Neuroimaging in Nuclear Medicine: Drug Addicted Brain

약물 중독 환자의 뇌신경계 핵의학 영상

  • Chung, Yong-An (Departments of Radiology, The College of Medicine, The Catholic University of Korea) ;
  • Kim, Dae-Jin (Departments of Psychiatry, The College of Medicine, The Catholic University of Korea)
  • 정용안 (가톨릭대학교 의과대학 방사선과학교실) ;
  • 김대진 (가톨릭대학교 의과대학 정신과학교실)
  • Published : 2006.02.28

Abstract

Addiction to illicit drugs is one of today's most important social issues. Most addictive drugs lead to irreversible parenchymal changes in the human brain. Neuroimaging data bring to light the pharmacodynamics and pharmacokinetics of the abused drugs, and demonstrate that addiction is a disease of the brain. Continuous researches better illustrate the neurochemical alterations in brain function, and attempt to discover the links to consequent behavioral changes. Newer hypotheses and theories follow the numerous results, and more rational methods of approaching therapy are being developed. Substance abuse is on the rise in Korea, and social interest in the matter as well. On the other hand, diagnosis and treatment of drug addiction is still very difficult, because how the abused substance acts in the brain, or how it leads to behavioral problems is not widely known. Therefore, understanding the mechanism of drug addiction can improve the process of diagnosing addict patients, planning therapy, and predicting the prognosis. Neuroimaging approaches by nuclear medicine methods are expected to objectively judge behavioral and neurochemical changes, and response to treatment. In audition, as genes associated with addictive behavior are discovered, functional nuclear medicine images will aid in the assessment of individuals. Reviewing published literature on neuroimaging regarding nuclear medicine is expected to be of assistance to the management of drug addict patients. What's more, means of applying nuclear medicine to the care of drug addict patients should be investigated further.

