DOI QR코드

DOI QR Code

Single Crystalline NbO2 Nanowire Synthesis by Chemical Vapor Transport Method

  • Received : 2011.12.09
  • Accepted : 2011.12.29
  • Published : 2012.03.20

Abstract

We report for the first time the synthesis of niobium dioxide nanowires on a sapphire substrate by chemical vapor transport method. We identified single crystalline nature of as-synthesized nanowires by scanning electron microscopy and transmission electron microscopy. Niobium dioxide nanowires with their large surface-to-volume ratio and high activities can be employed for electrochemical catalysts and immunosensors. The Raman spectrum of niobium dioxide nanowires also confirmed their identity.

Keywords

References

  1. Rao, C. N. R. Annu. Rev. Phys. Chem. 1989, 40, 291. https://doi.org/10.1146/annurev.pc.40.100189.001451
  2. Poizot, P.; Grudeon, S.; Dupont, L.; Tarascon, J. M. Nature 2000, 407, 496. https://doi.org/10.1038/35035045
  3. Julien, C.; Haro-Poniatowski, E.; Camacho-Lopez, M. A.; Escobar- Alarcon, L.; Jimenez-Jarquin, J. Mater. Sci. Eng. B 1999, 65, 170. https://doi.org/10.1016/S0921-5107(99)00187-7
  4. Ponzi, M.; Duschatzky, C.; Carrascull, A.; Ponzi, E. Appl. Catal. A 1998, 169, 373. https://doi.org/10.1016/S0926-860X(98)00026-X
  5. 5. Micocci, G.; Serra, A.; Tepore, A; Capone, S.; Rella, C. R.; Siciliano, P. J. Vac. Sci. Technol. A 1997, 15, 34. https://doi.org/10.1116/1.580471
  6. Kanan, S. M.; El-Kadri, O. M.; Abu-Yousef, I. A.; Kanan, M. C. Sensors 2009, 9, 8158. https://doi.org/10.3390/s91008158
  7. Krusin-Elbaum, L.; Wittmer, M. J. Electrochem. Soc. 1988, 135, 2610. https://doi.org/10.1149/1.2095391
  8. Chen, Z.; Cummins, D.; Reinecke, B. N.; Clark, E.; Sunkara, M. K.; Jaramillo, T. F. Nano Lett. 2011, 11, 4168. https://doi.org/10.1021/nl2020476
  9. Lee, H. -W.; Muralidharan, P.; Ruffo, R.; Mari, C. M.; Cui, Y.; Kim, D. K. Nano Lett. 2010, 10, 3852. https://doi.org/10.1021/nl101047f
  10. Feng, X.; Shankar, K.; Varghese, O. K.; Paulose, M.; Latempa, T. J.; Grimes, C. A. Nano Lett. 2008, 8, 3781. https://doi.org/10.1021/nl802096a
  11. Okaz, A. M.; Keesom, P. H. Phys. Rev. B 1975, 12, 4917. https://doi.org/10.1103/PhysRevB.12.4917
  12. Friedrichs, O.; Sanchez-Lopez, J. C.; Lopez-Cartes, C.; Klassen, T.; Bormann, R.; Fernandez, A. J. Phys. Chem. B 2006, 110, 7845. https://doi.org/10.1021/jp0574495
  13. Orel, B.; Macek, M.; Grdadolnik, J., Meden, A. J. Solid State Electrochem. 1998, 2, 221. https://doi.org/10.1007/s100080050092
  14. Kurioka, N.; Watanabe, D.; Haneda, M.; Shimanouchi, T.; Mizushima, T.; Kakuta, N.; Ueno, A.; Hanaoka, T.; Sugi, Y. Catal. Today 2003, 16, 495. https://doi.org/10.1016/0920-5861(93)80090-N
  15. Kimura, S. J. Solid State Chem. 1973, 6, 438. https://doi.org/10.1016/0022-4596(73)90236-3
  16. Hulm, J. K.; Jones, C. K.; Hein, R. A.; Gibson, J. W. J. Low Temp. Phys. 1972, 7, 291. https://doi.org/10.1007/BF00660068
  17. Rao, C. N. R.; Wahnsiedler, W. E.; Honig, J. M. J. Solid State Chem. 1970, 2, 315. https://doi.org/10.1016/0022-4596(70)90089-7
  18. Cho, N. -H.; Kang, H. B.; Kim, Y. H. Ferroelectrics 1994, 152, 43. https://doi.org/10.1080/00150199408017594
  19. Natio, K.; Kamegashira, N.; Sasaki, N. J. Solid State Chem. 1980, 35, 305. https://doi.org/10.1016/0022-4596(80)90526-5
  20. Helali, S.; Abdelghani, A.; Hafaiedh, I.; Martelet, C.; Prodromodis, M. I.; Albanis, T.; Jaffrezic-Renault, N. Mat. Sci. Eng. C 2008, 28, 826 https://doi.org/10.1016/j.msec.2007.10.078
  21. Sasaki, K.; Zhang, L.; Adzic, R. R. Phys. Chem. Chem. Phys. 2008, 10, 159. https://doi.org/10.1039/b709893f
  22. Orilall, M. C.; Matsumoto, F.; Zhou, Q.; Sai, H.; Abru a, H. D.; DiSalvo, F. J.; Wiesner, U. J. Am. Chem. Soc. 2009, 131, 9389. https://doi.org/10.1021/ja903296r
  23. Mozeti , M.; Cvelbar, U.; Sunkara, M. K.; Vaddiraju, S. Adv. Mater. 2005, 17, 2138. https://doi.org/10.1002/adma.200500728
  24. Lin, Y.; Yang, Y.-J.; Hsu, C.-C. Thin Solid Films 2011, 519, 3043. https://doi.org/10.1016/j.tsf.2010.12.024
  25. In, J.; Yoon, I.; Seo, K.; Park, J.; Choo, J.; Lee, Y.; Kim, B. Chem. Eur. J. 2011, 17, 1304. https://doi.org/10.1002/chem.201001684
  26. Yoon, H.; Seo, K.; Moon, H.; Varadwaj, K. S. K.; In, J.; Kim, B. J. Phys. Chem. C 2008, 112, 9181. https://doi.org/10.1021/jp800515y
  27. Harjanto, S.; Shibayama, A.; Sato, K.; Suzuki, G.; Otomo, T.; Takasaki, Y.; Fujita, T. Resources Processing 2005, 52, 113. https://doi.org/10.4144/rpsj.52.113
  28. Pershina, V.; Sepp, W. -D.; Bastug, T.; Fricke, B.; Ionova, G. V. J. Chem. Phys. 1992, 97, 1123. https://doi.org/10.1063/1.463292
  29. Zhao, Ye.; Zhang, Z.; Lin, Y. J. Phys. D: Appl. Phys. 2004, 37, 3392. https://doi.org/10.1088/0022-3727/37/24/006

