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Artificial Intelligence in Neuroimaging: 
Clinical Applications

INTRODUCTION

Artificial intelligence (AI) augmented by the emergence of deep learning (DL) is 
rapidly changing lives of humans, let alone those of neuroradiologists. Over the past 
several years, DL has been applied to many studies at the cutting edge of neuroimaging. 
It has shown its potential to change the practice in every corner of radiology. By 
reducing the tedious work of detecting brain metastases (BM) (1, 2) and predicting 
genetic mutations of glioblastoma and patient survival (3, 4) to improve the quality 
of images hampered by motion artifacts (5), AI is now ready to give a full play of its 
ability. In this review, we will focus on four main categories of clinical application of AI 
in neuroimaging: 1) detection/diagnosis, 2) prediction, 3) image quality improvement, 
and 4) clinical workflow improvement.

Brief Overview of DL in Neuroimaging
DL refers to the use of more than one hidden layer in a multilayer perceptron (MLP). 

Universal approximation theorem (6) has proven that all functions are approximatable 
using MLP. Later, Arpit et al. (7) have shown that DL is capable not because of its 
high model capacity, but because of its “good” feature extractability. Due to their 
high representational capacity and generalizable feature extraction, DL models have 
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feasibility for applications in medical imaging. Various aspects of clinical practice 
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in detecting brain metastases, predicting treatment response of brain tumors, 
generating a parametric map of dynamic contrast-enhanced MRI, and enhancing 
radiomics research by extracting salient features from input images. In addition, 
image quality can be improved via AI-based image reconstruction or motion artifact 
reduction. In this review, we summarize recent clinical applications of DL in various 
aspects of neuroimaging.
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shown superior performance, particularly in classification 
tasks with complex high-dimensional data such as 
autonomous driving (8), diagnosis of retinal diseases (9), 
and dermatologic diseases (10). Recently, generative models 
such as cycle-consistent generative adversarial network 
(cycleGAN) have also shown good performances for other 
tasks such as image generation. Over the last decade, 
dedicated DL algorithms for various types of data such as 
neuroimaging data, time-series data, and graph-structured 
data have been developed. A more in-depth review focusing 
on technical aspects of DL has been published previously 
(11). 

Clinical Applications
Many AI papers in the field of neuroimaging are 

increasingly being published annually. While initial 
studies mainly focused on exploring the feasibility of AI 
algorithms, researchers are becoming more interested in 
clinical applications of AI in neuroimaging. We categorized 
clinical applications of AI into the following four groups: 1) 
automated detection or diagnosis, 2) prediction of outcome, 
lesion extent, disease status, etc., 3) improving the quality 
of the image, and 4) improving the clinical workflow (Fig. 1).

Detection/Diagnosis
Traditionally, many radiological studies have focused 

on the detection of lesions and diagnosis. In the field of 
computer-aided detection (CADe), conventional feature-
based models have been suggested for automated lesion 
detection. However, due to their low sensitivity, their clinical 
integration has been difficult to significantly improve 
the performance of radiologists (12). With the help of DL 
models based on convolutional neural networks (CNNs) 
have shown near-human performance with high sensitivity, 
specifically showing a low false-positive rate. Several 
clinical applications are now commercially available, such 
as detecting pulmonary nodules on chest radiographs and 
breast cancer on mammography (13). 

In neuroimaging, there are several topics related to 
the detection/diagnosis using AI-based models, such 
as detecting BM or providing a differential diagnosis 
for various neurological disorders. Magnetic resonance 
imaging (MRI) is the best non-invasive imaging modality 
for oncologic imaging, such as for BM detection, owing to 
its excellent soft-tissue contrast. Significant improvement 
in treatment outcomes of radiation therapy, including 
stereotactic radiosurgery, makes accurate detection of BM 

Fig. 1. Graphical overview of main clinical applications of artificial intelligence (AI) in neuroimaging. DCE = dynamic 
contrast-enhanced; MRI = magnetic resonance imaging; PET = positron emission tomography
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more crucial (14, 15). Thus, the need for BM-CADe has 
greatly increased in the clinical setting. Recently, Zhou et 
al. (2) have found a sensitivity of 98% for detecting BM ≤ 
6-mm using a DL algorithm called single-shot detector  by 
matching a tightly aligned anchor box with the ground 
truth box. Next, coordinates and prediction confidence of 
the matching anchor boxes were regressed simultaneously 
from the pyramidal feature map (16). In addition, it has 
been shown that a CNN model using multi-sequence data 
as multi-channel images can detect and segment BM 
with a high accuracy (17). In a recent meta-analysis and 
systematic review of 12 related articles, Cho et al. (1) have 
found that the pooled detectability (or sensitivity) of the 
BM by AI algorithms is approximately 90%. 

