Direct synthesis mechanism of amorphous $SiO_x$ nanowires from Ni/Si substrate

Ni/Si 기판을 사용하여 성장시킨 비결정질 $SiO_x$ 나노 와이어의 성장 메커니즘

  • Song, W.Y. (Sungkyunkwan Advanced Institute of Nanotechnology(SAINT), Sungkyunkwan University) ;
  • Shin, T.I. (Dept. of Advanced Materials Engineering, Sungkyunkwan University) ;
  • Lee, H.J. (Dept. of Advanced Materials Engineering, Sungkyunkwan University) ;
  • Kim, H. (Dept. of Advanced Materials Engineering, Sungkyunkwan University) ;
  • Kim, S.W. (School of Advanced Materials and System Engineering, Kumoh National Institute of Technology) ;
  • Yoon, D.H. (Sungkyunkwan Advanced Institute of Nanotechnology(SAINT), Sungkyunkwan University)
  • Published : 2006.12.31

Abstract

The amorphous $SiO_x$ nanowires were synthesized by the vapor phase epitaxy (VPE) method. $SiO_x$ nanowires were formed on silicon wafer of temperatures ranged from $800{\sim}1100^{\circ}C$ and nickel thin film was used as a catalyst for the growth of nanowires. A vapor-liquid-solid (VLS) mechanism is responsible for the catalyst-assisted amorphous $SiO_x$ nanowires synthesis in this experiment. The SEM images showed cotton-like nanostructure of free standing $SiO_x$ nanowires with the length of more than about $10{\mu}m$. The $SiO_x$ nanowires were confirmed amorphous structure by TEM analysis and EDX spectrum reveals that the nanowires consist of Si and O.

Vapor phase epitaxy(VPE)법을 사용하여 amorphous $SiO_x$. nanowires를 성장시켰다. Ni thin film을 촉매로 사용하여 Si 기판위에 $800{\sim}1100^{\circ}C$ 범위의 온도에서 성장시켰으며, $SiO_x$ nanowires의 성장 메커니즘은 Vapor-liquid-solid(VLS)으로 확인되었다. $SiO_x$ nanowires의 shape와 morphology는 scanning electron microscope(SEM)으로 분석하였으며, cotton-like형태이고 길이는 $10{\mu}m$정도였다. 그리고 구조적 특징은 transmission electron microscope(TEM)으로 관찰하였고, $SiO_x$ nanowires의 성분 분석은 energy dispersed X-ray spectroscopy(EDS)로 하였다. EDX spectrum으로 nanowires가 Si와 O로 구성되어졌음을 확인하였다.

Keywords

References

  1. S. Iijima, 'Helical microtubules of graphitic carbon', Nature (London) 354 (1991) 56
  2. A. Morales and C. Lieber, 'A laser ablation method for the synthesis of crystalline semiconductor nanowires', Science 279 (1998) 208 https://doi.org/10.1126/science.279.5348.208
  3. C.X. Xu, X.W. Sun, M.B. Yu, Y.Z. Xiong, Z.L. Dong and J.S. Chen, 'Magnetic nanocables-silicon carbide sheathed with iron-oxide-doped amorphous silica', Appl. Phys. Lett. 85 (2004) 5364 https://doi.org/10.1063/1.1830686
  4. Y.Q. Zhu, W.B. Hu, W.K. Hsu, M. Terrones, N. Grobert, T. Karali, H. Terrones, J.P. Hare, P.D. Townsend, H.W Kroto and D.R.M. Walton, 'A simple route to silicon- based nanostructures', Adv. Mater. 11 (1999) 844
  5. B. Zheng, Y.Y. Wu, P.D. Yang and J. Liu, 'Fabrication of single-crystal alpha-$Al_{2}O_{3}$ nanorods by displacement reactions', Adv. Mater. 14 (2002) 122 https://doi.org/10.1002/1521-4095(20020116)14:2<122::AID-ADMA122>3.0.CO;2-V
  6. Z.Q. Liu, W.Y. Zhou, L.F. Sun, D.S. Tang, X.P. Zou, Y.B. Li, C.Y. Wang, G. Wang and S.S. Xie, 'Growth of amorphous silicon nanowires', Chern. Phys. Lett. 341 (2001) 523 https://doi.org/10.1016/S0009-2614(01)00513-9
  7. J.Q. Hu, Y. Jiang, X.M. Meng, C.S. Lee and S.T. Lee, 'A simple large-scale synthesis of very long aligned silica nanowires', Chern. Phys. Lett. 367 (2003) 339 https://doi.org/10.1016/S0009-2614(02)01712-8
  8. C.L. Shao, H. Kim, J. Gong and D. Lee, 'Nickel titanate nanofibers by electrospinning', Nanotechnology 12 (2002) 635
  9. G. L. P. Berning and L. L. Levenson, 'Diffusion of nickel in silicon below $475^{circ}C$', Thin Solid Films 55 (1978) 473 https://doi.org/10.1016/0040-6090(78)90164-5