Browse > Article
http://dx.doi.org/10.4313/JKEM.2012.25.11.922

Synthesis of Au Nanowires Using S-L-S Mechanism  

No, Im-Jun (School of Electrical Engineering, INHA University)
Kim, Sung-Hyun (Energy Nano Material Center, Korea Electronics Technology Institute)
Shin, Paik-Kyun (School of Electrical Engineering, INHA University)
Cho, Jin-Woo (Energy Nano Material Center, Korea Electronics Technology Institute)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.25, no.11, 2012 , pp. 922-925 More about this Journal
Abstract
Single crystalline Au nanowires were successfully synthesized in a tube-type furnace. The Au nanowires were grown by vapor phase synthesis technique using solid-liquid-solid (SLS) mechanism on substrates of corning glass and Si wafer. Prior to Au nanowire synthesis, Au thin film served as both catalyst and source for Au nanowire was prepared by sputtering process. Average length of the grown Au nanowires was approximately 1 ${\mu}m$ on both the corning glass and Si wafer substrates, while the diameter and the density of which were dependent on the thickness of the Au thin film. To induce a super-saturated states for the Au particle catalyst and Au molecules during the Au nanowire synthesis, thickness of the Au catalyst thin film was fixed to 10 nm or 20 nm. Additionally, synthesis of the Au nanowires was carried out without introducing carrier gas in the tube furnace, and synthesis temperature was varied to investigate the temperature effect on the resulting Au nanowire characteristics.
Keywords
Au; Nanowires; Vapor phase; SLS (Solid-Liquid-Solid); Growth mechanism;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. Cui, X. Duan, J. Hu, and C. M. Lieber, J. Phys. Chem., B104, 5213 (2000).
2 W. J. Lee, S. P. Ju, S. J. Sun, and M. H. Weng, Nanotechnology, 17, 3253 (2006).   DOI
3 Q. Pu and Y. Leng, J. Chem. Phys., 126, 144707 (2007).   DOI
4 K. Gall, J. Diao, and M. L. Dunn, Nano Lett., 4, 2431 (2004).   DOI
5 S. Karim., M. E. Toimil-Molares, F. Maurer, G. Miehe, W. Ensinger, J. Liu, T. W. Cornelius, and R. Neumann, Appl. Phys., A84, 403 (2006).
6 C. N. R. Rao, S. R. C. Vivekchand, K. Biswas, and A. Govindaraj, Dalton Trans., R. S. C., 34, 3728 (2007).
7 H. F. Yan, Y. J. Xing, Q. L. Hang, D. P. Yu, Y. P. Wang, J. Xu, Z. H. Xi, and S. Q. Feng, Chem. Phys. Lett., 323, 224 (2000).   DOI
8 E. K. Lee, B. L. Choi, Y. D. Park, Y. K. Sun, Y. Kwon, and H. J. Kim, Nanotechnology, 19, 185701 (2008).   DOI
9 D. P. Yu, Y. J. Xing, Q. L. Hang, H. F. Yan, J. Xu, Z. H. Xi, and S. Q. Feng, Physica, E9, 305 (2001).
10 J. H. Lee, M. A. Carpenter, and R. E. Geer, J. Mater. Res., 26, 2232 (2011).   DOI