1 |
Andrews DW, Scott CB, Sperduto PW, et al. Whole brain radiation therapy with or without stereotactic radiosurgery boost for patients with one to three brain metastases: phase III results of the RTOG 9508 randomised trial. Lancet 2004;363:1665-1672
DOI
|
2 |
Liu W, Anguelov D, Erhan D, et al. Ssd: Single shot multibox detector. In European conference on computer vision: Springer, 2016:21-37
|
3 |
Grovik E, Yi D, Iv M, Tong E, Rubin D, Zaharchuk G. Deep learning enables automatic detection and segmentation of brain metastases on multisequence MRI. J Magn Reson Imaging 2020;51:175-182
DOI
|
4 |
Cho SJ, Sunwoo L, Baik SH, Bae YJ, Choi BS, Kim JH. Brain metastasis detection using machine learning: a systematic review and meta-analysis. Neuro Oncol 2021;23:214-225
DOI
|
5 |
Zhou Z, Sanders JW, Johnson JM, et al. Computer-aided detection of brain metastases in T1-weighted MRI for stereotactic radiosurgery using deep learning single-shot detectors. Radiology 2020;295:407-415
DOI
|
6 |
Bae S, Choi YS, Ahn SS, et al. Radiomic MRI phenotyping of glioblastoma: improving survival prediction. Radiology 2018;289:797-806
DOI
|
7 |
Tamada D, Kromrey ML, Ichikawa S, Onishi H, Motosugi U. Motion artifact reduction using a convolutional neural network for dynamic contrast enhanced MR imaging of the liver. Magn Reson Med Sci 2020;19:64-76
DOI
|
8 |
Kim Y, Lee KJ, Sunwoo L, et al. Deep learning in diagnosis of maxillary sinusitis using conventional radiography. Invest Radiol 2019;54:7-15
DOI
|
9 |
Brady SL, Trout AT, Somasundaram E, Anton CG, Li Y, Dillman JR. Improving image quality and reducing radiation dose for pediatric CT by using deep learning reconstruction. Radiology 2021;298:180-188
DOI
|
10 |
Bashyam VM, Erus G, Doshi J, et al. MRI signatures of brain age and disease over the lifespan based on a deep brain network and 14 468 individuals worldwide. Brain 2020;143:2312-2324
DOI
|
11 |
Jeon Y, Lee K, Sunwoo L, et al. Deep learning for diagnosis of paranasal sinusitis using multi-view radiographs. Diagnostics (Basel) 2021;11
|
12 |
Kim T, Heo J, Jang DK, et al. Machine learning for detecting moyamoya disease in plain skull radiography using a convolutional neural network. EBioMedicine 2019;40:636-642
DOI
|
13 |
Yu Y, Xie Y, Thamm T, et al. Use of deep learning to predict final ischemic stroke lesions from initial magnetic resonance imaging. JAMA Netw Open 2020;3:e200772
DOI
|
14 |
Langa KM, Levine DA. The diagnosis and management of mild cognitive impairment: a clinical review. JAMA 2014;312:2551-2561
DOI
|
15 |
Shim KY, Chung SW, Jeong JH, et al. Radiomics-based neural network predicts recurrence patterns in glioblastoma using dynamic susceptibility contrast-enhanced MRI. Sci Rep 2021;11:9974
DOI
|
16 |
Grigorescu S, Trasnea B, Cocias T, Macesanu G. A survey of deep learning techniques for autonomous driving. J Field Robot 2020;37:362-386
DOI
|
17 |
Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017;542:115-118
DOI
|
18 |
Kim HE, Kim HH, Han BK, et al. Changes in cancer detection and false-positive recall in mammography using artificial intelligence: a retrospective, multireader study. Lancet Digit Health 2020;2:e138-e148
DOI
|
19 |
Mazurowski MA. Radiogenomics: what it is and why it is important. J Am Coll Radiol 2015;12:862-866
DOI
|
20 |
Choi YS, Bae S, Chang JH, et al. Fully automated hybrid approach to predict the IDH mutation status of gliomas via deep learning and radiomics. Neuro Oncol 2021;23:304-313
DOI
|
21 |
Park JE, Park SY, Kim HJ, Kim HS. Reproducibility and generalizability in radiomics modeling: possible strategies in radiologic and statistical perspectives. Korean J Radiol 2019;20:1124-1137
DOI
|
22 |
Chang PD, Malone HR, Bowden SG, et al. A multiparametric model for mapping cellularity in glioblastoma using radiographically localized biopsies. AJNR Am J Neuroradiol 2017;38:890-898
DOI
|
23 |
Choi KS, Choi SH, Jeong B. Prediction of IDH genotype in gliomas with dynamic susceptibility contrast perfusion MR imaging using an explainable recurrent neural network. Neuro Oncol 2019;21:1197-1209
DOI
|
24 |
Patel RR, Mehta MP. Targeted therapy for brain metastases: improving the therapeutic ratio. Clin Cancer Res 2007;13:1675-1683
DOI
|
25 |
Bae S, An C, Ahn SS, et al. Robust performance of deep learning for distinguishing glioblastoma from single brain metastasis using radiomic features: model development and validation. Sci Rep 2020;10:12110