After transfer learning, DeepBrainNet, a DL model based 
on the inception-ResNet-v2 framework trained on more 
than 14,000 brain MRI scans (18), has shown excellent 
performances in classification tasks such as diagnosis of 
Alzheimer’s dementia (AD), mild cognitive impairment (MCI), 
and schizophrenia (19). Interestingly, its performances 
are better than those of ImageNet-pretrained models. 
Rauschecker et al. (20) have developed an AI algorithm 
combining U-Net and Bayesian inference models to classify 
19 various neurological diseases. Target diseases include 
relatively common diseases (such as small vessel ischemic 
disease and brain tumors) and rare diseases (such as acute 
disseminated encephalomyelitis and progressive multifocal 
leukoencephalopathy). The algorithm could provide a 
correct diagnosis in approximately 90% of test cases, which 
is higher than that of radiology residents and similar to 
neuroradiologists (20). 

DL can also be applied to diagnose common head and 
neck diseases on radiographs to reduce the workload of 
radiologists. A ResNet-based CNN can diagnose maxillary 
sinusitis on Waters’ view radiographs with areas under the 
receiver operating characteristic curve (AUCs) of 0.88-0.93 
(21). This model has been further extended to detect frontal 
and ethmoid sinusitis using both Waters’ and Caldwell’s 
views (22). Similarly, a multi-view DL model for detecting 
mastoiditis has shown excellent performance in mastoid 
series with an AUC of 0.97 (23). Interestingly, DL can 
discriminate skull radiographs of patients with Moyamoya 
disease from those of controls (24).

Prediction 
AI can help predict the outcome or disease status that 

cannot be determined without an invasive procedure. From 
a technical standpoint, there is little difference between 

the prediction task and the classification/regression task 
because an AI model is generally trained to extract salient 
high-level features from the input data regardless of 
whether it deals with future, unknown things or not. Several 
topics that are suitable for predicting clinically relevant 
targets of AI among neurologic diseases include acute 
ischemic stroke, AD, and brain tumors. 

To support clinical decisions in stroke management, Yu 
et al. (25) have used baseline MRI without information on 
subsequent reperfusion therapy as input to predict the size 
and location of the infarction core 3-7 days later using 
an attention-gated U-Net. This may help clinicians select 
patients who need mechanical thrombectomy by predicting 
the growth of the infarction. In addition, Ho et al. (26) 
have proposed a machine learning approach to estimate 
the time-since-stroke from the stroke protocol MRI. They 
extracted imaging features using DL-based classifiers from 
conventional MR sequences and further extended the 
algorithm by incorporating hidden representations extracted 
from additional perfusion-weighted MR sequences (26).

Discrimination of MCI from early AD is clinically important 
because approximately 5-20% of MCI cases convert to AD 
cases annually. Thus, early appropriate treatment should 
be initiated to reduce the negative outcome of patients 
with AD (27). Hence, application of DL for the prediction 
of conversion from MCI to AD is an active area of research, 
along with multiple large ongoing clinical trials that gather 
large-scale multimodal neuroimaging data. According to a 
systematic review of AI algorithms for AD diagnosis (28), DL 
models such as CNN and recurrent neural network (RNN) 
show accuracies of up to 96.0% for AD classification and 
84.2% for MCI to AD prediction.

Meanwhile, radiomics, which refers to the extraction 
and analysis of large numbers of complex features 
from radiologic imaging data (29), and radiogenomics, 
which deciphers the relationship between radiomic and 
genomic information based on the fact that imaging can 
reflect tumor biology (30), have also shown successful 
performances in predicting various clinically relevant 
targets such as grading gliomas, predicting mutation status 
(31), treatment response (i.e., pseudoprogression vs. true 
progression) (32), recurrence pattern (i.e., local vs. distant 
recurrence) (33), prognostication, and survival prediction 
(4), as well as providing differential diagnosis between 
other confusing tumorous conditions such as lymphoma 
(34) and metastasis (35). They can capture intratumoral 
heterogeneity originating from the biological background 
of the imaging modality, which is sometimes referred to 
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as “imaging phenotyping.” For example, non-small cell 
lung cancer and head and neck cancer are known to show 
heterogeneous gene expression patterns believed to be 
linked to and expressed at the imaging level. Subsequently, 
radiogenomic analysis has successfully developed 
and validated the prognostic signature using imaging 
heterogeneity in other clinically relevant tumors such as 
glioblastoma.

