Browse > Article
http://dx.doi.org/10.5012/bkcs.2012.33.6.1989

Low Temperature Synthesis of Transparent, Vertically Aligned Anatase TiO2 Nanowire Arrays: Application to Dye Sensitized Solar Cells  

In, Su-Il (Department of Chemistry and Department of Electrical Engineering, the Pennsylvania State University, State College)
Almtoft, Klaus P. (Danish Technological Institute, Tribology Centre)
Lee, Hyeon-Seok (Department of Chemistry and Department of Electrical Engineering, the Pennsylvania State University, State College)
Andersen, Inge H. (Danish Technological Institute, Tribology Centre)
Qin, Dongdong (Department of Chemistry and Department of Electrical Engineering, the Pennsylvania State University, State College)
Bao, Ningzhong (State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing University of Technology)
Grimes, C.A. (Flux Photon Corporation)
Publication Information
Abstract
We present a low temperature (${\approx}70^{\circ}C$) method to prepare anatase, vertically aligned feather-like $TiO_2$ (VAFT) nanowire arrays $via$ reactive pulsed DC magnetron sputtering. The synthesis method is general, offering a promising strategy for preparing crystalline nanowire metal oxide films for applications including gas sensing, photocatalysis, and 3rd generation photovoltaics. As an example application, anatase nanowire films are grown on fluorine doped tin oxide coated glass substrates and used as the photoanode in dye sensitized solar cells (DSSCs). AM1.5G power conversion efficiencies for the solar cells made of 1 ${\mu}m$ thick VAFT have reached 0.42%, which compares favorably to solar cells made of the same thickness P25 $TiO_2$ (0.35%).
Keywords
Anatase; Titanium dioxide; Nanowire; Nanowire array;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Paulose, M.; Shankar, K.; Yoriya, S.; Prakasam, H. E.; Varghese, O. K.; Mor, G. K.; Latempa, T. A.; Fitzgerald, A.; Grimes, C. A. J. Phys. Chem. B 2006, 110, 16179.   DOI
2 Prakasam, H. E.; Shankar, K.; Paulose, M.; Varghese, O. K.; Grimes, C. A. J. Phys. Chem. C 2007, 111, 7235.   DOI
3 Yoriya, S.; Mor, G. K.; Sharma, S.; Grimes, C. A. J. Mater. Chem. 2008, 18, 3332.   DOI
4 Yoriya, S.; Paulose, M.; Varghese, O. K.; Mor, G. K.; Grimes, C. A. J. Phys. Chem. C 2007, 111, 13770.   DOI
5 Shankar, K.; Mor, G. K.; Fitzgerald, A.; Grimes, C. A. J. Phys. Chem. C 2007, 111, 21.   DOI
6 Shankar, K.; Mor, G. K.; Prakasam, H. E.; Yoriya, S.; Paulose, M.; Varghese, O. K.; Grimes, C. A. Nanotechnology 2007, 18, Article No. 065707.
7 Varghese, O. K.; Gong, D. W.; Paulose, M.; Grimes, C. A.; Dickey, E. C. J. Mater. Res. 2003, 18, 156.   DOI   ScienceOn
8 Snaith, H. J.; Schmidt-Mende, L. Adv. Mater. 2007, 19, 3187.   DOI
9 Thornton, J. A. J. Vac. Sci. Tech. 1974, 11, 666.   DOI
10 Thornton, J. A. J. Vac. Sci. Tech. 1975, 12, 830.   DOI
11 Zhu, K.; Neale, N. R.; Miedaner, A.; Frank, A. J. Nano Lett. 2007, 7, 69.   DOI   ScienceOn
12 O'Regan, B.; Gratzel, M. Nature 1991, 353, 737.   DOI
13 Bao, N.; Feng, X.; Grimes, C. A. J. Nanotechnol. 2012, doi: 10.1155/2012/645931.
14 Mor, G. K.; Shankar, K.; Paulose, M.; Varghese, O. K.; Grimes, C. A. Nano Lett. 2006, 6, 215.   DOI
15 Varghese, O. K.; Paulose, M.; Grimes, C. A. Nature Nanotechnol. 2009, 4, 592.   DOI
16 Feng, X.; Shankar, K.; Varghese, O. K.; Paulose, M.; Latempa, T. J.; Grimes, C. A. Nano Lett. 2008, 8, 3781.   DOI
17 Liu, B.; Aydil, E. S. J. American Chem. Soc. 2009, 131, 3985.   DOI   ScienceOn
18 Gong, D.; Grimes, C. A.; Varghese, O. K.; Hu, W. C.; Singh, R. S.; Chen, Z.; Dickey, E. C. J. Mater. Res. 2001, 16, 3331.   DOI   ScienceOn