• Title/Summary/Keyword: Neumann Condition

Search Result 89, Processing Time 0.024 seconds

MULTIPLE SOLUTIONS FOR EQUATIONS OF p(x)-LAPLACE TYPE WITH NONLINEAR NEUMANN BOUNDARY CONDITION

  • Ki, Yun-Ho;Park, Kisoeb
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.6
    • /
    • pp.1805-1821
    • /
    • 2016
  • In this paper, we are concerned with the nonlinear elliptic equations of the p(x)-Laplace type $$\{\begin{array}{lll}-div(a(x,{\nabla}u))+{\mid}u{\mid}^{p(x)-2}u={\lambda}f(x,u) && in\;{\Omega}\\(a(x,{\nabla}u)\frac{{\partial}u}{{\partial}n}={\lambda}{\theta}g(x,u) && on\;{\partial}{\Omega},\end{array}$$ which is subject to nonlinear Neumann boundary condition. Here the function a(x, v) is of type${\mid}v{\mid}^{p(x)-2}v$ with continuous function $p:{\bar{\Omega}}{\rightarrow}(1,{\infty})$ and the functions f, g satisfy a $Carath{\acute{e}}odory$ condition. The main purpose of this paper is to establish the existence of at least three solutions for the above problem by applying three critical points theory due to Ricceri. Furthermore, we localize three critical points interval for the given problem as applications of the theorem introduced by Arcoya and Carmona.

A FINITE ELEMENT METHOD USING SIF FOR CORNER SINGULARITIES WITH AN NEUMANN BOUNDARY CONDITION

  • Kim, Seokchan;Woo, Gyungsoo
    • East Asian mathematical journal
    • /
    • v.33 no.1
    • /
    • pp.1-9
    • /
    • 2017
  • In [8] they introduced a new finite element method for accurate numerical solutions of Poisson equations with corner singularities, which is useful for the problem with known stress intensity factor. They consider the Poisson equations with homogeneous Dirichlet boundary condition, compute the finite element solution using standard FEM and use the extraction formula to compute the stress intensity factor, then they pose a PDE with a regular solution by imposing the nonhomogeneous boundary condition using the computed stress intensity factor, which converges with optimal speed. From the solution they could get accurate solution just by adding the singular part. This approach works for the case when we have the reasonably accurate stress intensity factor. In this paper we consider Poisson equations defined on a domain with a concave corner with Neumann boundary conditions. First we compute the stress intensity factor using the extraction formular, then find the regular part of the solution and the solution.

Fast Converging Correction Current for the Physical Optics Edge Diffraction by a dielectric Wedge (유전체 쐐기에 의한 물리광학해를 수정하기 위한 새 로운 급수)

  • 전재영;서종화;나정웅
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.877-880
    • /
    • 1999
  • A rigorous formulation is suggested〔l,2,3〕 in solving the scattering of plane waves by a dielectric wedge. Correcting surface currents are expanded in a Neumann series of fractional orders to meet the edge condition of static limit〔4〕. For the better converging series, the modified Neumann series satisfying the static limit edge condition and the radiation condition are suggested here for the surface currents having two different wave numbers of air and dielectric〔4〕. This representation gives accurate solutions over the whole region including the grazing incidence of the plane waves upon the dielectric wedge of large permittivities.

  • PDF

A NOTE ON SIMPLE SINGULAR GP-INJECTIVE MODULES

  • Nam, Sang Bok
    • Korean Journal of Mathematics
    • /
    • v.7 no.2
    • /
    • pp.215-218
    • /
    • 1999
  • We investigate characterizations of rings whose simple singular right R-modules are GP-injective. It is proved that if R is a semiprime ring whose simple singular right R-modules are GP-injective, then the center $Z(R)$ of R is a von Neumann regular ring. We consider the condition ($^*$): R satisfies $l(a){\subseteq}r(a)$ for any $a{\in}R$. Also it is shown that if R satisfies ($^*$) and every simple singular right R-module is GP-injective, then R is a reduced weakly regular ring.

  • PDF

A New Development in the Theory of Slender Ships (세장선 이론의 새로운 전개)

  • 김인철
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.27 no.1
    • /
    • pp.83-90
    • /
    • 1991
  • The method, which is introduced here, is an approximation derived by an application of the slender body theory, which has achieved a great success in the field of aeronautical engineering. However numerical results for wave resistance by this theory have been very disappointing. A slender body formulation for a ship in uniform forward motion si presented. It is based on the asymptotic expansion of the Kelvin source and the result is quite different from the existing slender ship theory developed by Vossers, Tuck and Maruo. It is equivalent to an approximation for the kernel function of the Neumann-Kelvin problem which assumes the linearized free surface condition but deals with the body boundary condition in its exact from. The velocity field and pressure distribution can be calculated simply by the differentiation of the two-dimensional velocity potential. A formula for the wave resistance of slender ships is also presented.