Recent studies have shown that AI can also be useful in 
monitoring treatment response of brain tumor on follow-
up imaging studies, such as radiomics-based analysis of 
advanced multimodal sequences using diffuse-weighted or 
perfusion-weighted MRI (32) and robust feature extraction 
using DL-based segmentation (31, 36). Moreover, radiomics-
based prediction models are evolving from machine learning 
classifiers, such as support vector machines and random 
forests, to DL-based models, such as CNN and RNN. For 
example, Chang et al. (37) have developed a fully automated 
system to register biopsy sites from neuronavigational 
crosshairs to preoperative MRI using a CNN. Multimodal 
imaging measures at biopsy sites are then used to train the 
network using a cell density counting method applied to 
pathology images. Choi et al. (31) have found that a CNN 

hybrid model can extract good features, leading to a better 
performance in the prediction of isocitrate dehydrogenase 
(IDH) mutation than the random forest-based classifier or 
conventional radiomics approach in a fully automated and 
reproducible manner. In the future, efforts can be made 
to predict clinically relevant information such as genetic 
mutations using raw data from imaging phenotypes of 
complex dimensions or using appropriate DL-based models 
for each type of dataset, not predefined or manually 
extracted radiomic features. Interestingly, due to recent 
progress in radiomics, the term “rawdiomics” has been 
coined (38). For example, because convolutional filters/
kernels in CNN work as a better feature extractor than 
conventional radiomic features, which are predefined by 
experts, the DL-based radiomic signature shows a better 
performance than risk factors comprising only conventional 
radiomic features in survival prediction (39). Meanwhile, 
genetic mutation of glioblastoma can also be predicted 
using sequential data rather than single time-point image 
data. Specifically, temporal patterns learned from raw time-
series data obtained from dynamic susceptibility contrast-
enhanced (DSC) perfusion MRI using RNN can predict the 
mutation status of the IDH gene (3) (Fig. 2). 

Fig. 2. Exemplary deep learning-based model architecture for predicting genetic mutations in glioma. Adapted from Choi et 
al. (3). DSC = dynamic susceptibility contrast-enhanced; IDH = isocitrate dehydrogenase; LSTM = long short-term memory; 
ReLU = rectified linear unit 
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AI could assist in “integrated diagnosis” of the 2021 World 
Health Organization classification of central nervous system 
tumors (40), which includes more various mutations and 
molecular markers for better stratification of prognosis by 
filling the gap of spatial and gross morphologic information 
that genetic information cannot provide. Moreover, because 
approximately 7-15% of patients are pathologically 
diagnosed inconclusively, radiomics and/or radiogenomics-
based diagnosis may play a major diagnostic and prognostic 
role in the future (41). 

Image Quality Improvement
The quality of images can be improved using AI in various 

ways, including reconstruction of images from accelerated 
MR acquisition (42, 43), image co-registration (44), dose 
reduction (45), contrast conversion (46), improvement of 
perfusion MRI such as dynamic contrast-enhanced (DCE) 
MRI (47, 48), and arterial spin labeling (ASL) (49). 

Compressed sensing (CS) MRI undersamples the k-space 
to reduce scan time and aliasing artifacts at the same time. 
To further mitigate artifacts, a DL based on the k-space 
can be used to map between the under-sampled and fully 
sampled k-space or between aliased and full field-of-
view images, which is learned by a cascaded CNN using 
a skipped connection accompanied by an inverse Fourier 
transform (42). Chung et al. (43) have developed a DL 
model to reconstruct accelerated images of time-of-flight 
MR angiography using CS. Using a two-step model that is 
mainly based on the optimal transport cycleGAN, a type of 
generative model, the authors found that resultant images 
showed excellent quality compared to the original vendor 
images even at an acceleration factor of 8 (43). Recently, 
the fastMRI challenge was hosted by Facebook AI in 
collaboration with NYU Langone Health (50), which aimed 
to have up to 10-times faster scans, making MRI cost-
effective by reducing scan time.

For image co-registration, VoxelMorph (51), an early 
representative co-registration model using a convolutional 
U-Net, has shown better registration performance than 
other conventional non-DL-based methods such as 
Advanced Normalization Tools (52). Recently, Kim et al. 
(44) have applied cycleGAN to synthesize the deformation 
field in the registration or CycleMorph, which provides 
an implicit regularization of deformation and improves 
topological preservation in image registration. 

