• Title/Summary/Keyword: Nanowires synthesis

Search Result 155, Processing Time 0.034 seconds

ZnO Nanowires Grown by Hydrothermal Synthesis Using Synthesis Solution Prepared with Various Preheating Time (합성수용액의 Preheating 시간을 변화시켜 수열합성법으로 성장시킨 산화아연 나노선)

  • No, Im-Jun;Shin, Paik-Kyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.6
    • /
    • pp.481-485
    • /
    • 2012
  • ZnO nanowires were synthesized by hydrothermal technique. Prepared synthesis aqueous solutions were preserved by preheating in autoclave type synthesis equipment with various preheating time of 1 h difference. ITO-coated corning glass substrates deposited with AZO seed layers were then inserted in the preheated synthesis aqueous solutions and ZnO nanowires were grown for 180 min at $90^{\circ}C$. Density, length and aspect ratio of the grown ZnO nanowires were investigated. Composition, structural and optical properties of the grown ZnO nanowires were analyzed. Characteristics of the ZnO nanowires were comparatively studied in relation with $Zn^{2+}$ ion concentration measured directly after the preheating of synthesis aqueous solution.

Synthesis of Au Nanowires Using S-L-S Mechanism (S-L-S 성장기구를 이용한 양질의 골드 나노선 합성)

  • No, Im-Jun;Kim, Sung-Hyun;Shin, Paik-Kyun;Cho, Jin-Woo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.11
    • /
    • pp.922-925
    • /
    • 2012
  • Single crystalline Au nanowires were successfully synthesized in a tube-type furnace. The Au nanowires were grown by vapor phase synthesis technique using solid-liquid-solid (SLS) mechanism on substrates of corning glass and Si wafer. Prior to Au nanowire synthesis, Au thin film served as both catalyst and source for Au nanowire was prepared by sputtering process. Average length of the grown Au nanowires was approximately 1 ${\mu}m$ on both the corning glass and Si wafer substrates, while the diameter and the density of which were dependent on the thickness of the Au thin film. To induce a super-saturated states for the Au particle catalyst and Au molecules during the Au nanowire synthesis, thickness of the Au catalyst thin film was fixed to 10 nm or 20 nm. Additionally, synthesis of the Au nanowires was carried out without introducing carrier gas in the tube furnace, and synthesis temperature was varied to investigate the temperature effect on the resulting Au nanowire characteristics.

Growth Characteristics of the ZnO Nanowires Prepared by Hydrothermal Synthesis Technique with Applied DC Bias (DC 바이어스를 인가하여 수열합성법으로 성장시킨 ZnO 나노와이어의 성장 특성)

  • Lim, Young-Taek;Shin, Paik-Kyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.5
    • /
    • pp.317-321
    • /
    • 2014
  • Hydrothermal synthesis technique could be carried out for growth of ZnO nanowires at relatively low process temperature, and it could be freely utilized with various substrates for fabrication process of functional electronic devices. However, it has also a demerit of relatively slow growth characteristics of the resulting ZnO nanowires. In this paper, an external DC bias of positive and negative 0.5 [V] was applied in the hydrothermal synthesis process for 2~8 [h] to prepare ZnO nanowires on a seed layer of AZO with high electrical conductivity. Growth characteristics of the synthesized ZnO nanowires were analyzed by FE-SEM. Material property of the grown ZnO nanowires was examined by PL analysis. The ZnO nanowires grown with positive bias revealed distinctively enhanced growth characteristics, and they showed a typical material property of ZnO.

Effect of pH on Synthesis of Polypyrrole Nanowires by Using DNA Molecule Templates (DNA 분자를 형틀로 이용한 Polypyrrole 나노와이어의 합성시 pH 효과)

  • Choi, Young-Hun;Kim, Kyoung-Soeb;Kim, Nam-Hoon;Roh, Yong-Han
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.109-110
    • /
    • 2007
  • Pyrrole and DNA can be used for synthesis of conducting nanowires. Protonated pyrrole and negatively charged DNA are absorbed by electrostatic interaction. The level of absorbance is related to pH of pyrrole. Therefore, DNA immobilized and aligned on the 3-aminopropyltrimethoxysi1ane (APTES) modified Si surface. Positive pyrrole monomers was deposited on aligned DNA for the synthesis of nanowire in various pH condition. And polypyrrole nanowires were synthesized by polimerization with ammonium persulfate (APS). These polypyrrole nanowires were measured by AFM, and then we found optimal pH level for the synthesis of nanowires.

  • PDF

Characterization of in-situ Synthesized CdSxSe1-x Ternary Alloy Nanowire Photosensor

  • Kim, Hong-Rae;An, Byoung-Gi;Chang, Young Wook;Kang, Min-Jung;Park, Jae-Gwan;Pyun, Jae-Chul
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.3
    • /
    • pp.308-316
    • /
    • 2019
  • CdSxSe1-x ternary alloy nanowires (x = 0, 0.5, 1.0) were fabricated by in-situ synthesis on interdigitated electrode. Morphology analysis of the alloy nanowires according to the synthesis zone and composition analysis of the nanowires were carried out by SEM and EDX. The crystal structures of the alloy nanowires were studied by XRD analysis. The I-V characteristics of the nanowire photosensors were analyzed according to the intensity of incident light. The influence of zonal synthesis position on the photosensor response to the wavelength of incident light was also analyzed, and was found to be related to the bandgap of alloy nanowires. The analysis results indicate that photosensors with a specific photoresponse could be selected based on the composition of the source materials of nanowires as well as by controlling the in-situ synthesis zone.

