6
  9. Baranek GT, Watson LR, Boyd BA, Poe MD, David FJ, McGuire L. Hyporesponsiveness to social and nonsocial sensory stimuli in children with autism, children with developmental delays, and typically developing children. Dev Psychopathol 2013;25:307-320. https://doi.org/10.1017/S0954579412001071
  10. Gliga T, Bedford R, Charman T, Johnson MH; BASIS Team. Enhanced visual search in infancy predicts emerging autism symptoms. Curr Biol 2015;25:1727-1730. https://doi.org/10.1016/j.cub.2015.05.011
  11. Robertson CE, Baron-Cohen S. Sensory perception in autism. Nat Rev Neurosci 2017;18:671-684. https://doi.org/10.1038/nrn.2017.112
  12. Dellapiazza F, Michelon C, Oreve M, Robel L, Schoenberger M, Chatel C, et al. The impact of atypical sensory processing on adaptive functioning and maladaptive behaviors in autism spectrum disorder during childhood: results from the ELENA cohort. J Autism Dev Disord 2020;50:2142-2152. https://doi.org/10.1007/s10803-019-03970-w
  13. Haupt C, Huber AB. How axons see their way--axonal guidance in the visual system. Front Biosci 2008;13:3136-3149. https://doi.org/10.2741/2915
  14. Leekam S, Baron-Cohen S, Perrett D, Milders M, Brown S. Eyedirection detection: a dissociation between geometric and joint attention skills in autism. Br J Dev Psychol 1997;15:77-95. https://doi.org/10.1111/j.2044-835X.1997.tb00726.x
  15. Iacoboni M. Imitation, empathy, and mirror neurons. Annu Rev Psychol 2009;60:653-670. https://doi.org/10.1146/annurev.psych.60.110707.163604
  16. Ozonoff S, Iosif AM, Baguio F, Cook IC, Hill MM, Hutman T, et al. A prospective study of the emergence of early behavioral signs of autism. J Am Acad Child Adolesc Psychiatry 2010;49:256-266. https://doi.org/10.1097/00004583-201003000-00009
  17. Ozonoff S, Macari S, Young GS, Goldring S, Thompson M, Rogers SJ. Atypical object exploration at 12 months of age is associated with autism in a prospective sample. Autism 2008;12:457-472. https://doi.org/10.1177/1362361308096402
  18. Thye MD, Bednarz HM, Herringshaw AJ, Sartin EB, Kana RK. The impact of atypical sensory processing on social impairments in autism spectrum disorder. Dev Cogn Neurosci 2018;29:151-167. https://doi.org/10.1016/j.dcn.2017.04.010
  19. Shah A, Frith U. An islet of ability in autistic children: a research note. J Child Psychol Psychiatry 1983;24:613-620. https://doi.org/10.1111/j.1469-7610.1983.tb00137.x
  20. Mottron L, Dawson M, Soulieres I, Hubert B, Burack J. Enhanced perceptual functioning in autism: an update, and eight principles of autistic perception. J Autism Dev Disord 2006;36:27-43. https://doi.org/10.1007/s10803-005-0040-7
  21. Park SK, Son JW, Chung S, Lee S, Ghim HR, Lee SI, et al. Autism and beauty: neural correlates of aesthetic experiences in autism spectrum disorder. J Korean Acad Child Adolesc Psychiatry 2018;29:101-113. https://doi.org/10.5765/jkacap.170031
  22. Son JW, Lee S, Jung WH, Jee SH, Jung SH. What is neuroaesthetics?: a new paradigm in psychiatry. J Korean Neuropsychiatr Assoc 2013;52:3-16. https://doi.org/10.4306/jknpa.2013.52.1.3
  23. Kaland N, Mortensen EL, Smith L. Disembedding performance in children and adolescents with Asperger syndrome or high-functioning autism. Autism 2007;11:81-92. https://doi.org/10.1177/1362361307070988
