Browse > Article
http://dx.doi.org/10.1016/j.cap.2018.06.014

Temperature dependence of the effective anisotropy in Ni nanowire arrays  

Meneses, Fernando (Facultad de Matematica, Astronomia, Fisica y Computacion, Universidad Nacional de Cordoba. Instituto de F?sica Enrique Gaviola, CONICET. Ciudad Universitaria)
Urreta, Silvia E. (Facultad de Matematica, Astronomia, Fisica y Computacion, Universidad Nacional de Cordoba. Instituto de F?sica Enrique Gaviola, CONICET. Ciudad Universitaria)
Escrig, Juan (Departamento de Fisica, Universidad de Santiago de Chile, USACH. Center for the Development of Nanoscience and Nanotechnology)
Bercoff, Paula G. (Facultad de Matematica, Astronomia, Fisica y Computacion, Universidad Nacional de Cordoba. Instituto de F?sica Enrique Gaviola, CONICET. Ciudad Universitaria)
Abstract
Magnetic hysteresis in Ni nanowire arrays grown by electrodeposition inside the pores of anodic alumina templates is studied as a function of temperature in the range between 5 K and 300 K. Nanowires with different diameters, aspect ratios, inter-wire distance in the array and surface condition (smooth and rough) are synthesized. These microstructure parameters are linked to the different free magnetic energy contributions determining coercivity and the controlling magnetization reversal mechanisms. Coercivity increases with temperature in arrays of nanowires with rough surfaces and small diameters -33 nm and 65 nm- when measured without removing the alumina template and/or the Al substrate. For thicker wires -200 nm in diameter and relatively smooth surfaces- measured without the Al substrate, coercivity decreases as temperature rises. These temperature dependences of magnetic hysteresis are described in terms of an effective magnetic anisotropy $K_a$, resulting from the interplay of magnetocrystalline, magnetoelastic and shape anisotropies, together with the magnetostatic interaction energy density between nanowires in the array. The experimentally determined coercive fields are compared with results of micromagnetic calculations, performed considering the magnetization reversal mode acting in each studied array and microstructure parameters. A method is proposed to roughly estimate the value of $K_a$ experimentally, from the hysteresis loops measured at different temperatures. These measured values are in agreement with theoretical calculations. The observed temperature dependence of coercivity does not arise from an intrinsic property of pure Ni but from the nanowires surface roughness and the way the array is measured, with or without the alumina template and/or the aluminum support.
Keywords
Nickel nanowires; Magnetic anisotropy; Electrodeposition; Magnetization reversal modes;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. Zeng, R. Skomski, L. Menon, Y. Liu, S. Bandyopadhyay, D.J. Sellmyer, Structure and magnetic properties of ferromagnetic nanowires in self-assembled arrays, Phys. Rev. B 65 (2002) 134426.   DOI
2 F.C. Fonseca, G.F. Goya, R.F. Jardim, R. Muccillo, N.L.V. Carrefio, E. Longo, E.R. Leite, Magnetic properties of Ni nanoparticles embedded in amorphous SiO2, Mater. Res. Soc. Symp. Proc. 746 (2003) 213-218.
3 M. Hanson, C. Johansson, Temperature dependence of hysteresis loops of Ni filmscharacteristics of fine-grained structure, in: G.C. Hadjipanayis (Ed.), Magnetic Hysteresis in Novel Magnetic Materials. NATO ASI Series (Series E: Applied Sciences), vol. 338, Springer, Dordrecht, 1997.
4 N. Adeela, K. Maaz, U. Khan, S. Karim, M. Ahmad, M. Iqbal, S. Riaz, X.F. Han, M. Maqbool, Fabrication and temperature dependent magnetic properties of nickel nanowires embedded in alumina templates, Ceram. Int. 41 (2015) 12081-12086.   DOI
5 H. Zeng, S.A. Michalski, R.D. Kirby, D.J. Sellmyer, L. Menon, S. Bandyopadhyay, Effects of surface morphology on magnetic properties of Ni nanowire arrays in selfordered porous alumina, J. Phys. Condens. Matter 14 (2002) 715-721.   DOI
6 A. Kumar, S. Fahler, H. Schlorb, K. Leistner, L. Schultz, Competition between shape anisotropy and magnetoelastic anisotropy in Ni nanowires electrodeposited within alumina templates, Phys. Rev. B 73 (2006) 064421.   DOI
7 D. Navas, K.R. Pirota, P. Mendoza Zelis, D. Velazquez, C.A. Ross, M. Vazquez, Effects of the magnetoelastic anisotropy in Ni nanowire arrays, J. Appl. Phys. 103 (2008) 07D523.   DOI
8 A. Michel, A.C. Niemann, T. Boehnert, S. Martens, J.M. Montero Moreno, D. Goerlitz, R. Zierold, H. Reith, V. Vega, V.M. Prida, A. Thomas, J. Gooth, K. Nielsch, Temperature gradient-induced magnetization reversal of single ferromagnetic nanowires, J. Phys. D Appl. Phys. 50 (2017) 494007.   DOI
9 T.M. Whitney, J.S. Jiang, P.C. Searson, C.L. Chien, Fabrication and magnetic properties of arrays of metallic nanowires, Science 261 (1993) 1316-1319.   DOI
10 D.J. Sellmyer, M. Zheng, R. Skomski, Magnetism of Fe, Co and Ni nanowires in selfassembled arrays, J. Phys. Condens. Matter 13 (2001) R433-R460.   DOI
11 A. Encinas-Oropesa, M. Demand, L. Piraux, I. Huynen, U. Ebels, Dipolar interactions in arrays of nickel nanowires studied by ferromagnetic resonance, Phys. Rev. B 63 (2001) 104415.   DOI
12 K. Nielsch, F. Muller, A.P. Li, U. Gosele, Uniform nickel deposition into ordered alumina pores by pulsed electrodeposition, Adv. Mater. (Weinheim, Ger.) 12 (2000) 582-586.   DOI
13 F. Meneses, P.G. Bercoff, Influence of the porosity on the magnetic properties of Ni nanowires arrays, Materia 20 (2015) 722-730.