DOI
|
26 |
Knoll F, Zbontar J, Sriram A, et al. fastMRI: a publicly available raw k-space and DICOM dataset of knee images for accelerated MR image reconstruction using machine learning. Radiol Artif Intell 2020;2:e190007
DOI
|
27 |
Rauschecker AM, Rudie JD, Xie L, et al. Artificial intelligence system approaching neuroradiologist-level differential diagnosis accuracy at brain MRI. Radiology 2020;295:626-637
DOI
|
28 |
Lin L, Dou Q, Jin YM, et al. Deep learning for automated contouring of primary tumor volumes by MRI for nasopharyngeal carcinoma. Radiology 2019;291:677-686
DOI
|
29 |
Kim HY, Cho SJ, Sunwoo L, et al. Classification of true progression after radiotherapy of brain metastasis on MRI using artificial intelligence: a systematic review and meta-analysis. Neurooncol Adv 2021;3:vdab080
|
30 |
Szegedy C, Ioffe S, Vanhoucke V, Alemi AA. Inception-v4, inception-ResNet and the impact of residual connections on learning. In:Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence. San Francisco, California, USA: AAAI Press, 2017: 4278-4284
|
31 |
Lee KJ, Ryoo I, Choi D, Sunwoo L, You SH, Jung HN. Performance of deep learning to detect mastoiditis using multiple conventional radiographs of mastoid. PLoS One 2020;15:e0241796
DOI
|
32 |
Ho KC, Speier W, Zhang H, Scalzo F, El-Saden S, Arnold CW. A machine learning approach for classifying ischemic stroke onset time from imaging. IEEE Trans Med Imaging 2019;38:1666-1676
DOI
|
33 |
Dashtbani Moghari M, Zhou L, Yu B, et al. Efficient radiation dose reduction in whole-brain CT perfusion imaging using a 3D GAN: performance and clinical feasibility. Phys Med Biol 2021;66
|
34 |
Lao J, Chen Y, Li ZC, et al. A deep learning-based radiomics model for prediction of survival in glioblastoma multiforme. Sci Rep 2017;7:10353
DOI
|
35 |
Han Y, Sunwoo L, Ye JC. k-space deep learning for accelerated MRI. IEEE Trans Med Imaging 2020;39:377-386
DOI
|
36 |
Chung H, Cha E, Sunwoo L, Ye JC. Two-stage deep learning for accelerated 3D time-of-flight MRA without matched training data. Med Image Anal 2021;71:102047
DOI
|
37 |
Lee D, Kim J, Moon W-J, Ye JC. CollaGAN: collaborative GAN for missing image data imputation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019:2487-2496
|
38 |
Choi KS, You SH, Han Y, Ye JC, Jeong B, Choi SH. Improving the reliability of pharmacokinetic parameters at dynamic contrast-enhanced MRI in astrocytomas: a deep learning approach. Radiology 2020;297:178-188
DOI
|
39 |
Balakrishnan G, Zhao A, Sabuncu MR, Guttag J, Dalca AV. VoxelMorph: a learning framework for deformable medical image registration. IEEE Transactions on Medical Imaging 2019;38:1788-1800
DOI
|
40 |
Avants BB, Tustison NJ, Song G, Cook PA, Klein A, Gee JC. A reproducible evaluation of ANTs similarity metric performance in brain image registration. Neuroimage 2011;54:2033-2044
DOI
|
41 |
Lee D, Lee J, Ko J, Yoon J, Ryu K, Nam Y. Deep learning in MR image processing. Investig Magn Reson Imaging 2019;23:81-99
DOI
|
42 |
Louis DN, Perry A, Wesseling P, et al. The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro Oncol 2021;23:1231-1251
DOI
|
43 |
Singh G, Manjila S, Sakla N, et al. Radiomics and radiogenomics in gliomas: a contemporary update. Br J Cancer 2021;125:641-657
DOI
|
44 |
Aerts HJ, Velazquez ER, Leijenaar RT, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 2014;5:4006
DOI
|
45 |
Kim JY, Park JE, Jo Y, et al. Incorporating diffusion-and perfusion-weighted MRI into a radiomics model improves diagnostic performance for pseudoprogression in glioblastoma patients. Neuro Oncol 2019;21:404-414
DOI
|
46 |
Wang G, Ye JC, Mueller K, Fessler JA. Image reconstruction is a new frontier of machine learning. IEEE Trans Med Imaging 2018;37:1289-1296
DOI
|
47 |
Kim B, Kim DH, Park SH, Kim J, Lee JG, Ye JC. CycleMorph: cycle consistent unsupervised deformable image registration. Med Image Anal 2021;71:102036
DOI
|
48 |
Park JS, Lim E, Choi SH, Sohn CH, Lee J, Park J. Model-based high-definition dynamic contrast enhanced MRI for concurrent estimation of perfusion and microvascular permeability. Med Image Anal 2020;59:101566
DOI
|
49 |
Lei Y, Harms J, Wang T, et al. MRI-only based synthetic CT generation using dense cycle consistent generative adversarial networks. Med Phys 2019;46:3565-3581