Keywords

References

  1. 마약 관련 통계 자료 2005년도 6월-대검찰청 마약부
  2. Volkow ND, Fowler JS, Wang GJ. Positron emission tomography and single-photon emission computed tomography in substance abuse research. Semin Nucl Med 2003;33:114-28 https://doi.org/10.1053/snuc.2003.127300
  3. Lingford-Hughes A. Human brain imaging and substance abuse. Curr Opin Pharmacol 2005;5:42-6 https://doi.org/10.1016/j.coph.2004.10.002
  4. Volkow ND, Fowler JS, Wang GJ. The addicted human brain viewed in the light of imaging studies: brain circuits and treatment strategies. Neuropharmacology 2004;47:3-13 https://doi.org/10.1016/j.neuropharm.2004.07.019
  5. Fowler JS, Volkow ND, Wang GJ, Gatley SJ, Logan J. [$^{11}C$]Cocaine: PET studies of cocaine pharmacokinetics, dopamine transporter availability and dopamine transporter occupancy. Nucl Med Biol 2001;28:561-72 https://doi.org/10.1016/S0969-8051(01)00211-6
  6. Volkow ND, Mullani N, Gould KL, Adler S, Krajewski K. Cerebral blood flow in chronic cocaine users: a study with positron emission tomography. Br J Psychiatry 1988;152:641-8 https://doi.org/10.1192/bjp.152.5.641
  7. Holman B, Carvalho P, Mendelson J, Teoh SK, Nardin R, Hallgring E, et al. Brain perfusion is abnormal in cocaine-dependent polydrug users: A study using technetium-99m-HMPAO and SPECT. J Nucl Med 1991;32:1206-10
  8. Wallace E, Wisniewski G, Zubal G, vanDyck CH, Pfau SE, Smith EO, et al. Acute cocaine effects on absolute cerebral blood flow. Psychopharmacology 1996;128:17-20 https://doi.org/10.1007/s002130050104
  9. Baxter LR Jr, Schwartz JM, Phelps ME, Mazziotta JC, Barrio J, Rawson RA, et al. Localization of neurochemical effects of cocaine and other stimulants in the human brain. J Clin Psychiatry 1988;49:23-6
  10. Volkow ND, Fowler JS, Wolf AP, Schlyer D, Shiue CY, Alpert R, et al. Effects of chronic cocaine abuse on postsynaptic dopamine receptors. Am J Psychiatry 1990;147:719-24 https://doi.org/10.1176/ajp.147.6.719
  11. Volkow ND, Wang GJ, Fowler JS, Logan J, Gatley SJ, Hitzemann R, et al. Decreased striatal dopaminergic responsiveness in detoxified cocaine-dependent subjects. Nature 1997;386:830-3 https://doi.org/10.1038/386830a0
  12. Volkow ND, Fowler JS, Wang GJ, Hitzemann R, Logan J, Schlyer DJ, et al. Decreased dopamine D2 receptor availability is associated with reduced frontal metabolism in cocaine abusers. Synapse 1993;14:169-77 https://doi.org/10.1002/syn.890140210
  13. Volkow ND, Fowler JS. Addiction, a disease of compulsion and drive. Cerebral Cortex 2000;10:318-25 https://doi.org/10.1093/cercor/10.3.318
  14. Zubieta JK, Gorelick DA, Stauffer R, Ravert HT, Dannals RF, Frost JJ. Increased mu opioid receptor binding detected by PET in cocaine-dependent men is associated with cocaine craving. Nat Med 1996; 2:1225-9 https://doi.org/10.1038/nm1196-1225
  15. Jacobsen LK, Staley JK, Malison RT, Zoghbi SS, Seibyl JP, Kosten TR, et al. Elevated central serotonin transporter binding availability in acutely abstinent cocaine-dependent patients. Am J Psychiatry 2000;157:1134-40 https://doi.org/10.1176/appi.ajp.157.7.1134
  16. Seiden LS, Sabol KE. Methamphetamine and methylenedioxymethamphetamine neurotoxicity: Possible mechanisms of cell destructions. NIDA Res Monogr 1996;163:251-76
  17. Volkow ND, Chang L, Wang GJ, Fowler JS, Leonido-Yee M, Franceschi D, et al. Association of dopamine transporter reduction with psychomotor impairment in methamphetamine abusers. Am J Psychiatry 2001;158:377-82 https://doi.org/10.1176/appi.ajp.158.3.377
  18. Volkow ND, Chang L, Wang GJ, Fowler JS, Franceschi D, Sedler M, et al. Loss of dopamine transporters in methamphetamine abusers recovers with protracted abstinence. J Neurosci 2001;21: 9414-8 https://doi.org/10.1523/JNEUROSCI.21-23-09414.2001