  24. Bertone A, Mottron L, Jelenic P, Faubert J. Enhanced and diminished visuo-spatial information processing in autism depends on stimulus complexity. Brain 2005;128:2430-2441. https://doi.org/10.1093/brain/awh561
  25. Keita L, Guy J, Berthiaume C, Mottron L, Bertone A. An early origin for detailed perception in autism spectrum disorder: biased sensitivity for high-spatial frequency information. Sci Rep 2014;4:5475. https://doi.org/10.1038/srep05475
  26. Johansson G, von Hofsten C, Jansson G. Event perception. Annu Rev Psychol 1980;31:27-63. https://doi.org/10.1146/annurev.ps.31.020180.000331
  27. Milne E, Swettenham J, Hansen P, Campbell R, Jeffries H, Plaisted K. High motion coherence thresholds in children with autism. J Child Psychol Psychiatry 2002;43:255-263. https://doi.org/10.1111/1469-7610.00018
  28. Spencer J, O'Brien J, Riggs K, Braddick O, Atkinson J, Wattam-Bell J. Motion processing in autism: evidence for a dorsal stream deficiency. Neuroreport 2000;11:2765-2767. https://doi.org/10.1097/00001756-200008210-00031
  29. Vandenbroucke MW, Scholte HS, van Engeland H, Lamme VA, Kemner C. Coherent versus component motion perception in autism spectrum disorder. J Autism Dev Disord 2008;38:941-949. https://doi.org/10.1007/s10803-007-0467-0
  30. Atkinson AP. Impaired recognition of emotions from body movements is associated with elevated motion coherence thresholds in autism spectrum disorders. Neuropsychologia 2009;47:3023-3029. https://doi.org/10.1016/j.neuropsychologia.2009.05.019
  31. Dawson G, Carver L, Meltzoff AN, Panagiotides H, McPartland J, Webb SJ. Neural correlates of face and object recognition in young children with autism spectrum disorder, developmental delay, and typical development. Child Dev 2002;73:700-717. https://doi.org/10.1111/1467-8624.00433
  32. Njiokiktjien C, Verschoor A, de Sonneville L, Huyser C, Op het Veld V, Toorenaar N. Disordered recognition of facial identity and emotions in three Asperger type autists. Eur Child Adolesc Psychiatry 2001;10:79-90. https://doi.org/10.1007/s007870170050
  33. Teunisse JP, de Gelder B. Impaired categorical perception of facial expressions in high-functioning adolescents with autism. Child Neuropsychol 2001;7:1-14. https://doi.org/10.1076/chin.7.1.1.3150
  34. Dalton KM, Nacewicz BM, Johnstone T, Schaefer HS, Gernsbacher MA, Goldsmith HH, et al. Gaze fixation and the neural circuitry of face processing in autism. Nat Neurosci 2005;8:519-526. https://doi.org/10.1038/nn1421
  35. Klin A. Three things to remember if you are a functional magnetic resonance imaging researcher of face processing in autism spectrum disorders. Biol Psychiatry 2008;64:549-551. https://doi.org/10.1016/j.biopsych.2008.07.028
  36. Bolte S, Hubl D, Dierks T, Holtmann M, Poustka F. An fMRIstudy of locally oriented perception in autism: altered early visual processing of the block design test. J Neural Transm (Vienna) 2008;115:545-552. https://doi.org/10.1007/s00702-007-0850-1
  37. Jolliffe T, Baron-Cohen S. Are people with autism and Asperger syndrome faster than normal on the Embedded Figures Test? J Child Psychol Psychiatry 1997;38:527-534. https://doi.org/10.1111/j.1469-7610.1997.tb01539.x
