DOI QR코드

DOI QR Code

Synthesis and Characterization of Highly Crystalline Anatase Nanowire Arrays

  • Zhao, Yong-Nan (Department of Materials Science, School of Materials Science and Chemical Engineering, Tianjin Polytechnic University) ;
  • Lee, U-Hwang (Department of Chemistry and BK21 School of Molecular Science, Sungkyunkwan University) ;
  • Suh, Myung-Koo (Department of Chemistry and BK21 School of Molecular Science, Sungkyunkwan University) ;
  • Kwon, Young-Uk (Department of Chemistry and BK21 School of Molecular Science, Sungkyunkwan University)
  • Published : 2004.09.20

Abstract

We developed a novel synthesis strategy of titania nanowire arrays by employing simple hydrothermal reaction and ion-exchange reaction techniques. Hydrothermal reactions of metallic titanium powder with $H_2O_2$ in a 10 M NaOH solution produced a new sodium titanate compound, $Na_2Ti_6O_{13}{\cdot}xH_2O$ (x~4.2), as arrays of nanowires of lengths up to 1 mm. Acid-treatment followed by calcination of this material produced arrays of highly crystalline anatase nanowires as evidenced by x-ray diffraction, Raman spectroscopy, and transmission electron microscopy studies. In both cases of sodium titanate and anatase, the nanowires have exceptionally large aspect ratios of 10,000 or higher, and they form arrays over a large area of $1.5 {\times} 3 cm^2$. Observations on the reaction products with varied conditions indicate that the array formation requires simultaneously controlled formation and crystal growth rates of the $Na_2Ti_6O_{13}{\cdot}xH_2O$ phase.

