Browse > Article

Understanding of Neuroimaging and Its Perspectives in Mental Illnesses  

Kim, Jae-Jin (Department of Psychiatry, Yonsei University College of Medicine)
Han, Ki-Wan (Department of Biomedical Science, Yonsei University College of Medicine)
Lee, Jung-Suk (Department of Psychiatry, Yonsei University College of Medicine)
Choi, Soo-Hee (Department of Psychiatry, Yonsei University College of Medicine)
Publication Information
Korean Journal of Biological Psychiatry / v.18, no.1, 2011 , pp. 5-14 More about this Journal
Abstract
Neuroimaging in psychiatry encompasses the powerful tools available for the in vivo study of brain structure and function. MRI including the volumetry, voxel-base morphometry(VBM) and diffusion tensor imaging (DTI) are useful for assessing brain structure, whereas function MRI, positron emission tomography(PET) and magnetoencephalography(MEG) are well established for probing brain function. These tools are well tolerated by the vast majority of psychiatric patients because they provide a powerful but noninvasive means to directly evaluate the brain. Although neuroimaging technology is currently used only to rule in or rule out general medical conditions as opposed to diagnosing primary mental disorders, it may be used to confirm or make psychiatric diagnoses in the future. In addition, neuroimaging may be valuable for predicting the natural course of psychiatric illness as well as treatment response.
Keywords
Neuroimaging; Brain structure; Brain function; Mental illnesses;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Novelline RA, Squire LF. Squire's Fundamentals of Radiology. 5th ed. Massachusetts, USA: Harvard University Press;2004.
2 Lauterbur PC. Image formation by induced local interactions: examples employing nuclear magnetic resonance. Nature 1973;242:190-191.   DOI
3 Hinshaw WS, Bottomley PA, Holland GN. Radiographic thin-section image of the human wrist by nuclear magnetic resonance. Nature 1977;270:722-723.   DOI   ScienceOn
4 Lipton ML. Totally Accessible MRI: A User's Guide to Principles, Technology, and Applications. 1st ed. New York, USA: Springer;2008.
5 O'Brien JT. Role of imaging techniques in the diagnosis of dementia. Br J Radiol 2007;80:S71-S77.   DOI   ScienceOn
6 Ashburner J, Friston KJ. Voxel-based morphometry--the methods. Neuroimage 2000;11:805-821.   DOI   ScienceOn
7 Watkins KE, Paus T, Lerch JP, Zijdenbos A, Collins DL, Neelin P, et al. Structural asymmetries in the human brain: a voxel-based statistical analysis of 142 MRI scans. Cereb Cortex 2001;11:868-877.   DOI
8 Maguire EA, Gadian DG, Johnsrude IS, Good CD, Ashburner J, Frackowiak RS, et al. Navigation-related structural change in the hippocampi of taxi drivers. Proc Natl Acad Sci U S A 2000;97:4398-4403.   DOI   ScienceOn
9 Ogawa S, Tank DW, Menon R, Ellermann JM, Kim SG, Merkle H, et al. Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci U S A 1992;89:5951-5955.   DOI   ScienceOn
10 Roy CS, Sherrington CS. On the Regulation of the Blood-supply of the Brain. J Physiol 1890;11:85-158.   DOI
11 Kwong KK, Belliveau JW, Chesler DA, Goldberg IE, Weisskoff RM, Poncelet BP, et al. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci U S A 1992;89:5675-5679.   DOI   ScienceOn
12 Folstein M, Folstein S. Functional expressions of the aging brain. Nutr Rev 2010;68 Suppl 2:S70-S73.   DOI
13 Moseley ME, Cohen Y, Kucharczyk J, Mintorovitch J, Asgari HS, Wendland MF, et al. Diffusion-weighted MR imaging of anisotropic water diffusion in cat central nervous system. Radiology 1990;176:439-445.   DOI
14 Filler AG, Bell BA. Axonal transport, imaging, and the diagnosis of nerve compression. Br J Neurosurg 1992;6:293-295.   DOI   ScienceOn
15 Filler A. Magnetic resonance neurography and diffusion tensor imaging: origins, history and clinical impact of the first 50,000 cases with an assessment of efficacy and utility in a prospective 5,000-patient study group. Neurosurgery 2009;65:A29-A43.   DOI   ScienceOn
16 Cherry S, Dahlbom M. PET: Physics, Instrumentation, and Scanners. 1st ed. New York, USA: Springer;2006.
17 Ter-Pogossian MM, Phelps ME, Hoffman EJ, Mullani NA. A positron-emission transaxial tomograph for nuclear imaging(PETT). Radiology 1975;114:89-98.   DOI
18 Cho ZH, Chan JK, Eriksson L. Circular ring transverse axial positron camera for 3-dimensional reconstruction of radionuclides distribution. IEEE Trans Nucl Sci 1976;23:613-622.   DOI
19 Pichler BJ, Judenhofer MS, Pfannenberg C. Multimodal imaging approaches: PET/CT and PET/MRI. Handb Exp Parmacol;2008:109-132.