  38. Witkin HA. A manual for the embedded figures tests. Palo Alto, CA: Consulting Psychologists Press;1971.
  39. Wechsler D. WAIS-R Manual: Wechsler Adult Intelligence Scales-revised. New York, NY: Psychological Corporation;1981.
  40. Kana RK, Liu Y, Williams DL, Keller TA, Schipul SE, Minshew NJ, et al. The local, global, and neural aspects of visuospatial processing in autism spectrum disorders. Neuropsychologia 2013;51:2995-3003. https://doi.org/10.1016/j.neuropsychologia.2013.10.013
  41. Keehn B, Brenner L, Palmer E, Lincoln AJ, Muller RA. Functional brain organization for visual search in ASD. J Int Neuropsychol Soc 2008;14:990-1003. https://doi.org/10.1017/S1355617708081356
  42. Ring HA, Baron-Cohen S, Wheelwright S, Williams SC, Brammer M, Andrew C, et al. Cerebral correlates of preserved cognitive skills in autism: a functional MRI study of embedded figures task performance. Brain 1999;122:1305-1315. https://doi.org/10.1093/brain/122.7.1305
  43. Kosslyn SM, Thompson WL, Kim IJ, Alpert NM. Topographical representations of mental images in primary visual cortex. Nature 1995;378:496-498. https://doi.org/10.1038/378496a0
  44. Manjaly ZM, Bruning N, Neufang S, Stephan KE, Brieber S, Marshall JC, et al. Neurophysiological correlates of relatively enhanced local visual search in autistic adolescents. Neuroimage 2007;35:283-291. https://doi.org/10.1016/j.neuroimage.2006.11.036
  45. Damarla SR, Keller TA, Kana RK, Cherkassky VL, Williams DL, Minshew NJ, et al. Cortical underconnectivity coupled with preserved visuospatial cognition in autism: evidence from an fMRI study of an embedded figures task. Autism Res 2010;3:273-279. https://doi.org/10.1002/aur.153
  46. Lee PS, Foss-Feig J, Henderson JG, Kenworthy LE, Gilotty L, Gaillard WD, et al. Atypical neural substrates of embedded figures task performance in children with autism spectrum disorder. Neuroimage 2007;38:184-193. https://doi.org/10.1016/j.neuroimage.2007.07.013
  47. Wager TD, Smith EE. Neuroimaging studies of working memory: a meta-analysis. Cogn Affect Behav Neurosci 2003;3:255-274. https://doi.org/10.3758/CABN.3.4.255
  48. Spencer MD, Holt RJ, Chura LR, Calder AJ, Suckling J, Bullmore ET, et al. Atypical activation during the embedded figures task as a functional magnetic resonance imaging endophenotype of autism. Brain 2012;135:3469-3480. https://doi.org/10.1093/brain/aws229
  49. Keehn B, Shih P, Brenner LA, Townsend J, Muller RA. Functional connectivity for an "island of sparing" in autism spectrum disorder: an fMRI study of visual search. Hum Brain Mapp 2013;34:2524-2537. https://doi.org/10.1002/hbm.22084
  50. Happe F, Frith U. The weak coherence account: detail-focused cognitive style in autism spectrum disorders. J Autism Dev Disord 2006;36:5-25. https://doi.org/10.1007/s10803-005-0039-0
  51. Critchley HD, Daly EM, Bullmore ET, Williams SC, Van Amelsvoort T, Robertson DM, et al. The functional neuroanatomy of social behaviour: changes in cerebral blood flow when people with autistic disorder process facial expressions. Brain 2000;123:2203-2212. https://doi.org/10.1093/brain/123.11.2203
  52. Belmonte MK, Yurgelun-Todd DA. Functional anatomy of impaired selective attention and compensatory processing in autism. Brain Res Cogn Brain Res 2003;17:651-664. https://doi.org/10.1016/S0926-6410(03)00189-7
  53. Just MA, Cherkassky VL, Keller TA, Minshew NJ. Cortical activation and synchronization during sentence comprehension in high-functioning autism: evidence of underconnectivity. Brain 2004;127:1811-1821. https://doi.org/10.1093/brain/awh199
  54. Jones TB, Bandettini PA, Kenworthy L, Case LK, Milleville SC, Martin A, et al. Sources of group differences in functional connectivity: an investigation applied to autism spectrum disorder. Neuroimage 2010;49:401-414. https://doi.org/10.1016/j.neuroimage.2009.07.051