  19. Wang GJ, Volkow ND, Chang L, Miller E, Sedler M, Hitzemann R, et al. Partial recovery of brain metabolism in methamphetamine abusers after protracted abstinence. Am J Psychiatry 2004;161: 242-8 https://doi.org/10.1176/appi.ajp.161.2.242
  20. Volkow ND, Chang L, Wang GJ, Fowler JS, Franceschi D, Sedler MJ, et al. Higher cortical and lower subcortical metabolism in detoxified methamphetamine abusers. Am J Psychiatry 2001;158: 383-9 https://doi.org/10.1176/appi.ajp.158.3.383
  21. Iyo M, Namba H, Yanagisawa M, Hirai S, Yui N, Fukui S. Abnormal cerebral perfusion in chronic methamphetamine abusers: a study using $^{99m}Tc$-HMPAO and SPECT. Prog Neuropsychopaharmacol Biol Psychiatry 1997;21: 789-96 https://doi.org/10.1016/S0278-5846(97)00079-1
  22. Buffenstein A, Heaster J, Ko P. Chronic psychotic illness from methamphetamine. Am J Psychiatry 1999;156:662
  23. Volkow ND, Hitzemann R, Wolf AP, Logan J, Fowler JS, Christman D, et al. Acute effects of ethanol on regional brain glucose metabolism and transport. Psychiatry Res 1990;35:39-48 https://doi.org/10.1016/S0165-1781(06)80006-5
  24. Moselhy HF, Georgiou G, Kahn A. Frontal lobe changes in alcoholism: A review of the literature. Alcohol Alcoholism 2001;36:357-68 https://doi.org/10.1093/alcalc/36.5.357
  25. Samson Y, Baron J, Feline A, Bories J, Crouzel C. Local cerebral glucose utilization in chronic alcoholics: a positron tomographic study. J Neurol Neurosurg Psychiatry 1986;49:1165-70 https://doi.org/10.1136/jnnp.49.10.1165
  26. Gilman S, Adams K, Koeppe RA, Berent S, Kluin KJ, Modell JG, et al. Cerebellar and frontal hypometabolism in alcoholic cerebellar degeneration studied with positron emission tomography. Ann Neurol 1990;28:775-85 https://doi.org/10.1002/ana.410280608
  27. Volkow ND, Wang G-J, Hitzemann R, Fowler JS, Overall JE, Burr G, et al. Recovery of brain glucose metabolism in detoxified alcoholics. Am J Psychiatry 1994;151:178-83 https://doi.org/10.1176/ajp.151.2.178
  28. Adams KM, Gilman S, Koeppe RA, Kluin KJ, Brunberg JA, Dede D, et al. Neuropsychological deficits are correlated with frontal hypometabolism in positron emission tomography studies of older alcoholic patients. Alcohol Clin Exp Res 1993;17:205-10 https://doi.org/10.1111/j.1530-0277.1993.tb00750.x
  29. Nauta WJ. The problem of the frontal lobes: a reinterpertation. J Psychiatr Res 1971;8:167-87 https://doi.org/10.1016/0022-3956(71)90017-3
  30. Gazzaniga MS, Ivry RB, Mangun GR. Cognitive Neruoscience. 2nd ed. W.W. Morton & Company; p. 502-35
  31. Volkow ND, Wang G, Hitzemann R, Fowler JS, Wolf AP, Poppas N, et al. Decreased cerebral response to inhibitory neurotransmission in alcoholics. Am J Psychiatry 1993;150:417-22 https://doi.org/10.1176/ajp.150.3.417
  32. Wang GJ, Volkow ND, Franceschi D, Fowler JS, Thanos PK, Scherbaum N, et al: Regional brain metabolism during alcohol intoxication. Alcohol Clin Exp Res 2000;24:822-9 https://doi.org/10.1111/j.1530-0277.2000.tb02061.x
  33. Gilman S, Koeppe RA, Adams K, Johnson-Green D, Junck L, Kluin KJ, et al. Positron emission tomographic studies of cerebral benzodiazepine-receptor binding in chronic alcoholics. Ann Neurol 1996;40:163-7 https://doi.org/10.1002/ana.410400207
  34. Kuruoglu AC, Arikan Z, Vural G, Karatas M, Arac M, Isike E. Single photon emission computerised tomography in chronic alcoholism. Antisocial personality disorder may be associated with decreased frontal perfusion. Br J Psychiatry 1996;169:348-54 https://doi.org/10.1192/bjp.169.3.348
  35. Nutt D. Alcohol and the brain. Pharmacological insights for psychiatrists. Br J Psychiatry 1999;175:114-9 https://doi.org/10.1192/bjp.175.2.114
  36. Heinz A, Ragan P, Jones DW, Hommer D, Williams W, Knable MB, et al. Reduced central serotonin transporters in alcoholism. Am J Psychiatry 1998;155:1544-9 https://doi.org/10.1176/ajp.155.11.1544
