• Title/Summary/Keyword: Nanowire array

Search Result 35, Processing Time 0.024 seconds

Low Temperature Synthesis of Transparent, Vertically Aligned Anatase TiO2 Nanowire Arrays: Application to Dye Sensitized Solar Cells

  • In, Su-Il;Almtoft, Klaus P.;Lee, Hyeon-Seok;Andersen, Inge H.;Qin, Dongdong;Bao, Ningzhong;Grimes, C.A.
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.6
    • /
    • pp.1989-1992
    • /
    • 2012
  • We present a low temperature (${\approx}70^{\circ}C$) method to prepare anatase, vertically aligned feather-like $TiO_2$ (VAFT) nanowire arrays $via$ reactive pulsed DC magnetron sputtering. The synthesis method is general, offering a promising strategy for preparing crystalline nanowire metal oxide films for applications including gas sensing, photocatalysis, and 3rd generation photovoltaics. As an example application, anatase nanowire films are grown on fluorine doped tin oxide coated glass substrates and used as the photoanode in dye sensitized solar cells (DSSCs). AM1.5G power conversion efficiencies for the solar cells made of 1 ${\mu}m$ thick VAFT have reached 0.42%, which compares favorably to solar cells made of the same thickness P25 $TiO_2$ (0.35%).

Synthesis and Characterization of Highly Crystalline Anatase Nanowire Arrays

  • Zhao, Yong-Nan;Lee, U-Hwang;Suh, Myung-Koo;Kwon, Young-Uk
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.9
    • /
    • pp.1341-1345
    • /
    • 2004
  • We developed a novel synthesis strategy of titania nanowire arrays by employing simple hydrothermal reaction and ion-exchange reaction techniques. Hydrothermal reactions of metallic titanium powder with $H_2O_2$ in a 10 M NaOH solution produced a new sodium titanate compound, $Na_2Ti_6O_{13}{\cdot}xH_2O$ (x~4.2), as arrays of nanowires of lengths up to 1 mm. Acid-treatment followed by calcination of this material produced arrays of highly crystalline anatase nanowires as evidenced by x-ray diffraction, Raman spectroscopy, and transmission electron microscopy studies. In both cases of sodium titanate and anatase, the nanowires have exceptionally large aspect ratios of 10,000 or higher, and they form arrays over a large area of $1.5 {\times} 3 cm^2$. Observations on the reaction products with varied conditions indicate that the array formation requires simultaneously controlled formation and crystal growth rates of the $Na_2Ti_6O_{13}{\cdot}xH_2O$ phase.

A New Programming Method to Alleviate the Program Speed Variation in Three-Dimensional Stacked Array NAND Flash Memory

  • Kim, Yoon;Seo, Joo Yun;Lee, Sang-Ho;Park, Byung-Gook
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.5
    • /
    • pp.566-571
    • /
    • 2014
  • Channel-stacked 3D NAND flash memory is very promising candidate for the next-generation NAND flash memory. However, there is an inherent issue on cell size variation between stacked channels due to the declined etch slope. In this paper, the effect of the cell variation on the incremental step pulse programming (ISPP) characteristics is studied with 3D TCAD simulation. The ISPP slope degradation of elliptical channel is investigated. To solve that problem, a new programming method is proposed, and we can alleviate the $V_T$ variation among cells and reduce the total programming time.

Selective Band Engineering of an Isolated Subnanometer Wire

  • Song, In-Gyeong;Park, Jong-Yun;An, Jong-Ryeol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.267-267
    • /
    • 2013
  • Band engineering of a nanowire is related to the question what is the minimum size of a nanowire-based device. At the subnanometer scale, there has been a long standing problem whether it is possible to both control an energy band of an isolated nanowire by a dopant and measure it using angle-resolved photoemission spectroscopy (ARPES). This is because an extra atom in the subnanometer wire plays as a defect rather than a dopant and it is challenging to assemble isolated subnanometer wires into an array for an ARPES measurement. We demonstrate that only one of multiple metallic subnanometer wires canbe controlled electronically by a dopant maintaining the whole metallic bands of other wires, which was observed directly by ARPES. Here,the multiple metallic subnanometer wires were produced on a stepped Si(111) surface by a self-assembly method. The selective band engineering proves that the selectively-controlled metallic wire is nearly isolated electronically from other metallic wires and an electronic structure controlcan be realized down to subnanometer scale.