20 Reivich M, Kuhl D, Wolf A, Greenberg J, Phelps M, Ido T, et al. The [18F]fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man. Circ Res 1979;44:127-137.   DOI   ScienceOn
21 Ricker JH, Muller RA, Zafonte RD, Black KM, Millis SR, Chugani H. Verbal recall and recognition following traumatic brain injury: a [0-15]-water positron emission tomography study. J Clin Exp Neuropsychol 2001;23:196-206.   DOI   ScienceOn
22 Fowler JS, Ido T. Initial and subsequent approach for the synthesis of 18FDG. Semin Nucl Med 2002;32:6-12.   DOI   ScienceOn
23 Som P, Atkins HL, Bandoypadhyay D, Fowler JS, Mac-Gregor RR, Matsui K, et al. A fluorinated glucose analog, 2-fluoro-2-deoxy-D-glucose(F-18): nontoxic tracer for rapid tumor detection. J Nucl Med 1980;21:670-675.
24 Herscovitch P, Markham J, Raichle ME. Brain blood flow measured with intravenous H2(15)O: I. Theory and error analysis. J Nucl Med 1983;24:782-789.
25 Morris ED, Fisher RE, Alpert NM, Rauch SL, Fischman AJ. In vivo imaging of neuromodulation using positron emission tomography: optimal ligand characteristics and task length for detection of activation. Hum Brain Mapp 1995;3:35-55.   DOI
26 Cohen D. Magnetoencephalography: detection of the brain's electrical activity with a superconducting magnetometer. Science 1972;175:664-666.   DOI
27 Sutherling WW, Crandall PH, Darcey TM, Becker DP, Levesque MF, Barth DS. The magnetic and electric fields agree with intracranial localizations of somatosensory cortex. Neurology 1988;38:1705-1714.   DOI
28 de Jongh A, Baayen JC, de Munck JC, Heethaar RM, Vandertop WP, Stam CJ. The influence of brain tumor treatment on pathological delta activity in MEG. Neuroimage 2003;20:2291-2301.   DOI   ScienceOn
29 Staal WG, Hulshoff Pol HE, Schnack HG, Hoogendoorn ML, Jellema K, Kahn RS. Structural brain abnormalities in patients with schizophrenia and their healthy siblings. Am J Psychiatry 2000;157:416-421.   DOI   ScienceOn
30 Flaum M, Swayze VW 2nd, O'Leary DS, Yuh WT, Herhardt JC, Arndt SV, et al. Effects of diagnosis, laterality, and gender on brain morphology in schizophrenia. Am J Psychiatry 1995;152:704-714.   DOI
31 McKinnon MC, Yucel K, Nazarov A, MacQueen GM. A meta-analysis examining clinical predictors of hippocampal volume in patients with major depressive disorder. J Psychiatry Neurosci 2009;34:41-54.
32 Jung WH, Jang JH, Byun MS, An SK, Kwon JS. Structural brain alterations in individuals at ultra-high risk for psychosis: a review of magnetic resonance imaging studies and future directions. J Korean Med Sci 2010;25:1700-1709.   DOI   ScienceOn
33 Keshavan MS, Dick E, Mankowski I, Harenski K, Montrose DM, Diwadkar V, et al. Decreased left amygdala and hippocampal volumes in young offspring at risk for schizophrenia. Schizophr Res 2002;58:173-183.   DOI
34 Seidman LJ, Faraone SV, Goldstein JM, Kremen WS, Horton NJ, Makris N, et al. Left hippocampal volume as a vulnerability indicator for schizophrenia: a magnetic resonance imaging morphometric study of nonpsychotic first-degree relatives. Arch Gen Psychiatry 2002;59:839-849.   DOI   ScienceOn
35 Chen MC, Hamilton JP, Gotlib IH. Decreased hippocampal volume in healthy girls at risk of depression. Arch Gen Psychiatry 2010;67:270-276.   DOI   ScienceOn
36 Kaymaz N, van Os J. Heritability of structural brain traits an endophenotype approach to deconstruct schizophrenia. Int Rev Neurobiol 2009;89:85-130.