Single Crystalline NbO2 Nanowire Synthesis by Chemical Vapor Transport Method

  • Lee, Sung-Hun;Yoon, Ha-Na;Yoon, Il-Sun;Kim, Bong-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.839-842
    • /
    • 2012
  • We report for the first time the synthesis of niobium dioxide nanowires on a sapphire substrate by chemical vapor transport method. We identified single crystalline nature of as-synthesized nanowires by scanning electron microscopy and transmission electron microscopy. Niobium dioxide nanowires with their large surface-to-volume ratio and high activities can be employed for electrochemical catalysts and immunosensors. The Raman spectrum of niobium dioxide nanowires also confirmed their identity.

Synthesis of TiO2 Nanowires by Thermal Oxidation of Titanium Alloy Powder (타이타늄 합금 분말의 열적산화를 통한 TiO2 나노와이어의 합성)

  • Kim, Yoo-Young;Cho, Kwon-Koo
    • Journal of Powder Materials
    • /
    • v.25 no.1
    • /
    • pp.48-53
    • /
    • 2018
  • One-dimensional rutile $TiO_2$ is an important inorganic compound with applicability in sensors, solar cells, and Li-based batteries. However, conventional synthesis methods for $TiO_2$ nanowires are complicated and entail risks of environmental contamination. In this work, we report the growth of $TiO_2$ nanowires on a Ti alloy powder (Ti-6wt%Al-4wt%V, Ti64) using simple thermal oxidation under a limited supply of $O_2$. The optimum condition for $TiO_2$ nanowire synthesis is studied for variables including temperature, time, and pressure. $TiO_2$ nanowires of ${\sim}5{\mu}m$ in length and 100 nm in thickness are richly synthesized under the optimum condition with single-crystalline rutile phases. The formation of $TiO_2$ nanowires is greatly influenced by synthesis temperature and pressure. The synthesized $TiO_2$ nanowires are characterized using field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), and high-resolution transmission electron microscopy (HR-TEM).

Synthesis and Characterization of Copper Oxide nanowires by Facile Heating under Static Air Condition

  • Kwon, Tae-Ha;Choi, Hyek-Hwan;Chung, Wan-Young
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.1
    • /
    • pp.99-102
    • /
    • 2010
  • Large-scaled area and aligned copper oxide nanowires have been synthesized by a vapor-phase approach to the facial synthesis of copper oxide nanowires supported on the surface of a copper gasket. The effects of annealing temperature and time were investigated. Long and aligned nanowires can only formed within a narrow temperature range from 400 to $500^{\circ}C$ for 4 hrs. Annealing copper gasket in static air produces large-area, uniform, but not well vertically aligned nanowires along the copper gasket surface. The surface of copper gasket is converted into bicrystal CuO nanowires was observed after the copper gasket is annealed under static air condition.

Effect of Oxygen Pressure in the Synthesis of ZnO Nanowires through Melt Oxidation of Al-Zn Mixture (Al-Zn 혼합물을 용융 산화시켜 생성되는 ZnO 나노선의 성장에 미치는 산소압력의 영향)

  • Lee, Geun-Hyoung
    • Korean Journal of Materials Research
    • /
    • v.24 no.6
    • /
    • pp.301-304
    • /
    • 2014
  • The effect of oxygen pressure on the synthesis of ZnO nanowires by means of melt-oxidation of an Al-Zn mixture was investigated. The samples were prepared in oxygen ambient for 1 h at $1,000^{\circ}C$ under oxygen pressure ranging from 0.5 to 100 Torr. ZnO nanowires were formed at oxygen pressures lower than 10 Torr. As the oxygen pressure increased from 0.5 to 10 Torr, the width of the nanowires increased, but their length decreased. The ZnO nanowires had a needle shape, which became gradually thinner toward the tip. X-ray diffraction patterns showed that the nanowires had a hexagonal wurtzite structure. However, ZnO nanowires were not observed when the oxygen pressure increased from 10 Torr to 100 Torr. In roomtemperature cathodeluminescence spectra of the ZnO nanowires, the intensity of ultra-violet emission at 380 nm increased with decreasing oxygen pressure, which indicated that the lower the oxygen pressure, the better the crystallinity of the ZnO nanowires.

Direct synthesis mechanism of amorphous $SiO_x$ nanowires from Ni/Si substrate (Ni/Si 기판을 사용하여 성장시킨 비결정질 $SiO_x$ 나노 와이어의 성장 메커니즘)

  • Song, W.Y.;Shin, T.I.;Lee, H.J.;Kim, H.;Kim, S.W.;Yoon, D.H.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.6
    • /
    • pp.256-259
    • /
    • 2006
  • The amorphous $SiO_x$ nanowires were synthesized by the vapor phase epitaxy (VPE) method. $SiO_x$ nanowires were formed on silicon wafer of temperatures ranged from $800{\sim}1100^{\circ}C$ and nickel thin film was used as a catalyst for the growth of nanowires. A vapor-liquid-solid (VLS) mechanism is responsible for the catalyst-assisted amorphous $SiO_x$ nanowires synthesis in this experiment. The SEM images showed cotton-like nanostructure of free standing $SiO_x$ nanowires with the length of more than about $10{\mu}m$. The $SiO_x$ nanowires were confirmed amorphous structure by TEM analysis and EDX spectrum reveals that the nanowires consist of Si and O.