  • PDF

High Density Silver Nanowire Arrays using Self-ordered Anodic Aluminum Oxide(AAO) Membrane

  • Kim, Yong-Hyun;Han, Young-Hwan;Lee, Hyung-Jik;Lee, Hyung-Bock
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.4
    • /
    • pp.191-195
    • /
    • 2008
  • Highly ordered silver nanowire with a diameter of 10 nm was arrayed by electroless deposition in a porous anodic aluminum oxide(AAO) membrane. The AAO membrane was fabricated electrochemically in an oxalic acid solution via a two-step anodization process, while growth of the silver nanowire was initiated by using electroless deposition at the long-range-ordered nanochannels of the AAO membrane followed by thermal reduction of a silver nitrate aqueous solution by increasing the temperature up to $350^{\circ}C$ for an hour. An additional electro-chemical procedure was applied after the two-step anodization to control the pore size and channel density of AAO, which enabled us to fabricate highly-ordered silver nanowire on a large scale. Electroless deposition of silver nitrate aqueous solution into the AAO membrane and thermal reduction of silver nanowires was performed by increasing the temperature up to $350^{\circ}C$ for 1 h. The morphologies of silver nanowires arrayed in the AAO membrane were investigated using SEM. The chemical composition and crystalline structure were confirmed by XRD and EDX. The electroless-deposited silver nanowires in AAO revealed a well-crystallized self-ordered array with a width of 10 nm.

Nano and micro structures for label-free detection of biomolecules

  • Eom, Kil-Ho;Kwon, Tae-Yun;Sohn, Young-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.403-420
    • /
    • 2010
  • Nano and micro structure-based biosensors are promising tool for label-free detection of biomolecular interactions with great accuracy. This review gives a brief survey on nano and micro platforms to sense a variety of analytes such as DNA, proteins and viruses. Among incredible nano and micro structure for bio-analytical applications, the scope of this paper will be limited to micro and nano resonators and nanowire field-effect transistors. Nanomechanical motion of the resonators transducers biological information to readable signals. They are commonly combined with an optical, capacitive or piezo-resistive detection systems. Binding of target molecule to the modified surface of nanowire modulates the current of the nanowire through electrical field-effect. Both detection methods have advantages of label-free, real-time and high sensitive detection. These structures can be extended to fabricate array-type sensors for multiplexed detection and high-throughput analysis. The biosensors based on these structures will be applied to lab-on-a-chip platforms and point-of-care diagnostics. Basic concepts including detection mechanisms and trends in their fields will be covered in this review.

Copper Sulfide Nanowires for Solar Cells (태양전지용 $Cu_2S$ 나노와이어의 제작 및 특성분석)

  • Lim, Young-Seok;Kang, Yoon-Mook;Kim, Won-Mok;Kim, Dong-Hwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.166-169
    • /
    • 2006
  • We fabricated hexagonal copper sulfide $Cu_2S$ nanowires to obtain a larger contact area of $Cu_2S/CdS$ solar cell. Copper sulfide nanowires were grown on Cu foil at room temperature by gas-sol id reaction. The size, density and shape of nanowires seemed to be affected by the change or reaction time temperature, crystallographic orientation of Cu foil, and molar ratio of the mixed gas. We controled the length and the diameter of the nanowires and we obtained suitable nanowire arrays which has fitting size for uniform deposition with n-type CdS. CdS layer was deposited on the nanowire array by electrodeposition and it seemed to be uniform. The $Cu_2S/CdS$ nanowires/CdS junction showed diode characteristics, A large contact area is expected with the $Cu_2S/CdS$ nanowire structure as compared with the $Cu_2S/CdS$ thin film.