DOI
|
50 |
Ramalho J, Semelka RC, Ramalho M, Nunes RH, AlObaidy M, Castillo M. Gadolinium-based contrast agent accumulation and toxicity: an update. AJNR Am J Neuroradiol 2016;37:1192-1198
DOI
|
51 |
Hornik K, Stinchcombe M, White H. Multilayer feedforward networks are universal approximators. Neural Netw 1989;2:359-366
DOI
|
52 |
Gulshan V, Peng L, Coram M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 2016;316:2402-2410
DOI
|
53 |
Cole EB, Zhang Z, Marques HS, Edward Hendrick R, Yaffe MJ, Pisano ED. Impact of computer-aided detection systems on radiologist accuracy with digital mammography. AJR Am J Roentgenol 2014;203:909-916
DOI
|
54 |
Kim KH, Choi SH, Park SH. Improving arterial spin labeling by using deep learning. Radiology 2018;287:658-666
DOI
|
55 |
Kang E, Koo HJ, Yang DH, Seo JB, Ye JC. Cycle-consistent adversarial denoising network for multiphase coronary CT angiography. Med Phys 2019;46:550-562
DOI
|
56 |
Jin CB, Kim H, Liu M, et al. Deep CT to MR synthesis using paired and unpaired data. Sensors 2019;19:2361
DOI
|
57 |
Chilamkurthy S, Ghosh R, Tanamala S, et al. Deep learning algorithms for detection of critical findings in head CT scans: a retrospective study. Lancet 2018;392:2388-2396
DOI
|
58 |
Jo T, Nho K, Saykin AJ. Deep learning in Alzheimer's disease: diagnostic classification and prognostic prediction using neuroimaging data. Front Aging Neurosci 2019;11:220
DOI
|
59 |
Yun J, Park JE, Lee H, Ham S, Kim N, Kim HS. Radiomic features and multilayer perceptron network classifier: a robust MRI classification strategy for distinguishing glioblastoma from primary central nervous system lymphoma. Sci Rep 2019;9:5746
DOI
|
60 |
Liu F, Jang H, Kijowski R, Zhao G, Bradshaw T, McMillan AB. A deep learning approach for 18F-FDG PET attenuation correction. EJNMMI Phys 2018;5:24
DOI
|
61 |
Wen PY, Macdonald DR, Reardon DA, et al. Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol 2010;28:1963-1972
DOI
|
62 |
Park SH, Han K. Methodologic guide for evaluating clinical performance and effect of artificial intelligence technology for medical diagnosis and prediction. Radiology 2018;286:800-809
DOI
|
63 |
Mateen BA, Liley J, Denniston AK, Holmes CC, Vollmer SJ. Improving the quality of machine learning in health applications and clinical research. Nat Mach Intell 2020;2:554-556
DOI
|
64 |
Liu F, Jang H, Kijowski R, Bradshaw T, McMillan AB. Deep learning MR imaging-based attenuation correction for PET/MR imaging. Radiology 2018;286:676-684
DOI
|
65 |
Titano JJ, Badgeley M, Schefflein J, et al. Automated dee-pneural-network surveillance of cranial images for acute neurologic events. Nat Med 2018;24:1337-1341
DOI
|
66 |
Kuo W, Hne C, Mukherjee P, Malik J, Yuh EL. Expert-level detection of acute intracranial hemorrhage on head computed tomography using deep learning. Proc Natl Acad Sci U S A 2019;116:22737-22745
DOI
|
67 |
Lee H, Yune S, Mansouri M, et al. An explainable deep-learning algorithm for the detection of acute intracranial haemorrhage from small datasets. Nat Biomed Eng 2019;3:173-182
DOI
|
68 |
Kickingereder P, Isensee F, Tursunova I, et al. Automated quantitative tumour response assessment of MRI in neuro-oncology with artificial neural networks: a multicentre, retrospective study. Lancet Oncol 2019;20:728-740
DOI
|
69 |
Cho J, Kim YJ, Sunwoo L, et al. Deep learning-based computer-aided detection system for automated treatment response assessment of brain metastases on 3D MRI. Front Oncol 2021;11:739639
DOI
|
70 |
Kim DW, Jang HY, Kim KW, Shin Y, Park SH. Design characteristics of studies reporting the performance of artificial intelligence algorithms for diagnostic analysis of medical images: results from recently published papers. Korean J Radiol 2019;20:405-410
DOI
|
71 |
Harvey H, Oakden-Rayner L. Guidance for interventional trials involving artificial intelligence. Radiol Artif Intell 2020;2:e200228
DOI
|
72 |
Arpit D, Jastrzebski S, Ballas N, et al. A closer look at memorization in deep networks. In International Conference on Machine Learning: PMLR, 2017:233-242
|
73 |
Sounderajah V, Ashrafian H, Aggarwal R, et al. Developing specific reporting guidelines for diagnostic accuracy studies assessing AI interventions: the STARD-AI Steering Group. Nat Med 2020;26:807-808
DOI
|