  • PDF

THE EIGENVALUE ESTIMATE ON A COMPACT RIEMANNIAN MANIFOLD

  • Kim, Bang-Ok;Kim, Kwon-Wook
    • Bulletin of the Korean Mathematical Society
    • /
    • v.32 no.1
    • /
    • pp.19-23
    • /
    • 1995
  • We will estimate the lower bound of the first nonzero Neumann and Dirichlet eigenvalue of Laplacian equation on compact Riemannian manifold M with boundary. In case that the boundary of M has positive second fundamental form elements, Ly-Yau[3] gave the lower bound of the first nonzero neumann eigenvalue $\eta_1$. In case that the second fundamental form elements of $\partial$M is bounded below by negative constant, Roger Chen[4] investigated the lower bound of $\eta_1$. In [1], [2], we obtained the lower bound of the first nonzero Neumann eigenvalue is estimated under the condtion that the second fundamental form elements of boundary is bounded below by zero. Moreover, I realize that "the interior rolling $\varepsilon$ - ball condition" is not necessary when the first Dirichlet eigenvalue was estimated in [1].ed in [1].

  • PDF

ERROR ESTIMATES OF NONSTANDARD FINITE DIFFERENCE SCHEMES FOR GENERALIZED CAHN-HILLIARD AND KURAMOTO-SIVASHINSKY EQUATIONS

  • Choo, Sang-Mok;Chung, Sang-Kwon;Lee, Yoon-Ju
    • Journal of the Korean Mathematical Society
    • /
    • v.42 no.6
    • /
    • pp.1121-1136
    • /
    • 2005
  • Nonstandard finite difference schemes are considered for a generalization of the Cahn-Hilliard equation with Neumann boundary conditions and the Kuramoto-Sivashinsky equation with periodic boundary conditions, which are of the type $$U_t\;+\;\frac{{\partial}^2}{{\partial}x^2} g(u,\;U_x,\;U_{xx})\;=\;\frac{{\partial}^{\alpha}}{{\partial}x^{\alpha}}f(u,\;u_x),\;{\alpha}\;=\;0,\;1,\;2$$. Stability and error estimate of approximate solutions for the corresponding schemes are obtained using the extended Lax-Richtmyer equivalence theorem. Three examples are provided to apply the nonstandard finite difference schemes.

AN SDFEM FOR A CONVECTION-DIFFUSION PROBLEM WITH NEUMANN BOUNDARY CONDITION AND DISCONTINUOUS SOURCE TERM

  • Babu, A. Ramesh;Ramanujam, N.
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.1_2
    • /
    • pp.31-48
    • /
    • 2010
  • In this article, we consider singularly perturbed Boundary Value Problems(BVPs) for second order Ordinary Differential Equations (ODEs) with Neumann boundary condition and discontinuous source term. A parameter-uniform error bound for the solution is established using the Streamline-Diffusion Finite Element Method (SDFEM) on a piecewise uniform meshes. We prove that the method is almost second order of convergence in the maximum norm, independently of the perturbation parameter. Further we derive superconvergence results for scaled derivatives of solution of the same problem. Numerical results are provided to substantiate the theoretical results.

CHARACTERIZATIONS OF AN INNER PRODUCT SPACE BY GRAPHS

  • Lin, C.S.
    • The Pure and Applied Mathematics
    • /
    • v.16 no.4
    • /
    • pp.359-367
    • /
    • 2009
  • The graph of the parallelogram law is well known, which gives rise to the characterization of an inner product space among normed linear spaces [6]. In this paper we will sketch graphs of its deformations according to our previous paper [7, Theorem 3.1 and 3.2]; each one of which characterizes an inner product space among normed linear spaces. Consequently, the graphs of some classical characterizations of an inner product space follow easily.

  • PDF

A Study on Lifting Problem of Hydrofoil Using Robin Boundary Condition (혼합경계조건에 의한 수중익 해석에 관한 연구)

  • I.S. Moon;C.S. Lee;Y.G. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.3
    • /
    • pp.41-50
    • /
    • 1993
  • This paper compares various potential based panel methods for the analysis of two-dimensional hydrofoil. The strength of singularity on each panel is assumed to be constant or linear. Robin boundary condition as well as Neumann and Dirichlet boundary conditions are applied to various formulations to evaluate the accuracies of the methods. Pressures and lifts are computed for various two-dimensional hydrofoil geometries and are compared with the analytic solutions. Extensive studies are performed on the local errors near the trailing edge, known to be sensitive to the foil geometry with sharp trailing edge and high camber. Robin boundary condition with the perturbation velocity potential formulation shows the best accuracy and convergence rate.

  • PDF