Keywords

References

  1. Patzke, G. R.; Krumeich, F.; Nesper, R. Angew. Chem. Inter. Ed.2002, 35, 2446.
  2. Hu, J.; Odom, T. W.; Lieber, C. M. Acc. Chem. Res. 1999, 32,435. https://doi.org/10.1021/ar9700365
  3. Kovtyukhova, N. I.; Mallouk, T. E. Chem. Eur. J. 2002, 8, 4355.
  4. Xia, Y.; Yang, P.; Sun, Y.; Wu, Y.; Mayers, B.; Gates, B.; Yin, Y.;Kin, F.; Yan, H. Adv. Mater. 2003, 15, 353. https://doi.org/10.1002/adma.200390087
  5. Lao, J. Y.; Huang, J. Y.; Wang, D. Z.; Ren, Z. F. Adv. Mater. 2004,16, 65. https://doi.org/10.1002/adma.200305684
  6. Lew, K. K.; Pan, L.; Dickey, E. C.; Redwing, J. M. Adv. Mater.2003, 15, 2073. https://doi.org/10.1002/adma.200306035
  7. Zhou, J.; Xu, N. S.; Deng, S. Z.; Chen, J.; She, J. C. Chem. Phys.Lett. 2003, 382, 443. https://doi.org/10.1016/j.cplett.2003.10.002
  8. Jung, W. S. Bull. Korean Chem. Soc. 2004, 25, 51. https://doi.org/10.5012/bkcs.2004.25.1.051
  9. Prieto, A. L.; Martin-Gonzalez, M.; Kenyani, J.; Grosky, R.;Sands, T.; Stacy, A. M. J. Am. Chem. Soc. 2003, 125, 2388. https://doi.org/10.1021/ja029394f
  10. Sander, M. S.; Prieto, A. M.; Gronsky, R.; Sands, T.; Stacy, A. M.Adv. Mater. 2002, 14, 665. https://doi.org/10.1002/1521-4095(20020503)14:9<665::AID-ADMA665>3.0.CO;2-B
  11. Zhang, Y.; Li, G.; Wang, Y.; Zhang, B.; Song, W.; Zhang, L. Adv.Mater. 2002, 14, 1227. https://doi.org/10.1002/1521-4095(20020903)14:17<1227::AID-ADMA1227>3.0.CO;2-2
  12. Schonenberger, C.; van der Zander, B. M. I.; Fokkink, L. G. J.;Henny, M.; Schmid, C.; Kruger, M.; Bachtold, A.; Huber, R.;Staufer, U. J. Phys. Chem. B 1997, 101, 5497. https://doi.org/10.1021/jp963938g
  13. Yang, H.; Shi, Q.; Tian, B.; Lu, Q.; Gao, F.; Xie, S.; Fan, J.; Yu, C.;Tu, B.; Zhao, D. J. Am. Chem. Soc. 2003, 125, 4724. https://doi.org/10.1021/ja034005i
  14. Jin, C. G.; Xiang, X. Q.; Jia, C.; Liu, W. F.; Cai, W. L.; Yao, L. Z.;Li, X. G. J. Phys. Chem. B 2004, 108, 1844. https://doi.org/10.1021/jp036133z
  15. Tian, Y. T.; Meng, G. W.; Gao, T.; Sun, S. H.; Xie, T.; Peng, X. S.;Ye, C. H.; Zhang, L. D. Nanotechnology 2004, 15, 189. https://doi.org/10.1088/0957-4484/15/1/036
  16. Wang, Y. C.; Leu, I. C.; Hon, M. H. J. Appl. Phys. 2004, 95,1444. https://doi.org/10.1063/1.1637710
  17. Zhang, H. M.; Guo, Y. G.; Wan, L. J.; Bai, C. L. Chem. Commun.2003, 3022.
  18. Yoon, C. H.; Suh, J. S. Bull. Korean Chem. Soc. 2002, 23, 1519. https://doi.org/10.5012/bkcs.2002.23.11.1519
  19. Park, I. S.; Jang, S. R.; Hong, J. S.; Vittal, R.; Kim, K. J. Chem.Mater. 2003, 15, 4633. https://doi.org/10.1021/cm030541y
  20. Huang, L.; Wang, H.; Wang, Z.; Mitra, A.; Zhao, D.; Yan, Y.Chem. Mater. 2002, 14, 876. https://doi.org/10.1021/cm010819r
  21. Huang, L.; Wang, H.; Wang, Z.; Mitra, A.; Bozhilov, K. N.; Yan,Y. Adv. Mater. 2002, 14, 61. https://doi.org/10.1002/1521-4095(20020104)14:1<61::AID-ADMA61>3.0.CO;2-Y
  22. Greene, L. E.; Law, M.; Goldberger, J.; Kim, F.; Johnson, J. C.;Zhang, Y.; Saykally, R. J.; Yang, P. Angew. Chem. Int. Ed. Engl.2003, 42, 3031. https://doi.org/10.1002/anie.200351461
  23. Rao, C. N. R.; Deepak, F. L.; Gundiah, G.; Govindara, A. Prog.Solid State Chem. 2003, 31, 5. https://doi.org/10.1016/j.progsolidstchem.2003.08.001
  24. Wang, W.; Li, Y. J. Am. Chem. Soc. 2002, 124, 2880. https://doi.org/10.1021/ja0177105
  25. Xu, A.; Fang, Y.; You, L.; Liu, H. J. Am. Chem. Soc. 2003, 125,1494. https://doi.org/10.1021/ja029181q
  26. Liu, B.; Zeng, H. C. J. Am. Chem. Soc. 2003, 125, 4430. https://doi.org/10.1021/ja0299452
  27. Li, Y.; Wang, J.; Deng, Z.; Wu, Y.; Sun, X.; Yu, D.; Yang, P. J. Am.Chem. Soc. 2001, 123, 9904. https://doi.org/10.1021/ja016435j
  28. Cao, M.; Hu, C.; Peng, G.; Qi, Y.; Wang, E. J. Am. Chem. Soc.2003, 125, 4982. https://doi.org/10.1021/ja029620l
  29. Wang, X.; Li, Y. Angew. Chem. Int. Ed. 2002, 41, 4790. https://doi.org/10.1002/anie.200290049
  30. Li, Y.; Ding, Y.; Wang, Z. Adv. Mater. 1999, 11, 847. https://doi.org/10.1002/(SICI)1521-4095(199907)11:10<847::AID-ADMA847>3.0.CO;2-B
  31. Sun, X.; Chen, X.; Li, Y. Inorg. Chem. 2002, 41, 4996. https://doi.org/10.1021/ic0257827
  32. Tian, Z. R.; Voigt, J. A.; Liu, J.; McKenzie, B.; McDermott, M. J.;Rodriguez, M. A.; Konish, K.; Xu, H. Nat. Mater. 2003, 2, 821. https://doi.org/10.1038/nmat1014
  33. Zhang, Y. X.; Li, G. H.; Jin, Y. X.; Zhang, Y.; Zhang, J.; Zhang, L.D. Chem. Phys. Lett. 2002, 365, 300. https://doi.org/10.1016/S0009-2614(02)01499-9
  34. Du, G. H.; Chen, Q.; Che, R. C.; Yuan, Z. Y.; Peng, L. M. Appl.Phys. Lett. 2001, 79, 3702. https://doi.org/10.1063/1.1423403
  35. Chen, Q.; Zhou, W.; Du, G.; Peng, L. Adv. Mater. 2002, 14, 1208. https://doi.org/10.1002/1521-4095(20020903)14:17<1208::AID-ADMA1208>3.0.CO;2-0
  36. Miao, Z.; Xu, D.; Ouyang, J.; Guo, G.; Zhao, X.; Tang, Y. NanoLett. 2002, 2, 717. https://doi.org/10.1021/nl025541w
  37. Lei, Y.; Zhang, L. D.; Meng, G. W.; Li, G. H.; Zhang, X. Y.;Liang, C. H.; Chen, W.; Wang, S. X. Appl. Phys. Lett. 2001, 78,1125. https://doi.org/10.1063/1.1350959
  38. Hoyer, P. Langmuir 1996, 12, 1411. https://doi.org/10.1021/la9507803
  39. Zhang, X. Y.; Zhang, L. D.; Chen, W.; Meng, G. W.; Zheng, M. J.;Zhao, L. X. Chem. Mater. 2001, 13, 2511. https://doi.org/10.1021/cm0007297
  40. Kasuga, T.; Hiramatsu, M.; Hoson, A.; Sekino, T.; Niihara, K.Langmuir 1998, 14, 3160. https://doi.org/10.1021/la9713816
  41. Limmer, S. J.; Cao, G. Adv. Mater. 2003, 15, 427. https://doi.org/10.1002/adma.200390099
  42. Li, D.; Xia, Y. Nano Lett. 2003, 3, 555. https://doi.org/10.1021/nl034039o
  43. Feist, T. P.; Davies, P. K. J. Solid State Chem. 1992, 101, 275. https://doi.org/10.1016/0022-4596(92)90184-W
  44. Anderson, S.; Wadsley, A. D. Acta Crystallogr. 1961, 14, 1245. https://doi.org/10.1107/S0365110X61003636
  45. Zhang, W. F.; He, Y. L.; Zhang, M. S.; Yin, Z.; Chen, Q. J. Phys.D: Appl. Phys. 2000, 33, 912. https://doi.org/10.1088/0022-3727/33/8/305
  46. Choi, H. C.; Jung, Y. M.; Kim, S. B. Bull. Korean Chem. Soc.2004, 25, 426. https://doi.org/10.1007/s11814-008-0072-8
  47. Bersani, D.; Lottici, P. P.; Ding, X. Z. Appl. Phys. Lett. 1998, 72,73. https://doi.org/10.1063/1.120648
  48. Lagarec, K.; Desgreniers, S. Solid State Commun. 1995, 94, 519. https://doi.org/10.1016/0038-1098(95)00129-8
  49. Parker, J. C.; Siegel, R. W. Appl. Phys. Lett. 1990, 57, 943. https://doi.org/10.1063/1.104274

