Browse > Article
http://dx.doi.org/10.4313/JKEM.2014.27.5.317

Growth Characteristics of the ZnO Nanowires Prepared by Hydrothermal Synthesis Technique with Applied DC Bias  

Lim, Young-Taek (Department of Electrical Engineering, Inha University)
Shin, Paik-Kyun (Department of Electrical Engineering, Inha University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.27, no.5, 2014 , pp. 317-321 More about this Journal
Abstract
Hydrothermal synthesis technique could be carried out for growth of ZnO nanowires at relatively low process temperature, and it could be freely utilized with various substrates for fabrication process of functional electronic devices. However, it has also a demerit of relatively slow growth characteristics of the resulting ZnO nanowires. In this paper, an external DC bias of positive and negative 0.5 [V] was applied in the hydrothermal synthesis process for 2~8 [h] to prepare ZnO nanowires on a seed layer of AZO with high electrical conductivity. Growth characteristics of the synthesized ZnO nanowires were analyzed by FE-SEM. Material property of the grown ZnO nanowires was examined by PL analysis. The ZnO nanowires grown with positive bias revealed distinctively enhanced growth characteristics, and they showed a typical material property of ZnO.
Keywords
Hydrothermal synthesis; ZnO nanowires; Al-doped ZnO; DC bias;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, Science, 292, 1897 (2001).   DOI   ScienceOn
2 Y. Chen, D. M. Bagnall, H. Koh, K. Park, Z. Zhu, and T. Yao, J. Appl. Phys., 84, 3912 (1998).   DOI   ScienceOn
3 Y. W. Heo, D. P. Norton, L. C. Tien, Y. Kwon, B. S. Kang, F. Ren, F. Pearton, and S. J. LaRoche, Mat. Sci. Eng., 47, 147 (2004).
4 T. Y. Wei, P. H. Wei, and Z. L. Wang, J. Am. Chem. Soc., 131, 17690 (2009).   DOI   ScienceOn
5 Z. L. Wang, Mater. Today, 10, 20 (2007).
6 M. H. Huang, Y. Y. Wu, H. Feick, N. Tran, E. Weber, and P. D. Yang, Adv. Mater., 13, 113 (2001).   DOI
7 Y. C. Kong, D. P. Yu, B. Zhang, and B. Fang, and S. Q. Feng, Appl. Phys. Lett., 78, 407 (2001).   DOI   ScienceOn
8 P. Yang, H. Yan, S. Mao, R. Russo J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, and H. J. Choi, Adv. Funct. Mater., 12, 323 (2002).   DOI
9 L. Vayssieres, K. Keis, S. E. Lindquist, and A. Hagfeldt, J. Phys. Chem. B, 105, 3350 (2001).   DOI   ScienceOn
10 L. N. Demianets and D. V. Kostomarov, Ann. Chem. Sci. Mat., 26, 193 (2001).   DOI   ScienceOn
11 L. N. Deminets, D. V. Kostomarov, and I. P. Kuzmina, Inorg. Mater., 38, 124 (2002).   DOI
12 L. Vayssieres, Adv. Mater., 15, 464 (2003).   DOI   ScienceOn
13 P. X. Gao, J. Song, J. Liu, and Z.L. Wang, Adv. Mater., 19, 67 (2007).   DOI   ScienceOn
14 D. S. Mao, X. Wang, W. Li, X.H. Liu, Q. Li, and J. F. Xu, J. Vac. Sci. Technol. B, 20, 278 (2002).