Browse > Article
http://dx.doi.org/10.5012/bkcs.2012.33.3.839

Single Crystalline NbO2 Nanowire Synthesis by Chemical Vapor Transport Method  

Lee, Sung-Hun (Department of Chemistry, KAIST)
Yoon, Ha-Na (Department of Chemistry, KAIST)
Yoon, Il-Sun (Department of Chemistry, KAIST)
Kim, Bong-Soo (Department of Chemistry, KAIST)
Publication Information
Abstract
We report for the first time the synthesis of niobium dioxide nanowires on a sapphire substrate by chemical vapor transport method. We identified single crystalline nature of as-synthesized nanowires by scanning electron microscopy and transmission electron microscopy. Niobium dioxide nanowires with their large surface-to-volume ratio and high activities can be employed for electrochemical catalysts and immunosensors. The Raman spectrum of niobium dioxide nanowires also confirmed their identity.
Keywords
$NbO_2$; Nanowires; Single crystal; Vapor transport; Raman spectrum;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Pershina, V.; Sepp, W. -D.; Bastug, T.; Fricke, B.; Ionova, G. V. J. Chem. Phys. 1992, 97, 1123.   DOI
2 Zhao, Ye.; Zhang, Z.; Lin, Y. J. Phys. D: Appl. Phys. 2004, 37, 3392.   DOI
3 Orel, B.; Macek, M.; Grdadolnik, J., Meden, A. J. Solid State Electrochem. 1998, 2, 221.   DOI
4 Kurioka, N.; Watanabe, D.; Haneda, M.; Shimanouchi, T.; Mizushima, T.; Kakuta, N.; Ueno, A.; Hanaoka, T.; Sugi, Y. Catal. Today 2003, 16, 495.   DOI
5 Kimura, S. J. Solid State Chem. 1973, 6, 438.   DOI
6 Hulm, J. K.; Jones, C. K.; Hein, R. A.; Gibson, J. W. J. Low Temp. Phys. 1972, 7, 291.   DOI
7 Helali, S.; Abdelghani, A.; Hafaiedh, I.; Martelet, C.; Prodromodis, M. I.; Albanis, T.; Jaffrezic-Renault, N. Mat. Sci. Eng. C 2008, 28, 826   DOI
8 Rao, C. N. R.; Wahnsiedler, W. E.; Honig, J. M. J. Solid State Chem. 1970, 2, 315.   DOI
9 Cho, N. -H.; Kang, H. B.; Kim, Y. H. Ferroelectrics 1994, 152, 43.   DOI
10 Natio, K.; Kamegashira, N.; Sasaki, N. J. Solid State Chem. 1980, 35, 305.   DOI
11 Sasaki, K.; Zhang, L.; Adzic, R. R. Phys. Chem. Chem. Phys. 2008, 10, 159.   DOI   ScienceOn
12 Orilall, M. C.; Matsumoto, F.; Zhou, Q.; Sai, H.; Abru a, H. D.; DiSalvo, F. J.; Wiesner, U. J. Am. Chem. Soc. 2009, 131, 9389.   DOI
13 Mozeti , M.; Cvelbar, U.; Sunkara, M. K.; Vaddiraju, S. Adv. Mater. 2005, 17, 2138.   DOI
14 Lin, Y.; Yang, Y.-J.; Hsu, C.-C. Thin Solid Films 2011, 519, 3043.   DOI
15 In, J.; Yoon, I.; Seo, K.; Park, J.; Choo, J.; Lee, Y.; Kim, B. Chem. Eur. J. 2011, 17, 1304.   DOI
16 Yoon, H.; Seo, K.; Moon, H.; Varadwaj, K. S. K.; In, J.; Kim, B. J. Phys. Chem. C 2008, 112, 9181.   DOI
17 Harjanto, S.; Shibayama, A.; Sato, K.; Suzuki, G.; Otomo, T.; Takasaki, Y.; Fujita, T. Resources Processing 2005, 52, 113.   DOI
18 Julien, C.; Haro-Poniatowski, E.; Camacho-Lopez, M. A.; Escobar- Alarcon, L.; Jimenez-Jarquin, J. Mater. Sci. Eng. B 1999, 65, 170.   DOI
19 Rao, C. N. R. Annu. Rev. Phys. Chem. 1989, 40, 291.   DOI
20 Poizot, P.; Grudeon, S.; Dupont, L.; Tarascon, J. M. Nature 2000, 407, 496.   DOI   ScienceOn
21 Ponzi, M.; Duschatzky, C.; Carrascull, A.; Ponzi, E. Appl. Catal. A 1998, 169, 373.   DOI
22 5. Micocci, G.; Serra, A.; Tepore, A; Capone, S.; Rella, C. R.; Siciliano, P. J. Vac. Sci. Technol. A 1997, 15, 34.   DOI
23 Kanan, S. M.; El-Kadri, O. M.; Abu-Yousef, I. A.; Kanan, M. C. Sensors 2009, 9, 8158.   DOI
24 Krusin-Elbaum, L.; Wittmer, M. J. Electrochem. Soc. 1988, 135, 2610.   DOI   ScienceOn
25 Chen, Z.; Cummins, D.; Reinecke, B. N.; Clark, E.; Sunkara, M. K.; Jaramillo, T. F. Nano Lett. 2011, 11, 4168.   DOI
26 Lee, H. -W.; Muralidharan, P.; Ruffo, R.; Mari, C. M.; Cui, Y.; Kim, D. K. Nano Lett. 2010, 10, 3852.   DOI
27 Feng, X.; Shankar, K.; Varghese, O. K.; Paulose, M.; Latempa, T. J.; Grimes, C. A. Nano Lett. 2008, 8, 3781.   DOI
28 Okaz, A. M.; Keesom, P. H. Phys. Rev. B 1975, 12, 4917.   DOI
29 Friedrichs, O.; Sanchez-Lopez, J. C.; Lopez-Cartes, C.; Klassen, T.; Bormann, R.; Fernandez, A. J. Phys. Chem. B 2006, 110, 7845.   DOI