Computed tomography (CT) perfusion is a widely used 
modality for diagnosing and planning further management 
in acute ischemic stroke. However, its radiation dose is quite 

large due to dynamic acquisition. Dashtbani Moghari et al. 
(45) have mapped low-dose to normal-dose CT perfusion 
maps using a three-dimensional generative adversarial 
network (GAN), which might reduce the radiation dose 
while obtaining comparable image quality. GAN-based 
models have already shown significant progress in dose 
reduction in various fields other than neuroimaging (53). In 
addition, recent studies have shown that artifacts can be 
introduced when using vanilla GAN-based models without 
any additional loss functions. For example, Kang et al. have 
demonstrated that artificial features without adding cyclic 
and identity loss may be seen in synthesized CT images 
by GAN-based models in a DL-based dose reduction study 
regarding multiphase coronary CT angiography (53, 54).

DCE MRI has become an essential tool for assessing 
blood-brain-barrier leakage, which is useful for interpreting 
not only tumors, but also various diseases such as multiple 
sclerosis, stroke, and dementia (47). Despite the valuable 
microvascular permeability information it renders, DCE 
MRI suffers from unreliable parametric maps due to weak 
arterial input function (AIF), which is based on T1-signal 
intensity. Choi et al. (50) have shown that the reliability of 
DCE MRI can be improved using a pix2pix model, replacing 
the AIF of DCE MRI with that of DSC MRI, which is more 
robust to noise because of the stronger T2*-signal intensity. 
In addition to DCE MRI, ASL has been increasingly used in 
clinical practice because of its noninvasiveness, repeatability, 
advantages in quantification, and advancements in labeling 
and readout sequences. Specifically, ASL can obtain contrast 
enhancement without using a gadolinium-based contrast 
agent, which may be deposited in the brain parenchyma 
(55). However, it suffers from an inherently low signal-to-
noise ratio (SNR) and sensitivity to motion. Kim et al. (51) 
have improved the SNR and denoised motion artifacts of 
ASL using both local and global pathways of a CNN-based 
model in parallel. Using that model, the mean square errors 
of cerebral blood flow in stroke regions were significantly 
reduced compared to those of the conventional averaging 
method, indicating that the model could successfully reduce 
image noise.

Lee et al. (46) have developed CollaGAN, which converts 
an image imputation problem into a multi-domain images-
to-image translation task so that a single generator and 
discriminator network can successfully estimate the missing 
data using the remaining clean data set. They successfully 
applied the algorithm to contrast conversion between 
T1-, T2-weighted, and FLAIR sequences in brain MRI (46). 
Thus, the model could generate missing sequences among 
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four conventional structural sequences (T1-, T2-, contrast-
enhanced T1-weighted images, and FLAIR), which is 
essential for evaluating brain tumors. Some researchers 
have attempted to use DL to map between CT and MRI by 
generating synthetic T2-weighted images from brain CT, 
which will benefit patients who cannot undergo MRI scan 
because of medical conditions such as implanted cardiac 
pacemakers (56), or by generating synthetic CT images 
from 3D T1-weighted MRI using cycleGAN, which might 
allow MRI-based planning of radiation therapy (56, 57). 
However, these pioneering studies still need to be validated 
to determine whether they are clinically relevant. 

Clinical Workflow Improvement
Many studies have applied AI models to improve the 

clinical workflow, such as the detection of critical findings 
including intracranial hemorrhage (58-61) and attenuation 
correction of positron emission tomography (PET) images 
(62-64). Delayed detection of critical findings such as 
intracranial hemorrhage, skull fractures, and mass effect 
on brain CT may lead to irreversible damage to the patient. 
To address this issue, Titano et al. (58) have developed an 
automated triaging model to detect urgent neurologic 
events on brain CT using a natural language processing 
algorithm and found that it could reduce the time from 
image acquisition to clinician notification (58-61). 
Chilamkurthy et al. (59) have also developed a DL model to 
detect intracranial hemorrhage, skull fracture, and midline 
shifting using a large dataset containing more than 300,000 
brain CT scans and achieved an AUC of 0.92. These models 
have great potential to be adopted in clinical practice and 
advance the level of patient care. 

For PET/CT or PET/MR, DL-based attenuation correction 
has shown successful performance (62, 63). CT-based 
attenuation correction using DL provides quantitatively 
accurate 18F-FDG PET results with average errors of less 
than 1% in most brain regions (62). Similarly, MRI-based 
attenuation correction of DL has shown significantly lower 
PET reconstruction errors than conventional methods 
such as Dixon-based soft-tissue and air segmentation and 
anatomic CT-based template (63). Moreover, because they 
are both used only for attenuation correction rather than 
for evaluation of the lesion itself, controversy regarding the 
generation of pseudolesions can be avoided.