37 DeLisi LE, Hoff AL, Schwartz JE, Shields GW, Halthore SN, Gupta SM, et al. Brain morphology in first-episode schizophrenic-like psychotic patients: a quantitative magnetic resonance imaging study. Biol Psychiatry 1991;29:159-175.
38 Hirayasu Y, Shenton ME, Salisbury DF, Dickey CC, Fischer IA, Mazzoni P, et al. Lower left temporal lobe MRI volumes in patients with first-episode schizophrenia compared with psychotic patients with first-episode affective disorder and normal subjects. Am J Psychiatry 1998;155:1384-1391.   DOI
39 Keshavan MS, Haas GL, Kahn CE, Aguilar E, Dick EL, Schooler NR, et al. Superior temporal gyrus and the course of early schizophrenia: progressive, static, or reversible? J Psychiatr Res 1998;32:161-167.   DOI   ScienceOn
40 Ebdrup BH, Glenthoj B, Rasmussen H, Aggernaes B, Langkilde AR, Paulson OB, et al. Hippocampal and caudate volume reductions in antipsychotic-naive first-episode schizophrenia. J Psychiatry Neurosci 2010;35:95-104.   DOI   ScienceOn
41 Cahn W, Hulshoff Pol HE, Bongers M, Schnack HG, Mandl RC, Van Haren NE, et al. Brain morphology in antipsychotic-nalve schizophrenia: a study of multiple brain structures. Br J Psychiatry Suppl 2002;43:s66-s72.
42 Bonilha L, Molnar C, Horner MD, Anderson B, Forster L, George MS, et al. Neurocognitive deficits and prefrontal cortical atrophy in patients with schizophrenia. Schizophr Res 2008;101:142-151.   DOI   ScienceOn
43 Gur RE, Cowell P, Turetsky BI, Gallacher F, Cannon T, Bilker W, et al. A follow-up magnetic resonance imaging study of schizophrenia. Relationship of neuroanatomical changes to clinical and neurobehavioral measures. Arch Gen Psychiatry 1998;55:145-152.   DOI   ScienceOn
44 Takahashi T, Wood SJ, Soulsby B, McGorry PD, Tanino R, Suzuki M, et al. Follow-up MRI study of the insular cortex in first-episode psychosis and chronic schizophrenia. Schizophr Res 2009;108:49-56.   DOI
45 Scherk H, Falkai P. Effects of antipsychotics on brain structure. Curr Opin Psychiatry 2006;19:145-150.   DOI   ScienceOn
46 Cheng YQ, Xu J, Chai P, Li HJ, Luo CR, Yang T, et al. Brain volume alteration and the correlations with the clinical characteristics in drug-nal¨ve first-episode MDD patients: a voxel-based morphometry study. Neurosci Lett 2010;480:30-34.   DOI   ScienceOn
47 Narr KL, Toga AW, Szeszko P, Thompson PM, Woods RP, Robinson D, et al. Cortical thinning in cingulate and occipital cortices in first episode schizophrenia. Biol Psychiatry 2005;58:32-40.   DOI   ScienceOn
48 Nesvag R, Lawyer G, Varnas K, Fjell AM, Walhovd KB, Frigessi A, et al. Regional thinning of the cerebral cortex in schizophrenia: effects of diagnosis, age and antipsychotic medication. Schizophr Res 2008;98:16-28.