14 M. Vazquez, M. Hernandez-Velez, K. Pirota, A. Asenjo, D. Navas, J. Velazquez, P. Vargas, C. Ramos, Arrays of Ni nanowires in alumina membranes: magnetic properties and spatial ordering, Eur. Phys. J. B40 (2004) 489-497.
15 H. Masuda, K.S. Fukuda, Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina, Science 268 (1995) 1466-1468.   DOI
16 M.S. Viqueira, S.E. Garcia, S.E. Urreta, G.P. Lopez, L.M. Fabietti, Hysteresis properties of hexagonal arrays of FePd nanowires, IEEE Trans. Magn. 49 (2013) 4498-4501.   DOI
17 E. Vilanova Vidal, Y.P. Ivanov, H. Mohammed, J. Kosel, A detailed study of magnetization reversal in individual Ni nanowires, Appl. Phys. Lett. 106 (2015) 32403.   DOI
18 F. Tian, Z.P. Huang, L. Whitmore, Fabrication and magnetic properties of Ni nanowire arrays with ultrahigh axial squareness, Phys. Chem. Chem. Phys. 14 (2012) 8537-8541.   DOI
19 S. Chu, K. Wada, S. Inoue, S. Todoroki, Fabrication and characteristics of ordered Ni nanostructures on glass by anodization and direct current electrodeposition, Chem. Mater. 14 (2002) 4595-4602.   DOI
20 R.R. Birss, E.W. Lee, The saturation magnetostriction constants of nickel within the temperature range - $196^{\circ}$ to $365^{\circ}C$, Proc. Phys. Soc. 76 (1960) 502-506.   DOI
21 J. De La Torre Medina, M. Darques, L. Piraux, Strong low temperature magnetoelastic effects in template grown Ni nanowires, J. Phys. D Appl. Phys. 41 (2008) 032008.   DOI
22 R.M. Bozorth, Ferromagnetism, D. Van Nostrand Company Inc., New York, 1951.
23 C.R.J. Cadsden, H. Heath, The first three anisotropy constants of Nickel, Solid State Commun. 20 (1976) 951-952.   DOI
24 L.G. Vivas, M. Vazquez, V. Vega, J. Garcia, W.O. Rosa, R.P. del Real, V.M. Prida, Temperature dependent magnetization in Co-base nanowire arrays: role of crystalline anisotropy, J. Appl. Phys. 111 (2012) 07A325.   DOI
25 X.W. Wang, G.T. Fei, X.J. Xu, Z. Jin, L.D. Zhang, Size-dependent orientation growth of large-area ordered Ni nanowire arrays, J. Phys. Chem. B 109 (2005) 24326-24330.   DOI
26 R. Lavin, J.C. Denardin, J. Escrig, D. Altbir, A. Cortes, H. Gomez, Angular dependence of magnetic properties in Ni nanowire arrays, J. Appl. Phys. 106 (2009) 103903.   DOI
27 X. Li, Y. Wang, G. Song, Z. Peng, Y. Yu, S. She, J. Li, Synthesis and growth mechanism of Ni nanotubes and nanowires, Nanoscale Res. Lett. 4 (2009) 1015-1020.   DOI
28 K.M. Razeeb, F.M. Rhen, S. Roy, Magnetic properties of nickel nanowires: effect of deposition temperature, J. Appl. Phys. 105 (2009) 083922.   DOI
29 J. De La Torre Medina, G. Hamoir, Y. Velazquez-Galvan, S. Pouget, H. Okuno, L. Vila, A. Encinas, L. Piraux, Large magnetic anisotropy enhancement in size controlled Ni nanowires electrodeposited into nanoporous alumina templates, Nanotechnology 27 (2016) 145702.   DOI
30 M.P. Proenca, C.T. Sousa, J. Ventura, M. Vazquez, J.P. Araujo, Ni growth inside ordered arrays of alumina nanopores: enhancing the deposition rate, Electrochim. Acta 72 (2012) 215-221.   DOI
31 P. Wang, L. Gao, Z. Qiu, X. Song, L. Wang, S. Yang, R. Murakami, A multistep ac electrodeposition method to prepare Co nanowires with high coercivity, J. Appl. Phys. 104 (2008) 064304-064304-5.