To assess treatment response of glioma, the Response 
Assessment in Neuro-Oncology (RANO) criteria recommend 
tracking the sum of products of the two-dimensional 
diameter of each tumor (65). However, such measurements 

are subjected to errors and high interobserver variability. 
Kickingereder et al. (66) have used an artificial neural 
network (ANN) to mitigate this issue. They found that 
ANN could perform accurate detection and segmentation 
of contrast-enhancing and non-enhancing tumors. 
Furthermore, the time to progression from the quantitative 
ANN-based assessment was found to be a better surrogate 
than the RANO-based assessment by central reviewers to 
predict overall survival in a clinical trial. Similarly, it has 
been shown that DL could provide an automated treatment 
response assessment for BM using RANO-BM criteria (67).

AI can also assist in radiation therapy planning by offering 
automated contouring of tumor volumes on MRI (64). In a 
multicenter evaluation, AI-assisted contouring can improve 
contouring accuracy and reduce intra- and inter-observer 
variations. Moreover, it can reduce the contouring time by 
approximately 40%.

Future Directions
We have taken a glance at some studies on clinical 

applications of AI in neuroimaging. We believe that the 
feasibility exploration phase of applying AI in neuroimaging 
is almost over. Now it is necessary to obtain high-level 
evidence to deploy AI models to the current practice. 
Recently, Park et al. (68) have suggested a methodological 
guide for evaluating the clinical performance of AI. 
However, a clear gap is observed between this suggestion 
and many AI papers in terms of external validation (69). 
Several meta-analyses and systematic review papers have 
also pointed out that there is room for improvement in 
terms of the quality of research (1, 70). To this end, several 
guidelines dedicated to reporting and quality assessment 
of AI algorithms such as Transparent Reporting of a 
Multivariable Prediction Model for Individual Prognosis or 
Diagnosis (TRIPOD-ML/AI) and Standards for Reporting and 
Diagnostic Accuracy Studies (STARD-AI) are underway (71-
73). Seeking unmet clinical needs should collaborate with 
radiologists, clinicians, and DL engineers, which might not 
be fully appreciated by either alone. To date, only relatively 
more common diseases have been studied because of many 
obstacles such as data hunger or shortage. In addition, 
imaging protocols differ across vendors and hospitals, thus 
limiting the generalizability of AI algorithms. To overcome 
these issues, worldwide efforts to build public datasets and 
standardize imaging protocols and regulatory support are 
required.

In conclusion, AI has been paving the way for the next 
level of patient care across the field of neuroimaging, 
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such as detection/diagnosis, prediction, image quality 
improvement, and clinical workflow improvement. Despite 
remarkable progress has been made in their performances, 
AI models should be carefully evaluated and validated 
before their adoption in clinical practice.

REFERENCES

	 1.	Cho SJ, Sunwoo L, Baik SH, Bae YJ, Choi BS, Kim JH. Brain 
metastasis detection using machine learning: a systematic 
review and meta-analysis. Neuro Oncol 2021;23:214-225

	 2.	Zhou Z, Sanders JW, Johnson JM, et al. Computer-aided 
detection of brain metastases in T1-weighted MRI for 
stereotactic radiosurgery using deep learning single-shot 
detectors. Radiology 2020;295:407-415

	 3.	Choi KS, Choi SH, Jeong B. Prediction of IDH genotype in 
gliomas with dynamic susceptibility contrast perfusion MR 
imaging using an explainable recurrent neural network. 
Neuro Oncol 2019;21:1197-1209

	 4.	Bae S, Choi YS, Ahn SS, et al. Radiomic MRI phenotyping 
of glioblastoma: improving survival prediction. Radiology 
2018;289:797-806

	 5.	Tamada D, Kromrey ML, Ichikawa S, Onishi H, Motosugi 
U. Motion artifact reduction using a convolutional neural 
network for dynamic contrast enhanced MR imaging of the 
liver. Magn Reson Med Sci 2020;19:64-76

	 6.	Hornik K, Stinchcombe M, White H. Multilayer feedforward 
networks are universal approximators. Neural Netw 
1989;2:359-366

	 7.	Arpit D, Jastrzȩbski S, Ballas N, et al. A closer look 
at memorization in deep networks. In International 
Conference on Machine Learning: PMLR, 2017:233-242

	 8.	Grigorescu S, Trasnea B, Cocias T, Macesanu G. A survey of 
deep learning techniques for autonomous driving. J Field 
Robot 2020;37:362-386

	 9.	Gulshan V, Peng L, Coram M, et al. Development and 
validation of a deep learning algorithm for detection of 
diabetic retinopathy in retinal fundus photographs. JAMA 
2016;316:2402-2410

10.	Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level 
classification of skin cancer with deep neural networks. 
Nature 2017;542:115-118