  • PDF

Temperature dependence of the effective anisotropy in Ni nanowire arrays

  • Meneses, Fernando;Urreta, Silvia E.;Escrig, Juan;Bercoff, Paula G.
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1240-1247
    • /
    • 2018
  • Magnetic hysteresis in Ni nanowire arrays grown by electrodeposition inside the pores of anodic alumina templates is studied as a function of temperature in the range between 5 K and 300 K. Nanowires with different diameters, aspect ratios, inter-wire distance in the array and surface condition (smooth and rough) are synthesized. These microstructure parameters are linked to the different free magnetic energy contributions determining coercivity and the controlling magnetization reversal mechanisms. Coercivity increases with temperature in arrays of nanowires with rough surfaces and small diameters -33 nm and 65 nm- when measured without removing the alumina template and/or the Al substrate. For thicker wires -200 nm in diameter and relatively smooth surfaces- measured without the Al substrate, coercivity decreases as temperature rises. These temperature dependences of magnetic hysteresis are described in terms of an effective magnetic anisotropy $K_a$, resulting from the interplay of magnetocrystalline, magnetoelastic and shape anisotropies, together with the magnetostatic interaction energy density between nanowires in the array. The experimentally determined coercive fields are compared with results of micromagnetic calculations, performed considering the magnetization reversal mode acting in each studied array and microstructure parameters. A method is proposed to roughly estimate the value of $K_a$ experimentally, from the hysteresis loops measured at different temperatures. These measured values are in agreement with theoretical calculations. The observed temperature dependence of coercivity does not arise from an intrinsic property of pure Ni but from the nanowires surface roughness and the way the array is measured, with or without the alumina template and/or the aluminum support.

Applications of metamaterials: Cloaking, Photonics, and Energy Harvesting

  • Kim, Kyoungsik
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.77.2-77.2
    • /
    • 2015
  • Recently, metamaterials attracted much attention because of the potential applications for superlens, cloaking and high precision sensors. We developed several dielectric metamaterials for enhancing antireflection or light trapping capability in solar energy harvesting devices. Colloidal lithography and electrochemical anodization process were employed to fabricate self-assembed nano- and microscale dielectric metamaterials in a simple and cost-effective manner. We improved broadband light absorption in c-Si, a-Si, and organic semiconductor layer by employing polystyrene (PS) islands integrated Si conical-frustum arrays, resonant PS nanosphere arrays, and diffusive alumina nanowire arrays, respectively. We also demonstrated thin metal coated alumina nanowire array which is utilized as an efficient light-to-heat conversion layer of solar steam generating devices. The scalable design and adaptable fabrication route to our light management nanostructures will be promising in applications of solar energy harvesting system. On the other hands, broadband invisible cloaks, which continuously work while elastically deforming, are developed using smart metamaterials made of photonic and elastic crystals. A self-adjustable, nearly lossless, and broadband (10-12GHz) smart meatamaterials have great potentials for applications in antenna system and military stealth technology.

  • PDF

Dynamic Effects of Bouncing Water Droplets on Superhydrophobic Tungsten Oxide nanowire surfaces

  • Gwak, Geun-Jae;Lee, Mi-Gyeong;Yong, Gi-Jung
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.25.1-25.1
    • /
    • 2009
  • The effects of surface energyon the wetting transition for impinging water droplets were experimentally investigated on the chemically modified WOx nanowire surfaces. We could modify the surface energy of the nanostructures through chemisorption of alkyltrichlorosilanes with various carbon chain lengths and by the UV-enhanced decomposition of self assembled monolayer (SAM) molecules chemically adsorbedon the array. Three surface wetting states could be identified through the balance between antiwetting and wetting pressures. This approach establishes simple strategy for the design criteria for water-repellent surface to impinging droplets.

  • PDF