Cited by

  1. Ultrathin Films vol.119, pp.34, 2015, https://doi.org/10.1021/acs.jpcc.5b04057
  2. Review on nanomaterials synthesized by vapor transport method: growth and their related applications vol.5, pp.97, 2015, https://doi.org/10.1039/C5RA13349A
  3. The formation of optical phase structures in the volume of phosphate glasses by means of thermal diffusion caused by the action of femtosecond laser radiation vol.82, pp.2, 2015, https://doi.org/10.1364/JOT.82.000120
  4. surfaces vol.35, pp.6, 2017, https://doi.org/10.1116/1.4995492
  5. Characterization of Niobia-alumina Deposited by the Sol-gel Process on Carbon Steel vol.21, pp.3, 2018, https://doi.org/10.1590/1980-5373-mr-2017-0525
  6. Epitaxial niobium dioxide thin films by reactive-biased target ion beam deposition vol.33, pp.2, 2012, https://doi.org/10.1116/1.4906143
  7. Structural and physical properties of NbO2 and Nb2O5 thin films prepared by magnetron sputtering vol.30, pp.10, 2012, https://doi.org/10.1007/s10854-019-01319-8
  8. Preparation and Characterization of NbxOy Thin Films: A Review vol.10, pp.12, 2012, https://doi.org/10.3390/coatings10121246