11.	 Lee D, Lee J, Ko J, Yoon J, Ryu K, Nam Y. Deep learning 
in MR image processing. Investig Magn Reson Imaging 
2019;23:81-99

12.	Cole EB, Zhang Z, Marques HS, Edward Hendrick R, Yaffe 
MJ, Pisano ED. Impact of computer-aided detection systems 
on radiologist accuracy with digital mammography. AJR 

Am J Roentgenol 2014;203:909-916
13.	Kim HE, Kim HH, Han BK, et al. Changes in cancer 

detection and false-positive recall in mammography using 
artificial intelligence: a retrospective, multireader study. 
Lancet Digit Health 2020;2:e138-e148

14.	Patel RR, Mehta MP. Targeted therapy for brain metastases: 
improving the therapeutic ratio. Clin Cancer Res 
2007;13:1675-1683

15.	Andrews DW, Scott CB, Sperduto PW, et al. Whole brain 
radiation therapy with or without stereotactic radiosurgery 
boost for patients with one to three brain metastases: 
phase III results of the RTOG 9508 randomised trial. Lancet 
2004;363:1665-1672

16.	Liu W, Anguelov D, Erhan D, et al. Ssd: Single shot multibox 
detector. In European conference on computer vision: 
Springer, 2016:21-37

17.	Grovik E, Yi D, Iv M, Tong E, Rubin D, Zaharchuk G. Deep 
learning enables automatic detection and segmentation 
of brain metastases on multisequence MRI. J Magn Reson 
Imaging 2020;51:175-182

18.	Szegedy C, Ioffe S, Vanhoucke V, Alemi AA. Inception-v4, 
inception-ResNet and the impact of residual connections 
on learning. In:Proceedings of the Thirty-First AAAI 
Conference on Artificial Intelligence. San Francisco, 
California, USA: AAAI Press, 2017: 4278-4284

19.	Bashyam VM, Erus G, Doshi J, et al. MRI signatures of 
brain age and disease over the lifespan based on a deep 
brain network and 14 468 individuals worldwide. Brain 
2020;143:2312-2324

20.	Rauschecker AM, Rudie JD, Xie L, et al. Artificial 
intelligence system approaching neuroradiologist-level 
differential diagnosis accuracy at brain MRI. Radiology 
2020;295:626-637

21.	Kim Y, Lee KJ, Sunwoo L, et al. Deep learning in diagnosis 
of maxillary sinusitis using conventional radiography. 
Invest Radiol 2019;54:7-15

22.	Jeon Y, Lee K, Sunwoo L, et al. Deep learning for diagnosis 
of paranasal sinusitis using multi-view radiographs. 
Diagnostics (Basel) 2021;11

23.	Lee KJ, Ryoo I, Choi D, Sunwoo L, You SH, Jung HN. 
Performance of deep learning to detect mastoiditis using 
multiple conventional radiographs of mastoid. PLoS One 
2020;15:e0241796

24.	Kim T, Heo J, Jang DK, et al. Machine learning for detecting 
moyamoya disease in plain skull radiography using a 
convolutional neural network. EBioMedicine 2019;40:636-
642

25.	Yu Y, Xie Y, Thamm T, et al. Use of deep learning to 
predict final ischemic stroke lesions from initial magnetic 
resonance imaging. JAMA Netw Open 2020;3:e200772

Moon
강조
C C V 
대문자로 수정해 주세요.

Moon
강조

Moon
강조

Moon
줄 긋기

Moon
삽입된 텍스트
:250
삽입해 주세요.



www.i-mri.org8

AI in Neuroimaging | Kyu Sung Choi, et al.

26.	Ho KC, Speier W, Zhang H, Scalzo F, El-Saden S, Arnold 
CW. A machine learning approach for classifying ischemic 
stroke onset time from imaging. IEEE Trans Med Imaging 
2019;38:1666-1676

27.	Langa KM, Levine DA. The diagnosis and management 
of mild cognitive impairment: a clinical review. JAMA 
2014;312:2551-2561

28.	Jo T, Nho K, Saykin AJ. Deep learning in Alzheimer's disease: 
diagnostic classification and prognostic prediction using 
neuroimaging data. Front Aging Neurosci 2019;11:220

29.	Aerts HJ, Velazquez ER, Leijenaar RT, et al. Decoding tumour 
phenotype by noninvasive imaging using a quantitative 
radiomics approach. Nat Commun 2014;5:4006

30.	Mazurowski MA. Radiogenomics: what it is and why it is 
important. J Am Coll Radiol 2015;12:862-866

31.	Choi YS, Bae S, Chang JH, et al. Fully automated hybrid 
approach to predict the IDH mutation status of gliomas via 
deep learning and radiomics. Neuro Oncol 2021;23:304-
313