  55. Samson F, Mottron L, Soulieres I, Zeffiro TA. Enhanced visual functioning in autism: an ALE meta-analysis. Hum Brain Mapp 2012;33:1553-1581. https://doi.org/10.1002/hbm.21307
  56. Wang S, Jiang M, Duchesne XM, Laugeson EA, Kennedy DP, Adolphs R, et al. Atypical visual saliency in autism spectrum disorder quantified through model-based eye tracking. Neuron 2015;88:604-616. https://doi.org/10.1016/j.neuron.2015.09.042
  57. Caron MJ, Mottron L, Berthiaume C, Dawson M. Cognitive mechanisms, specificity and neural underpinnings of visuospatial peaks in autism. Brain 2006;129:1789-1802. https://doi.org/10.1093/brain/awl072
  58. Lord C, Risi S, Lambrecht L, Cook EH Jr, Leventhal BL, DiLavore PC, et al. The Autism Diagnostic Observation Schedule-Generic: a standard measure of social and communication deficits associated with the spectrum of autism. J Autism Dev Disord 2000;30:205-223. https://doi.org/10.1023/A:1005592401947
  59. Stark CE, Squire LR. When zero is not zero: the problem of ambiguous baseline conditions in fMRI. Proc Natl Acad Sci U S A 2001;98:12760-12766. https://doi.org/10.1073/pnas.221462998
  60. Bertone A, Mottron L, Jelenic P, Faubert J. Motion perception in autism: a "complex" issue. J Cogn Neurosci 2003;15:218-225. https://doi.org/10.1162/089892903321208150
  61. Pellicano E, Gibson L, Maybery M, Durkin K, Badcock DR. Abnormal global processing along the dorsal visual pathway in autism: a possible mechanism for weak visuospatial coherence? Neuropsychologia 2005;43:1044-1053. https://doi.org/10.1016/j.neuropsychologia.2004.10.003
  62. Cavanagh P. Short-range vs long-range motion: not a valid distinction. Spat Vis 1991;5:303-309. https://doi.org/10.1163/156856891X00065
  63. Kaiser MD, Shiffrar M. The visual perception of motion by observers with autism spectrum disorders: a review and synthesis. Psychon Bull Rev 2009;16:761-777. https://doi.org/10.3758/PBR.16.5.761
  64. Koldewyn K, Whitney D, Rivera SM. The psychophysics of visual motion and global form processing in autism. Brain 2010;133:599-610. https://doi.org/10.1093/brain/awp272
  65. Robertson CE, Martin A, Baker CI, Baron-Cohen S. Atypical integration of motion signals in autism spectrum conditions. PLoS One 2012;7:e48173. https://doi.org/10.1371/journal.pone.0048173
  66. Milner AD, Goodale MA. Two visual systems re-viewed. Neuropsychologia 2008;46:774-785. https://doi.org/10.1016/j.neuropsychologia.2007.10.005
  67. Tobimatsu S, Celesia GG. Studies of human visual pathophysiology with visual evoked potentials. Clin Neurophysiol 2006;117:1414-1433. https://doi.org/10.1016/j.clinph.2006.01.004
  68. Rees G, Friston K, Koch C. A direct quantitative relationship between the functional properties of human and macaque V5. Nat Neurosci 2000;3:716-723. https://doi.org/10.1038/76673
  69. Macintyre-Beon C, Ibrahim H, Hay I, Cockburn D, Calvert J, Bowman R. Dorsal stream dysfunction in children. A review and an approach to diagnosis and management. Curr Pediatr Rev 2010;6:166-182. https://doi.org/10.2174/157339610793743895
  70. Williams JH, Whiten A, Singh T. A systematic review of action imitation in autistic spectrum disorder. J Autism Dev Disord 2004;34:285-299. https://doi.org/10.1023/B:JADD.0000029551.56735.3a
  71. Mottron L, Mineau S, Martel G, Bernier CS, Berthiaume C, Dawson M, et al. Lateral glances toward moving stimuli among young children with autism: early regulation of locally oriented perception? Dev Psychopathol 2007;19:23-36. https://doi.org/10.1017/S0954579407070022
  72. Brieber S, Herpertz-Dahlmann B, Fink GR, Kamp-Becker I, Remschmidt H, Konrad K. Coherent motion processing in autism spectrum disorder (ASD): an fMRI study. Neuropsychologia 2010;48:1644-1651. https://doi.org/10.1016/j.neuropsychologia.2010.02.007
  73. Koldewyn K, Whitney D, Rivera SM. Neural correlates of coherent and biological motion perception in autism. Dev Sci 2011;14:1075-1088. https://doi.org/10.1111/j.1467-7687.2011.01058.x