32 N.J. Gerein, J.A. Haber, Effect of ac electrodeposition conditions on the growth of high aspect ratio copper nanowires in porous aluminum oxide templates, J. Phys. Chem. B 109 (2005) 17372-17385.   DOI
33 S. Hayashi, T. Huzimura, The effect of plastic deformation on the coercive force and initial permeability of nickel single crystals, Trans. JIM 5 (1964) 127-131.   DOI
34 C. Bran, E.M. Palmero, Zi-An Li, R.P. del Real, M. Spasova, M. Farle, M. Vazquez, Correlation between structure and magnetic properties in $Co_xFe_{100−x}$ nanowires: the roles of composition and wire diameter, J. Phys. D Appl. Phys. 48 (2015) 145304.   DOI
35 F. Zighem, T. Maurer, F. Ott, G. Chaboussant, Dipolar interactions in arrays of ferromagnetic nanowires: a micromagnetic study, J. Appl. Phys. 109 (2011) 013910.   DOI
36 R.C. O'Handley, Modern Magnetic Materials: Principles and Applications, John Wiley & Sons, Inc, New York, 2000 (pg. 40).
37 M. Knobel, L.M. Socolovsky, J.M. Vargas, Propiedades magneticas y de transporte de sistemas nanocristalinos: conceptos basicos y aplicaciones a sistemas reales, Rev. Mexic. Fisica E 50 (2004) 8-28.
38 R. Skomski, H. Zeng, D.J. Sellmyer, Incoherent magnetization reversal in nanowires, J. Magn. Magn. Mater. 249 (2002) 175-180.   DOI
39 R. Skomski, H. Zeng, M. Zheng, D.J. Sellmyer, Magnetic localization in transitionmetal nanowires, Phys. Rev. B 62 (2000) 3900-3904.
40 G. Bertotti, Hysteresis in Magnetism, Academic Press, New York, 1998.
41 A. Michels, J. Weissmuller, A. Wiedenmann, J.G. Barker, Exchange-stiffness constant in cold-worked and nanocrystalline Ni measured by elastic small-angle neutron scattering, J. Appl. Phys. 87 (2000) 5953-5955.   DOI
42 J. Escrig, R. Lavin, J.L. Palma, J.C. Denardin, D. Altbir, A. Cortes, H. Gomez, Geometry dependence of coercivity in Ni nanowire arrays, Nanotechnology 19 (2008) 75713.   DOI
43 J. Escrig, J. Bachmann, J. Jing, M. Daub, D. Altbir, K. Nielsch, Crossover between two different magnetization reversal modes in arrays of iron oxide nanotubes, Phys. Rev. B 77 (2008) 214421.   DOI
44 J. Escrig, M. Daub, P. Landeros, K. Nielsch, D. Altbir, Angular dependence of coercivity in magnetic nanotubes, Nanotechnology 18 (2007) 445706.   DOI
45 P. Landeros, S. Allende, J. Escrig, E. Salcedo, D. Altbir, Reversal modes in magnetic nanotubes, Appl. Phys. Lett. 90 (2007) 102501.   DOI
46 A. Aharoni, Angular dependence of nucleation by curling in a prolate spheroid, J. Appl. Phys. 82 (1997) 1281-1287.   DOI
47 S. Shtrikman, D. Treves, In Magnetism, G.T. Rado and H. Suhl. Academic: New York, 1963. Vol. 3.
48 R. Hertel, Micromagnetic simulations of magnetostatically coupled Nickel nanowires, J. Appl. Phys. 90 (2001) 5752.   DOI
49 E. Vilanova Vidal, Y.P. Ivanov, H. Mohammed, J. Kosel, A detailed study of magnetization reversal in individual Ni nanowires, Appl. Phys. Lett. 106 (2015) 32403.   DOI
50 N. Ahmad, J.Y. Chen, W.P. Zhou, D.P. Liu, X.F. Han, Magnetoelastic anisotropy induced effects on field and temperature dependent magnetization reversal of Ni nanowires and nanotubes, J. Supercond. Nov. Magn. 24 (2011) 785-792.   DOI