32.	Kim JY, Park JE, Jo Y, et al. Incorporating diffusion- 
and perfusion-weighted MRI into a radiomics model 
improves diagnostic performance for pseudoprogression in 
glioblastoma patients. Neuro Oncol 2019;21:404-414

33.	Shim KY, Chung SW, Jeong JH, et al. Radiomics-based 
neural network predicts recurrence patterns in glioblastoma 
using dynamic susceptibility contrast-enhanced MRI. Sci 
Rep 2021;11:9974

34.	Yun J, Park JE, Lee H, Ham S, Kim N, Kim HS. Radiomic 
features and multilayer perceptron network classifier: 
a robust MRI classification strategy for distinguishing 
glioblastoma from primary central nervous system 
lymphoma. Sci Rep 2019;9:5746

35.	Bae S, An C, Ahn SS, et al. Robust performance of deep 
learning for distinguishing glioblastoma from single brain 
metastasis using radiomic features: model development 
and validation. Sci Rep 2020;10:12110

36.	Park JE, Park SY, Kim HJ, Kim HS. Reproducibility and 
generalizability in radiomics modeling: possible strategies 
in radiologic and statistical perspectives. Korean J Radiol 
2019;20:1124-1137

37.	Chang PD, Malone HR, Bowden SG, et al. A multiparametric 
model for mapping cellularity in glioblastoma using 
radiographically localized biopsies. AJNR Am J Neuroradiol 
2017;38:890-898

38.	Wang G, Ye JC, Mueller K, Fessler JA. Image reconstruction 
is a new frontier of machine learning. IEEE Trans Med 
Imaging 2018;37:1289-1296

39.	Lao J, Chen Y, Li ZC, et al. A deep learning-based radiomics 
model for prediction of survival in glioblastoma multiforme. 
Sci Rep 2017;7:10353

40.	Louis DN, Perry A, Wesseling P, et al. The 2021 WHO 
classification of tumors of the central nervous system: a 
summary. Neuro Oncol 2021;23:1231-1251

41.	Singh G, Manjila S, Sakla N, et al. Radiomics and 
radiogenomics in gliomas: a contemporary update. Br J 
Cancer 2021;125:641-657

42.	Han Y, Sunwoo L, Ye JC. k-space deep learning for 
accelerated MRI. IEEE Trans Med Imaging 2020;39:377-
386

43.	Chung H, Cha E, Sunwoo L, Ye JC. Two-stage deep learning 
for accelerated 3D time-of-flight MRA without matched 
training data. Med Image Anal 2021;71:102047

44.	Kim B, Kim DH, Park SH, Kim J, Lee JG, Ye JC. CycleMorph: 
cycle consistent unsupervised deformable image 
registration. Med Image Anal 2021;71:102036

45.	Dashtbani Moghari M, Zhou L, Yu B, et al. Efficient 
radiation dose reduction in whole-brain CT perfusion 
imaging using a 3D GAN: performance and clinical 
feasibility. Phys Med Biol 2021;66

46.	Lee D, Kim J, Moon W-J, Ye JC. CollaGAN: collaborative 
GAN for missing image data imputation. In Proceedings of 
the IEEE/CVF Conference on Computer Vision and Pattern 
Recognition, 2019:2487-2496

47.	Park JS, Lim E, Choi SH, Sohn CH, Lee J, Park J. Model-
based high-definition dynamic contrast enhanced MRI 
for concurrent estimation of perfusion and microvascular 
permeability. Med Image Anal 2020;59:101566

48.	Choi KS, You SH, Han Y, Ye JC, Jeong B, Choi SH. Improving 
the reliability of pharmacokinetic parameters at dynamic 
contrast-enhanced MRI in astrocytomas: a deep learning 
approach. Radiology 2020;297:178-188

49.	Kim KH, Choi SH, Park SH. Improving arterial spin labeling 
by using deep learning. Radiology 2018;287:658-666

50.	Knoll F, Zbontar J, Sriram A, et al. fastMRI: a publicly 
available raw k-space and DICOM dataset of knee images 
for accelerated MR image reconstruction using machine 
learning. Radiol Artif Intell 2020;2:e190007

51.	Balakrishnan G, Zhao A, Sabuncu MR, Guttag J, Dalca AV. 
VoxelMorph: a learning framework for deformable medical 
image registration. IEEE Transactions on Medical Imaging 
2019;38:1788-1800

52.	Avants BB, Tustison NJ, Song G, Cook PA, Klein A, Gee 
JC. A reproducible evaluation of ANTs similarity metric 
performance in brain image registration. Neuroimage 
2011;54:2033-2044