  74. Robertson CE, Thomas C, Kravitz DJ, Wallace GL, Baron-Cohen S, Martin A, et al. Global motion perception deficits in autism are reflected as early as primary visual cortex. Brain 2014;137:2588-2599. https://doi.org/10.1093/brain/awu189
  75. Takarae Y, Luna B, Minshew NJ, Sweeney JA. Visual motion processing and visual sensorimotor control in autism. J Int Neuropsychol Soc 2014;20:113-122. https://doi.org/10.1017/S1355617713001203
  76. Peiker I, Schneider TR, Milne E, Schottle D, Vogeley K, Munchau A, et al. Stronger neural modulation by visual motion intensity in autism spectrum disorders. PLoS One 2015;10:e0132531. https://doi.org/10.1371/journal.pone.0132531
  77. Cardin JA, Carlen M, Meletis K, Knoblich U, Zhang F, Deisseroth K, et al. Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature 2009;459:663-667. https://doi.org/10.1038/nature08002
  78. Donner TH, Siegel M. A framework for local cortical oscillation patterns. Trends Cogn Sci 2011;15:191-199. https://doi.org/10.1016/j.tics.2011.03.007
  79. Siegel M, Donner TH, Oostenveld R, Fries P, Engel AK. Highfrequency activity in human visual cortex is modulated by visual motion strength. Cereb Cortex 2007;17:732-741. https://doi.org/10.1093/cercor/bhk025
  80. Robertson CE, Ratai EM, Kanwisher N. Reduced GABAergic action in the autistic brain. Curr Biol 2016;26:80-85. https://doi.org/10.1016/j.cub.2015.11.019
  81. Vandenbroucke MW, Scholte HS, van Engeland H, Lamme VA, Kemner C. A neural substrate for atypical low-level visual processing in autism spectrum disorder. Brain 2008;131:1013-1024. https://doi.org/10.1093/brain/awm321
  82. Sanchez-Marin FJ, Padilla-Medina JA. A psychophysical test of the visual pathway of children with autism. J Autism Dev Disord 2008;38:1270-1277. https://doi.org/10.1007/s10803-007-0507-9
  83. Milne E. Increased intra-participant variability in children with autistic spectrum disorders: evidence from single-trial analysis of evoked EEG. Front Psychol 2011;2:51 https://doi.org/10.3389/fpsyg.2011.00051
  84. Simion F, Regolin L, Bulf H. A predisposition for biological motion in the newborn baby. Proc Natl Acad Sci U S A 2008;105:809-813. https://doi.org/10.1073/pnas.0707021105
  85. Fox R, McDaniel C. The perception of biological motion by human infants. Science 1982;218:486-487. https://doi.org/10.1126/science.7123249
  86. Pavlova MA. Biological motion processing as a hallmark of social cognition. Cereb Cortex 2012;22:981-995. https://doi.org/10.1093/cercor/bhr156
  87. Klin A, Lin DJ, Gorrindo P, Ramsay G, Jones W. Two-year-olds with autism orient to non-social contingencies rather than biological motion. Nature 2009;459:257-261. https://doi.org/10.1038/nature07868
  88. Kaiser MD, Pelphrey KA. Disrupted action perception in autism: behavioral evidence, neuroendophenotypes, and diagnostic utility. Dev Cogn Neurosci 2012;2:25-35. https://doi.org/10.1016/j.dcn.2011.05.005
  89. Hubert B, Wicker B, Moore DG, Monfardini E, Duverger H, Da Fonseca D, et al. Brief report: recognition of emotional and nonemotional biological motion in individuals with autistic spectrum disorders. J Autism Dev Disord 2007;37:1386-1392. https://doi.org/10.1007/s10803-006-0275-y
  90. Nackaerts E, Wagemans J, Helsen W, Swinnen SP, Wenderoth N, Alaerts K. Recognizing biological motion and emotions from point-light displays in autism spectrum disorders. PLoS One 2012;7:e44473. https://doi.org/10.1371/journal.pone.0044473
  91. Lahnakoski JM, Glerean E, Salmi J, Jaaskelainen IP, Sams M, Hari R, et al. Naturalistic fMRI mapping reveals superior temporal sulcus as the hub for the distributed brain network for social perception. Front Hum Neurosci 2012;6:233. https://doi.org/10.3389/fnhum.2012.00233
  92. Kana RK, Libero LE, Hu CP, Deshpande HD, Colburn JS. Functional brain networks and white matter underlying theory-of-mind in autism. Soc Cogn Affect Neurosci 2014;9:98-105. https://doi.org/10.1093/scan/nss106