Cited by

  1. H2Ti6O13, a new protonated titanate prepared by Li+/H+ ion exchange: synthesis, crystal structure and electrochemical Li insertion properties vol.2, pp.8, 2012, https://doi.org/10.1039/c2ra01134d
  2. One-Dimensional Metal Oxide Nanotubes, Nanowires, Nanoribbons, and Nanorods: Synthesis, Characterizations, Properties and Applications vol.37, pp.1, 2012, https://doi.org/10.1080/10408436.2011.606512
  3. Molten salt synthesis of Na2Ti3O7 and Na2Ti6O13 one-dimensional nanostructures and their photocatalytic and humidity sensing properties vol.15, pp.17, 2013, https://doi.org/10.1039/c3ce27092k
  4. nanoarrays and their photoelectrochemical properties vol.6, pp.22, 2014, https://doi.org/10.1039/C4NR04735D
  5. Probing the Highly Efficient Electron Transfer Dynamics between Zinc Protoporphyrin IX and Sodium Titanate Nanosheets vol.120, pp.36, 2016, https://doi.org/10.1021/acs.jpca.6b06363
  6. Hydrothermal synthesis and characterisation of potassium/sodium titanate nanofibres at different temperatures vol.7, pp.7, 2012, https://doi.org/10.1049/mnl.2012.0376
  7. Large-Scale Synthesis and Characterization of TiO2-Based Nanostructures on Ti Substrates vol.16, pp.10, 2006, https://doi.org/10.1002/adfm.200500464
  8. Growth mechanism of titanium dioxide nanowires for dye-sensitized solar cells vol.19, pp.9, 2008, https://doi.org/10.1088/0957-4484/19/9/095604
  9. Rietveld refinement of sol–gel Na2Ti6O13 and its photocatalytic performance on the degradation of methylene blue vol.47, pp.2, 2008, https://doi.org/10.1007/s10971-008-1790-4
  10. Morphological control of vertically self-aligned nanosheets formed on magnesium alloy by surfactant-free hydrothermal synthesis vol.11, pp.11, 2009, https://doi.org/10.1039/b907490b
  11. Hierarchical Titanate Nanostructures through Hydrothermal Treatment of Commercial Titania Powders vol.635, pp.3, 2009, https://doi.org/10.1002/zaac.200801322
  12. Size- and Shape-Dependent Transformation of Nanosized Titanate into Analogous Anatase Titania Nanostructures vol.128, pp.25, 2006, https://doi.org/10.1021/ja0607483
  13. Novel Phosphotungstate-titania Nanocomposites from Aqueous Media vol.28, pp.7, 2004, https://doi.org/10.5012/bkcs.2007.28.7.1097
  14. A Study on the Crystalline Structure of Sodium Titanate Nanobelts Prepared by the Hydrothermal Method vol.114, pp.18, 2010, https://doi.org/10.1021/jp101482k
  15. PbS/CdS nanocrystal-sensitized titanate network films: enhanced photocatalytic activities and super-amphiphilicity vol.20, pp.45, 2004, https://doi.org/10.1039/c0jm02111c
  16. Insight into the channel ion distribution and influence on the lithium insertion properties of hexatitanates A2Ti6O13 (A = Na, Li, H) as candidates for anode materials vol.41, pp.48, 2004, https://doi.org/10.1039/c2dt31665j