53.	Kang E, Koo HJ, Yang DH, Seo JB, Ye JC. Cycle-consistent 
adversarial denoising network for multiphase coronary CT 
angiography. Med Phys 2019;46:550-562

54.	Brady SL, Trout AT, Somasundaram E, Anton CG, Li Y, 
Dillman JR. Improving image quality and reducing radiation 



9www.i-mri.org

https://doi.org/10.13104/imri.2022.26.1.1

dose for pediatric CT by using deep learning reconstruction. 
Radiology 2021;298:180-188

55.	Ramalho J, Semelka RC, Ramalho M, Nunes RH, AlObaidy M, 
Castillo M. Gadolinium-based contrast agent accumulation 
and toxicity: an update. AJNR Am J Neuroradiol 
2016;37:1192-1198

56.	Jin CB, Kim H, Liu M, et al. Deep CT to MR synthesis using 
paired and unpaired data. Sensors 2019;19:2361

57.	Lei Y, Harms J, Wang T, et al. MRI-only based synthetic 
CT generation using dense cycle consistent generative 
adversarial networks. Med Phys 2019;46:3565-3581

58.	Titano JJ, Badgeley M, Schefflein J, et al. Automated deep-
neural-network surveillance of cranial images for acute 
neurologic events. Nat Med 2018;24:1337-1341

59.	Chilamkurthy S, Ghosh R, Tanamala S, et al. Deep learning 
algorithms for detection of critical findings in head CT 
scans: a retrospective study. Lancet 2018;392:2388-2396

60.	Kuo W, Hne C, Mukherjee P, Malik J, Yuh EL. Expert-
level detection of acute intracranial hemorrhage on head 
computed tomography using deep learning. Proc Natl Acad 
Sci U S A 2019;116:22737-22745

61.	Lee H, Yune S, Mansouri M, et al. An explainable deep-
learning algorithm for the detection of acute intracranial 
haemorrhage from small datasets. Nat Biomed Eng 
2019;3:173-182

62.	Liu F, Jang H, Kijowski R, Zhao G, Bradshaw T, McMillan 
AB. A deep learning approach for 18F-FDG PET attenuation 
correction. EJNMMI Phys 2018;5:24

63.	Liu F, Jang H, Kijowski R, Bradshaw T, McMillan AB. Deep 
learning MR imaging-based attenuation correction for PET/
MR imaging. Radiology 2018;286:676-684

64.	Lin L, Dou Q, Jin YM, et al. Deep learning for automated 
contouring of primary tumor volumes by MRI for 
nasopharyngeal carcinoma. Radiology 2019;291:677-686

65.	Wen PY, Macdonald DR, Reardon DA, et al. Updated 

response assessment criteria for high-grade gliomas: 
response assessment in neuro-oncology working group. J 
Clin Oncol 2010;28:1963-1972

66.	Kickingereder P, Isensee F, Tursunova I, et al. Automated 
quantitative tumour response assessment of MRI in neuro-
oncology with artificial neural networks: a multicentre, 
retrospective study. Lancet Oncol 2019;20:728-740

67.	Cho J, Kim YJ, Sunwoo L, et al. Deep learning-based 
computer-aided detection system for automated treatment 
response assessment of brain metastases on 3D MRI. Front 
Oncol 2021;11:739639

68.	Park SH, Han K. Methodologic guide for evaluating 
clinical performance and effect of artificial intelligence 
technology for medical diagnosis and prediction. Radiology 
2018;286:800-809

69.	Kim DW, Jang HY, Kim KW, Shin Y, Park SH. Design 
characteristics of studies reporting the performance of 
artificial intelligence algorithms for diagnostic analysis of 
medical images: results from recently published papers. 
Korean J Radiol 2019;20:405-410

70.	Kim HY, Cho SJ, Sunwoo L, et al. Classification of true 
progression after radiotherapy of brain metastasis on MRI 
using artificial intelligence: a systematic review and meta-
analysis. Neurooncol Adv 2021;3:vdab080

71.	Mateen BA, Liley J, Denniston AK, Holmes CC, Vollmer 
SJ. Improving the quality of machine learning in health 
applications and clinical research. Nat Mach Intell 
2020;2:554-556

72.	Sounderajah V, Ashrafian H, Aggarwal R, et al. Developing 
specific reporting guidelines for diagnostic accuracy studies 
assessing AI interventions: the STARD-AI Steering Group. 
Nat Med 2020;26:807-808

73.	Harvey H, Oakden-Rayner L. Guidance for interventional 
trials involving artificial intelligence. Radiol Artif Intell 
2020;2:e200228