  93. Pierce K, Haist F, Sedaghat F, Courchesne E. The brain response to personally familiar faces in autism: findings of fusiform activity and beyond. Brain 2004;127:2703-2716. https://doi.org/10.1093/brain/awh289
  94. Boddaert N, Zilbovicius M. Functional neuroimaging and childhood autism. Pediatr Radiol 2002;32:1-7. https://doi.org/10.1007/s00247-001-0570-x
  95. Herrington JD, Baron-Cohen S, Wheelwright SJ, Singh KD, Bullmore ET, Brammer M, et al. The role of MT+/V5 during biological motion perception in Asperger syndrome: an fMRI study. Res Autism Spectr Disord 2007;1:14-27. https://doi.org/10.1016/j.rasd.2006.07.002
  96. Freitag CM, Konrad C, Haberlen M, Kleser C, von Gontard A, Reith W, et al. Perception of biological motion in autism spectrum disorders. Neuropsychologia 2008;46:1480-1494. https://doi.org/10.1016/j.neuropsychologia.2007.12.025
  97. Kaiser MD, Hudac CM, Shultz S, Lee SM, Cheung C, Berken AM, et al. Neural signatures of autism. Proc Natl Acad Sci U S A 2010;107:21223-21228. https://doi.org/10.1073/pnas.1010412107
  98. Manning C, Tibber MS, Charman T, Dakin SC, Pellicano E. Enhanced integration of motion information in children with autism. J Neurosci 2015;35:6979-6986. https://doi.org/10.1523/JNEUROSCI.4645-14.2015
  99. Alaerts K, Swinnen SP, Wenderoth N. Neural processing of biological motion in autism: an investigation of brain activity and effective connectivity. Sci Rep 2017;7:5612. https://doi.org/10.1038/s41598-017-05786-z
  100. Jack A, Keifer CM, Pelphrey KA. Cerebellar contributions to biological motion perception in autism and typical development. Hum Brain Mapp 2017;38:1914-1932. https://doi.org/10.1002/hbm.23493
  101. Ramnani N. The primate cortico-cerebellar system: anatomy and function. Nat Rev Neurosci 2006;7:511-522. https://doi.org/10.1038/nrn1953
  102. Park WJ, Schauder KB, Zhang R, Bennetto L, Tadin D. High internal noise and poor external noise filtering characterize perception in autism spectrum disorder. Sci Rep 2017;7:17584. https://doi.org/10.1038/s41598-017-17676-5
  103. Nomi JS, Uddin LQ. Face processing in autism spectrum disorders: from brain regions to brain networks. Neuropsychologia 2015;71:201-216. https://doi.org/10.1016/j.neuropsychologia.2015.03.029
  104. Scherf KS, Behrmann M, Humphreys K, Luna B. Visual categoryselectivity for faces, places and objects emerges along different developmental trajectories. Dev Sci 2007;10:F15-F30. https://doi.org/10.1111/j.1467-7687.2007.00595.x
  105. Behrmann M, Avidan G, Leonard GL, Kimchi R, Luna B, Humphreys K, et al. Configural processing in autism and its relationship to face processing. Neuropsychologia 2006;44:110-129. https://doi.org/10.1016/j.neuropsychologia.2005.04.002
  106. Gross TF. The perception of four basic emotions in human and nonhuman faces by children with autism and other developmental disabilities. J Abnorm Child Psychol 2004;32:469-480. https://doi.org/10.1023/B:JACP.0000037777.17698.01
  107. Bar-Haim Y, Shulman C, Lamy D, Reuveni A. Attention to eyes and mouth in high-functioning children with autism. J Autism Dev Disord 2006;36:131-137. https://doi.org/10.1007/s10803-005-0046-1
  108. Haxby JV, Hoffman EA, Gobbini MI. The distributed human neural system for face perception. Trends Cogn Sci 2000;4:223-233. https://doi.org/10.1016/S1364-6613(00)01482-0
  109. Liu J, Harris A, Kanwisher N. Stages of processing in face perception: an MEG study. Nat Neurosci 2002;5:910-916. https://doi.org/10.1038/nn909
  110. Harris A, Aguirre GK. Neural tuning for face wholes and parts in human fusiform gyrus revealed by FMRI adaptation. J Neurophysiol 2010;104:336-345. https://doi.org/10.1152/jn.00626.2009
  111. Sato W, Toichi M, Uono S, Kochiyama T. Impaired social brain network for processing dynamic facial expressions in autism spectrum disorders. BMC Neurosci 2012;13:99. https://doi.org/10.1186/1471-2202-13-99