49 Schultz CC, Koch K, Wagner G, Roebel M, Nenadic I, Gaser C, et al. Increased parahippocampal and lingual gyrification in first-episode schizophrenia. Schizophr Res 2010;123:137-144.   DOI
50 Qiu A, Zhong J, Graham S, Chia MY, Sim K. Combined analyses of thalamic volume, shape and white matter integrity in first-episode schizophrenia. Neuroimage 2009;47:1163-1171.   DOI   ScienceOn
51 Qiu A, Tuan TA, Woon PS, Abdul-Rahman MF, Graham S, Sim K. Hippocampal-cortical structural connectivity disruptions in schizophrenia: an integrated perspective from hippocampal shape, cortical thickness, and integrity of white matter bundles. Neuroimage 2010;52:1181-1189.   DOI   ScienceOn
52 Fox MD, Raichle ME. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 2007;8:700-711.   DOI   ScienceOn
53 Ecker C, Marquand A, Mourao-Miranda J, Johnston P, Daly EM, Brammer MJ, et al. Describing the brain in autism in five dimensions--magnetic resonance imagingassisted diagnosis of autism spectrum disorder using a multiparameter classification approach. J Neurosci 2010;30:10612-10623.   DOI   ScienceOn
54 Yoon U, Lee JM, Im K, Shin YW, Cho BH, Kim IY, et al. Pattern classification using principal components of cortical thickness and its discriminative pattern in schizophrenia. Neuroimage 2007;34:1405-1415.   DOI   ScienceOn
55 Kanaan RA, Kim JS, Kaufmann WE, Pearlson GD, Barker GJ, McGuire PK. Diffusion tensor imaging in schizophrenia. Biol Psychiatry 2005;58:921-929.   DOI   ScienceOn
56 Le Bihan D, Jezzard P, Haxby J, Sadato N, Rueckert L, Mattay V. Functional magnetic resonance imaging of the brain. Ann Intern Med 1995;122:296-303.   DOI   ScienceOn
57 Rombouts SA, Barkhof F, Goekoop R, Stam CJ, Scheltens P. Altered resting state networks in mild cognitive impairment and mild Alzheimer's disease: an fMRI study. Hum Brain Mapp 2005;26:231-239.   DOI   ScienceOn
58 Perlstein WM, Dixit NK, Carter CS, Noll DC, Cohen JD. Prefrontal cortex dysfunction mediates deficits in working memory and prepotent responding in schizophrenia. Biol Psychiatry 2003;53:25-38.   DOI   ScienceOn
59 Keedwell PA, Andrew C, Williams SC, Brammer MJ, Phillips ML. The neural correlates of anhedonia in major depressive disorder. Biol Psychiatry 2005;58:843-853.   DOI   ScienceOn
60 Taylor SF, Phan KL, Britton JC, Liberzon I. Neural response to emotional salience in schizophrenia. Neuropsychopharmacology 2005;30:984-995.   DOI   ScienceOn
61 Dierks T, Linden DE, Jandl M, Formisano E, Goebel R, Lanfermann H, et al. Activation of Heschl's gyrus during auditory hallucinations. Neuron 1999;22:615-621.   DOI   ScienceOn
62 Owen AM, Coleman MR, Boly M, Davis MH, Laureys S, Pickard JD. Detecting awareness in the vegetative state. Science 2006;313:1402.   DOI
63 Greicius MD, Krasnow B, Reiss AL, Menon V. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci U S A 2003;100:253-258.   DOI   ScienceOn
64 Haut KM, Lim KO, MacDonald A 3rd. Prefrontal cortical changes following cognitive training in patients with chronic schizophrenia: effects of practice, generalization, and specificity. Neuropsychopharmacology 2010;35:1850-1859.   DOI   ScienceOn
65 Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL. A default mode of brain function. Proc Natl Acad Sci U S A 2001;98:676-682.   DOI   ScienceOn
66 Broyd SJ, Demanuele C, Debener S, Helps SK, James CJ, Sonuga-Barke EJ. Default-mode brain dysfunction in mental disorders: a systematic review. Neurosci Biobehav Rev 2009;33:279-296.   DOI   ScienceOn
67 Gusnard DA, Raichle ME, Raichle ME. Searching for a baseline: functional imaging and the resting human brain. Nat Rev Neurosci 2001;2:685-694.   DOI   ScienceOn
68 Eichele T, Debener S, Calhoun VD, Specht K, Engel AK, Hugdahl K, et al. Prediction of human errors by maladaptive changes in event-related brain networks. Proc Natl Acad Sci U S A 2008;105:6173-6178.   DOI   ScienceOn
69 Buzsaki G, Draguhn A. Neuronal oscillations in cortical networks. Science 2004;304:1926-1929.   DOI   ScienceOn
70 Mason MF, Norton MI, Van Horn JD, Wegner DM, Grafton ST, Macrae CN. Wandering minds: the default network and stimulus-independent thought. Science 2007;315:393-395.   DOI