  37. Guardia J, Catafau Am, Batlle F, Martin JC, Segura L, Gonzalvo B, et al. Striatal dopaminergic D2 receptor density measured by [$^{123}I$]Iodobenzamide SPECT in the prediction of treatment outcome of alcohol-dependent patients. Am J Psychiatry 2000;157:127-9 https://doi.org/10.1176/ajp.157.1.127
  38. Sihver W, Nordberg A, Langstrom B, Mukhin AG, Koren AO, Kimes AS, et al: Development of ligands for in vivo imaging of cerebral nicotinic receptors. Behav Brain Res 2000;113:143-57 https://doi.org/10.1016/S0166-4328(00)00209-6
  39. Fujita M, Seibyl J, Vaupel DB, Tamagnan G, Early M, Zoghbi SS, et al: Whole body distribution, radiation absorbed dose and brain SPET imaging with [$^{123}I$]5-iodo-A-85380 in healthy human subjects. Eur J Nucl Med Mol Imag 2002;2:183-90
  40. Shih JC, Chen K, Ridd MJ. Monoamine oxidase: From genes to behavior. Ann Rev Neurosci 1999;22:197-217 https://doi.org/10.1146/annurev.neuro.22.1.197
  41. Fowler JS, Wang G-J, Volkow ND, Pappas N, Logan J, MacGregor R, et al. Inhibition of monoamine oxidase B in the brains of smokers. Nature 1996;379:733-6 https://doi.org/10.1038/379733a0
  42. Fowler JS, Volkow ND, Wang G-J, Pappas N, Logan J, Shea C, et al. Brain monoamine oxidase A inhibition in cigarette smokers. Proc Nat Acad Sci USA 1996;93:14065-9 https://doi.org/10.1073/pnas.93.24.14065
  43. Fowler JS, Logan J, Volkow ND, Wang GJ, MacGregor RR, Ding YS. Monoamine oxidase: Radiotracer development and human studies. Methods 2002;27:263-77 https://doi.org/10.1016/S1046-2023(02)00083-X
  44. Pergadia M, Spring B, Konopka LM, Twardowska B, Shirazi P, Crayton JW. Double-blind trial of the effects of tryptophan depletion on depression and cerebral blood flow in smokers. Addict Behav 2004;29:665-71 https://doi.org/10.1016/j.addbeh.2004.02.009
  45. Staley JK, Krishnan-Sarin S, Zoghbi S, Tamagnan G, Fujita M, Seibyl JP, et al. Sex differences in [$^{123}I$]beta-CTT SPECT measures of dopamine and serotonin transporter availability in healthy smokers and nonsmokers. Synapse 2001;41:275-84 https://doi.org/10.1002/syn.1084
  46. Martin-Soelch C, Magyar S, Kunig G, Missimer J, Schultz W, Leenders KL. Changes in brain activation associated with reward processing in smokers and nonsmokers. A positron emission tomography study. Exp Brain Res 2001;139:278-86 https://doi.org/10.1007/s002210100751
  47. Ernst M, Matochik JA, Heishman SJ, Van Horn JD, Jons PH, Henningfield JE, et al. Effect of nicotine on brain activation during performance of a working memory task. Proc Natl Acad Sci USA 2001;98:4728-33 https://doi.org/10.1073/pnas.061369098
  48. Domino EE, Minoshima S, Guthrie SK, Ohl L, Ni L, Koeppe RA, et al. Effects of nicotine on regional cerebral glucose metabolism in awake resting tobacco smokers. Neuroscience 2000;101:277-82 https://doi.org/10.1016/S0306-4522(00)00357-2
  49. Zubieta J, Lombardi U, Minoshima S, Guthrie S, Ni L, Ohl LE, et al. Regional cerebral blood flow effects of nicotine in overnight abstinent smokers. Biol Psychiatry 2001;49:906-13 https://doi.org/10.1016/S0006-3223(00)01070-2
  50. Dewey SL, Smith GW, Logan J, Brodie JD, Yu DW, Ferrieri RA, et al. GABAergic inhibition of endogenous dopamine release measured in vivo with C-11 raclopride and positron emission tomography. J Neurosci 1992;12:3773-80 https://doi.org/10.1523/JNEUROSCI.12-10-03773.1992
  51. Dewey SL, Morgan AE, Ashby CR Jr, Horan B, Kushner SA, Logan J, et al. A novel GABAergic strategy for the treatment of cocaine addiction. Synapse 1998;30:119-29 https://doi.org/10.1002/(SICI)1098-2396(199810)30:2<119::AID-SYN1>3.0.CO;2-F
  52. Dewey SL, Brodie JD, Gerasimov M, Horan B, Gardner EL, Ashby CR Jr. A pharmacologic strategy for the treatment of nicotine addiction. Synapse 1999;31:76-86 https://doi.org/10.1002/(SICI)1098-2396(199901)31:1<76::AID-SYN10>3.0.CO;2-Y