  112. Wang S, Tudusciuc O, Mamelak AN, Ross IB, Adolphs R, Rutishauser U. Neurons in the human amygdala selective for perceived emotion. Proc Natl Acad Sci U S A 2014;111:E3110-E3119. https://doi.org/10.1073/pnas.1323342111
  113. Humphreys K, Hasson U, Avidan G, Minshew N, Behrmann M. Cortical patterns of category-selective activation for faces, places and objects in adults with autism. Autism Res 2008;1:52-63. https://doi.org/10.1002/aur.1
  114. Bookheimer SY, Wang AT, Scott A, Sigman M, Dapretto M. Frontal contributions to face processing differences in autism: evidence from fMRI of inverted face processing. J Int Neuropsychol Soc 2008;14:922-932. https://doi.org/10.1017/S135561770808140X
  115. Kleinhans NM, Johnson LC, Richards T, Mahurin R, Greenson J, Dawson G, et al. Reduced neural habituation in the amygdala and social impairments in autism spectrum disorders. Am J Psychiatry 2009;166:467-475. https://doi.org/10.1176/appi.ajp.2008.07101681
  116. Domes G, Heinrichs M, Kumbier E, Grossmann A, Hauenstein K, Herpertz SC. Effects of intranasal oxytocin on the neural basis of face processing in autism spectrum disorder. Biol Psychiatry 2013;74:164-171. https://doi.org/10.1016/j.biopsych.2013.02.007
  117. Pierce K, Redcay E. Fusiform function in children with an autism spectrum disorder is a matter of "who." Biol Psychiatry 2008;64:552-560. https://doi.org/10.1016/j.biopsych.2008.05.013
  118. Tottenham N, Hertzig ME, Gillespie-Lynch K, Gilhooly T, Millner AJ, Casey BJ. Elevated amygdala response to faces and gaze aversion in autism spectrum disorder. Soc Cogn Affect Neurosci 2014;9:106-117. https://doi.org/10.1093/scan/nst050
  119. Weng SJ, Carrasco M, Swartz JR, Wiggins JL, Kurapati N, Liberzon I, et al. Neural activation to emotional faces in adolescents with autism spectrum disorders. J Child Psychol Psychiatry 2011;52:296-305. https://doi.org/10.1111/j.1469-7610.2010.02317.x
  120. Kylliainen A, Hietanen JK. Skin conductance responses to another person's gaze in children with autism. J Autism Dev Disord 2006;36:517-525. https://doi.org/10.1007/s10803-006-0091-4
  121. Ashwin C, Baron-Cohen S, Wheelwright S, O'Riordan M, Bullmore ET. Differential activation of the amygdala and the 'social brain' during fearful face-processing in Asperger Syndrome. Neuropsychologia 2007;45:2-14. https://doi.org/10.1016/j.neuropsychologia.2006.04.014
  122. Malisza KL, Clancy C, Shiloff D, Holden J, Jones C, Paulson K, et al. Functional magnetic resonance imaging of facial information processing in children with autistic disorder, attention deficit hyperactivity disorder and typically developing controls. Int J Adolesc Med Health 2011;23:269-277. https://doi.org/10.1515/IJAMH.2011.055
  123. Dapretto M, Davies MS, Pfeifer JH, Scott AA, Sigman M, Bookheimer SY, et al. Understanding emotions in others: mirror neuron dysfunction in children with autism spectrum disorders. Nat Neurosci 2006;9:28-30. https://doi.org/10.1038/nn1611
  124. Pitcher D, Dilks DD, Saxe RR, Triantafyllou C, Kanwisher N. Differential selectivity for dynamic versus static information in face-selective cortical regions. Neuroimage 2011;56:2356-2363. https://doi.org/10.1016/j.neuroimage.2011.03.067
  125. Bernstein M, Yovel G. Two neural pathways of face processing: a critical evaluation of current models. Neurosci Biobehav Rev 2015;55:536-546. https://doi.org/10.1016/j.neubiorev.2015.06.010
  126. Bernstein M, Erez Y, Blank I, Yovel G. An integrated neural framework for dynamic and static face processing. Sci Rep 2018;8:7036. https://doi.org/10.1038/s41598-018-25405-9
  127. Pelphrey KA, Morris JP, McCarthy G, Labar KS. Perception of dynamic changes in facial affect and identity in autism. Soc Cogn Affect Neurosci 2007;2:140-149. https://doi.org/10.1093/scan/nsm010