71 Zhou Y, Liang M, Tian L, Wang K, Hao Y, Liu H, et al. Functional disintegration in paranoid schizophrenia using resting-state fMRI. Schizophr Res 2007;97:194-205.   DOI   ScienceOn
72 Castellanos FX, Margulies DS, Kelly C, Uddin LQ, Ghaffari M, Kirsch A, et al. Cingulate-precuneus interactions: a new locus of dysfunction in adult attentiondeficit/hyperactivity disorder. Biol Psychiatry 2008;63:332-337.   DOI   ScienceOn
73 Kelly AM, Uddin LQ, Biswal BB, Castellanos FX, Milham MP. Competition between functional brain networks mediates behavioral variability. Neuroimage 2008;39:527-537.   DOI   ScienceOn
74 Greicius MD, Flores BH, Menon V, Glover GH, Solvason HB, Kenna H, et al. Resting-state functional connectivity in major depression: abnormally increased contributions from subgenual cingulate cortex and thalamus. Biol Psychiatry 2007;62:429-437.   DOI   ScienceOn
75 Damoiseaux JS, Beckmann CF, Arigita EJ, Barkhof F, Scheltens P, Stam CJ, et al. Reduced resting-state brain activity in the "default network" in normal aging. Cereb Cortex 2008;18:1856-1864.   DOI   ScienceOn
76 Wang L, Zang Y, He Y, Liang M, Zhang X, Tian L, et al. Changes in hippocampal connectivity in the early stages of Alzheimer's disease: evidence from resting state fMRI. Neuroimage 2006;31:496-504.   DOI   ScienceOn
77 Garrity AG, Pearlson GD, McKiernan K, Lloyd D, Kiehl KA, Calhoun VD. Aberrant "default mode" functional connectivity in schizophrenia. Am J Psychiatry 2007;164:450-457.   DOI   ScienceOn
78 Pihlajamaki M, O'Keefe K, Bertram L, Tanzi RE, Dickerson BC, Blacker D, et al. Evidence of altered posteromedial cortical FMRI activity in subjects at risk for Alzheimer disease. Alzheimer Dis Assoc Disord 2010;24:28-36.   DOI   ScienceOn
79 Horwitz B. The elusive concept of brain connectivity. Neuroimage 2003;19:466-470.   DOI   ScienceOn
80 Greicius MD, Supekar K, Menon V, Dougherty RF. Resting-state functional connectivity reflects structural connectivity in the default mode network. Cereb Cortex 2009;19:72-78.   DOI
81 Hampson M, Tokoglu F, Sun Z, Schafer RJ, Skudlarski P, Gore JC, et al. Connectivity-behavior analysis reveals that functional connectivity between left BA39 and Broca's area varies with reading ability. Neuroimage 2006;31:513-519.   DOI   ScienceOn
82 Ranganath C, Heller A, Cohen MX, Brozinsky CJ, Rissman J. Functional connectivity with the hippocampus during successful memory formation. Hippocampus 2005;15:997-1005.   DOI   ScienceOn
83 Pezawas L, Meyer-Lindenberg A, Drabant EM, Verchinski BA, Munoz KE, Kolachana BS, et al. 5-HTTLPR polymorphism impacts human cingulate-amygdala interactions: a genetic susceptibility mechanism for depression. Nat Neurosci 2005;8:828-834.   DOI   ScienceOn
84 Zhou J, Greicius MD, Gennatas ED, Growdon ME, Jang JY, Rabinovici GD, et al. Divergent network connectivity changes in behavioural variant frontotemporal dementia and Alzheimer's disease. Brain 2010;133:1352-1367.   DOI   ScienceOn
85 Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A 2005;102:9673-9678.   DOI   ScienceOn
86 Raichle ME, Gusnard DA. Intrinsic brain activity sets the stage for expression of motivated behavior. J Comp Neurol 2005;493:167-176.   DOI   ScienceOn
87 Fransson P. How default is the default mode of brain function? Further evidence from intrinsic BOLD signal fluctuations. Neuropsychologia 2006;44:2836-2845.   DOI   ScienceOn
88 Kim E, Ku J, Namkoong K, Lee W, Lee KS, Park JY, et al. Mammillothalamic functional connectivity and memory function in Wernicke's encephalopathy. Brain 2009;132:369-376.   DOI
89 Moses-Kolko EL, Perlman SB, Wisner KL, James J, Saul AT, Phillips ML. Abnormally reduced dorsomedial prefrontal cortical activity and effective connectivity with amygdala in response to negative emotional faces in postpartum depression. Am J Psychiatry 2010;167:1373-1380.   DOI   ScienceOn
90 Kim E, Ku J, Jung YC, Lee H, Kim SI, Kim JJ, et al. Restoration of mammillothalamic functional connectivity through thiamine replacement therapy in Wernicke's encephalopathy. Neurosci Lett 2010;479:257-261.   DOI   ScienceOn