Browse > Article
http://dx.doi.org/10.4150/KPMI.2018.25.1.48

Synthesis of TiO2 Nanowires by Thermal Oxidation of Titanium Alloy Powder  

Kim, Yoo-Young (Department of Mechanical Engineering, Gyeongnam National University of Science and Technology)
Cho, Kwon-Koo (Department of Materials Engineering and Convergence Technology & RIGET, Gyeongsang National University)
Publication Information
Journal of Powder Materials / v.25, no.1, 2018 , pp. 48-53 More about this Journal
Abstract
One-dimensional rutile $TiO_2$ is an important inorganic compound with applicability in sensors, solar cells, and Li-based batteries. However, conventional synthesis methods for $TiO_2$ nanowires are complicated and entail risks of environmental contamination. In this work, we report the growth of $TiO_2$ nanowires on a Ti alloy powder (Ti-6wt%Al-4wt%V, Ti64) using simple thermal oxidation under a limited supply of $O_2$. The optimum condition for $TiO_2$ nanowire synthesis is studied for variables including temperature, time, and pressure. $TiO_2$ nanowires of ${\sim}5{\mu}m$ in length and 100 nm in thickness are richly synthesized under the optimum condition with single-crystalline rutile phases. The formation of $TiO_2$ nanowires is greatly influenced by synthesis temperature and pressure. The synthesized $TiO_2$ nanowires are characterized using field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), and high-resolution transmission electron microscopy (HR-TEM).
Keywords
$TiO_2$ nanowires; Rutile; Thermal oxidation; Ti64 powder;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. M. Wu, H. C. Shih, W. T. Wu, Y. K. Tseng and I. C. Chen: J. Cryst. Growth, 281 (2005) 384.   DOI
2 H. W. Peng and J. B. Li: J. Phys. Chem. C, 112 (2008) 20142.
3 B. D. Yao, Y. F. Chan, X. Y. Zhang, W. F. Zhang, Z. Y. Yang and N. Wang: Appl. Phys. Lett., 82 (2003) 281.   DOI
4 A. Hu, C. Cheng, X. Li, J. Jiang, R. Ding, J. Zhu, F. Wu, J. Liu and X. Huang: Nanoscale Res. Lett., 6 (2011) 2.
5 Y. Lei, L. D. Zhang, G. W. Meng, G. H. Li, X. Y. Zhang, C. H. Liang, W. Chen and S. X. Wang: Appl. Phys. Lett., 78 (2001) 1125.   DOI
6 S. K. Pradhan, P. J. Peucroft, F. Yang and A. Dozier: J. Cryst. Growth, 256 (2003) 83.   DOI
7 P. Hu, G. Du, W. Zhou, J. Cui, J. Lin, H. Liu, D. Liu, J. Wang and S. Chen: Appl. Mater. Interfac., 2 (2010) 3263.   DOI
8 C. S. Rout, G. U. Kulkarni and C. N. R. Rao: J. Phys. D.: Appl. Phys., 40 (2007) 2777.   DOI
9 W. Biao, Z. Y. Dong, H. L. Ming, C. J. Sheng, G. F. Li, L. Yun and W. L. Jun: Chinese Sci. Bull., 55 (2010) 228.
10 O. Landau, A. Rothschild and E. Zussman: Chem. Mater., 21 (2009) 9.   DOI
11 L. Francioso, A. M. Taurino, A. Forleo and P. Siciliano: Sensor Actuat. B-Chem., 130 (2008) 70.
12 M. M. Arafat, A. S. M. A. Haseeb and S. A. Akbar: Ceram. Int., 41 (2015) 4401.   DOI
13 B. Liu and E. S. Aydil: J. Am. Chem. Soc., 131 (2009) 3985.
14 H. Wang, Y. Bai, Q. Wu, W. Zhou, H. Zhang, J. Li and L. Guo: Phys. Chem. Chem. Phys., 13 (2011) 7008.
15 Q. Jiang, X. Sheng, Y. Li, X. Feng and T. Xu: Chem. Commun., 50 (2014) 14720.   DOI
16 Z. Li, H. Zhang, W. Zheng, W. Wang, H. Huang, C. Wang, A. G. MacDiarmid and Y. Wei: J. Am. CHem. Soc., 130 (2008) 5036.   DOI
17 S. Yurdakal, G. Palmisano, V. Loddo, V. Augugliaro and L. Palmisano: J. Am. Chem. Soc., 130 (2008) 1568.   DOI
18 J. M. Wu, H. C. Shih and W. T. Wu: Nanotechnology, 17 (2006) 105.   DOI
19 J. S. Chen and X. W. Lou: J. Power Sources, 195 (2010) 2905.   DOI
20 H. Lee, S. Dregia, S. Akbar and M. Alhoshan: J. Nanomater., 2010 (2010) 7.
21 B. J. Hansen, G. Lu and J. Chen: J. Nanomater., 2008 (2008) 7.
22 R. Mema, L. Yuan, Q. Du, Y. Wang and G. Zhou: Chem. Phys. Lett., 512 (2011) 87.   DOI
23 A. Kumar, A. K. Srivastava, P. Tiwari and R. V. Nandedkar: J. Phys.: Condens. Mat. 16 (2004) 8531.   DOI
24 Y. Q. Wang, L. Gu, Y. G. Guo, H. Li, X. Q. He, S. Tsukimoto, Y. Ikuhara and L. J. Wan: J. Am. Chem. Soc., 134 (2012) 7874.
25 M. M. Arafat, A. S. M. A. Haseeb, B. Dinan and S. A. Akbar: Ceram. Int., 39 (2013) 6517.