  128. Borowiak K, Maguinness C, von Kriegstein K. Dorsal-movement and ventral-form regions are functionally connected during visual-speech recognition. Hum Brain Mapp 2020;41:952-972. https://doi.org/10.1002/hbm.24852
  129. Kliemann D, Richardson H, Anzellotti S, Ayyash D, Haskins AJ, Gabrieli JDE, et al. Cortical responses to dynamic emotional facial expressions generalize across stimuli, and are sensitive to taskrelevance, in adults with and without Autism. Cortex 2018;103:24-43. https://doi.org/10.1016/j.cortex.2018.02.006
  130. Johnson MH. Subcortical face processing. Nat Rev Neurosci 2005;6:766-774. https://doi.org/10.1038/nrn1766
  131. Vuilleumier P, Armony JL, Driver J, Dolan RJ. Distinct spatial frequency sensitivities for processing faces and emotional expressions. Nat Neurosci 2003;6:624-631. https://doi.org/10.1038/nn1057
  132. Osterling JA, Dawson G, Munson JA. Early recognition of 1-yearold infants with autism spectrum disorder versus mental retardation. Dev Psychopathol 2002;14:239-251. https://doi.org/10.1017/S0954579402002031
  133. Dawson G, Webb SJ, McPartland J. Understanding the nature of face processing impairment in autism: insights from behavioral and electrophysiological studies. Dev Neuropsychol 2005;27:403-424. https://doi.org/10.1207/s15326942dn2703_6
  134. Celeghin A, Galetto V, Tamietto M, Zettin M. Emotion recognition in low-spatial frequencies is partly preserved following traumatic brain injury. Biomed Res Int 2019;2019:9562935. https://doi.org/10.1155/2019/9562935
  135. Vlamings PH, Jonkman LM, van Daalen E, van der Gaag RJ, Kemner C. Basic abnormalities in visual processing affect face processing at an early age in autism spectrum disorder. Biol Psychiatry 2010;68:1107-1113. https://doi.org/10.1016/j.biopsych.2010.06.024
  136. Corradi-Dell'acqua C, Schwartz S, Meaux E, Hubert B, Vuilleumier P, Deruelle C. Neural responses to emotional expression information in high- and low-spatial frequency in autism: evidence for a cortical dysfunction. Front Hum Neurosci 2014;8:189.
  137. Ionescu MR. Subliminal perception of complex visual stimuli. Rom J Ophthalmol 2016;60:226-230.
  138. Brooks SJ, Savov V, Allzen E, Benedict C, Fredriksson R, Schioth HB. Exposure to subliminal arousing stimuli induces robust activation in the amygdala, hippocampus, anterior cingulate, insular cortex and primary visual cortex: a systematic meta-analysis of fMRI studies. Neuroimage 2012;59:2962-2973. https://doi.org/10.1016/j.neuroimage.2011.09.077
  139. Kleinhans NM, Richards T, Johnson LC, Weaver KE, Greenson J, Dawson G, et al. fMRI evidence of neural abnormalities in the subcortical face processing system in ASD. Neuroimage 2011;54:697-704. https://doi.org/10.1016/j.neuroimage.2010.07.037
  140. Hall GB, Doyle KA, Goldberg J, West D, Szatmari P. Amygdala engagement in response to subthreshold presentations of anxious face stimuli in adults with autism spectrum disorders: preliminary insights. PLoS One 2010;5:e10804. https://doi.org/10.1371/journal.pone.0010804
  141. Hadjikhani N, Asberg Johnels J, Zurcher NR, Lassalle A, Guillon Q, Hippolyte L, et al. Look me in the eyes: constraining gaze in the eye-region provokes abnormally high subcortical activation in autism. Sci Rep 2017;7:3163. https://doi.org/10.1038/s41598-017-03378-5
  142. Elsabbagh M, Johnson MH. Getting answers from babies about autism. Trends Cogn Sci 2010;14:81-87. https://doi.org/10.1016/j.tics.2009.12.005

Cited by

  1. Neural Mechanisms of Visual Motion Anomalies in Autism: A Two-Decade Update and Novel Aetiology vol.15, 2021, https://doi.org/10.3389/fnins.2021.756841
  2. What Is Social about Autism? The Role of Allostasis-Driven Learning vol.11, pp.10, 2021, https://doi.org/10.3390/brainsci11101269
  3. High spatial frequency filtered primes hastens happy faces categorization in autistic adults vol.155, 2020, https://doi.org/10.1016/j.bandc.2021.105811