Acknowledgement
Supported by : FONDECYT, CONICYT
References
- T.M. Whitney, J.S. Jiang, P.C. Searson, C.L. Chien, Fabrication and magnetic properties of arrays of metallic nanowires, Science 261 (1993) 1316-1319. https://doi.org/10.1126/science.261.5126.1316
- D.J. Sellmyer, M. Zheng, R. Skomski, Magnetism of Fe, Co and Ni nanowires in selfassembled arrays, J. Phys. Condens. Matter 13 (2001) R433-R460. https://doi.org/10.1088/0953-8984/13/25/201
- A. Encinas-Oropesa, M. Demand, L. Piraux, I. Huynen, U. Ebels, Dipolar interactions in arrays of nickel nanowires studied by ferromagnetic resonance, Phys. Rev. B 63 (2001) 104415. https://doi.org/10.1103/PhysRevB.63.104415
- K. Nielsch, F. Muller, A.P. Li, U. Gosele, Uniform nickel deposition into ordered alumina pores by pulsed electrodeposition, Adv. Mater. (Weinheim, Ger.) 12 (2000) 582-586. https://doi.org/10.1002/(SICI)1521-4095(200004)12:8<582::AID-ADMA582>3.0.CO;2-3
- F. Meneses, P.G. Bercoff, Influence of the porosity on the magnetic properties of Ni nanowires arrays, Materia 20 (2015) 722-730.
- M. Vazquez, M. Hernandez-Velez, K. Pirota, A. Asenjo, D. Navas, J. Velazquez, P. Vargas, C. Ramos, Arrays of Ni nanowires in alumina membranes: magnetic properties and spatial ordering, Eur. Phys. J. B40 (2004) 489-497.
- X.W. Wang, G.T. Fei, X.J. Xu, Z. Jin, L.D. Zhang, Size-dependent orientation growth of large-area ordered Ni nanowire arrays, J. Phys. Chem. B 109 (2005) 24326-24330. https://doi.org/10.1021/jp053627i
- R. Lavin, J.C. Denardin, J. Escrig, D. Altbir, A. Cortes, H. Gomez, Angular dependence of magnetic properties in Ni nanowire arrays, J. Appl. Phys. 106 (2009) 103903. https://doi.org/10.1063/1.3257242
- X. Li, Y. Wang, G. Song, Z. Peng, Y. Yu, S. She, J. Li, Synthesis and growth mechanism of Ni nanotubes and nanowires, Nanoscale Res. Lett. 4 (2009) 1015-1020. https://doi.org/10.1007/s11671-009-9348-0
- K.M. Razeeb, F.M. Rhen, S. Roy, Magnetic properties of nickel nanowires: effect of deposition temperature, J. Appl. Phys. 105 (2009) 083922. https://doi.org/10.1063/1.3109080
- J. De La Torre Medina, G. Hamoir, Y. Velazquez-Galvan, S. Pouget, H. Okuno, L. Vila, A. Encinas, L. Piraux, Large magnetic anisotropy enhancement in size controlled Ni nanowires electrodeposited into nanoporous alumina templates, Nanotechnology 27 (2016) 145702. https://doi.org/10.1088/0957-4484/27/14/145702
- M.P. Proenca, C.T. Sousa, J. Ventura, M. Vazquez, J.P. Araujo, Ni growth inside ordered arrays of alumina nanopores: enhancing the deposition rate, Electrochim. Acta 72 (2012) 215-221. https://doi.org/10.1016/j.electacta.2012.04.036
- P. Wang, L. Gao, Z. Qiu, X. Song, L. Wang, S. Yang, R. Murakami, A multistep ac electrodeposition method to prepare Co nanowires with high coercivity, J. Appl. Phys. 104 (2008) 064304-064304-5.
- N.J. Gerein, J.A. Haber, Effect of ac electrodeposition conditions on the growth of high aspect ratio copper nanowires in porous aluminum oxide templates, J. Phys. Chem. B 109 (2005) 17372-17385. https://doi.org/10.1021/jp051320d
- S. Hayashi, T. Huzimura, The effect of plastic deformation on the coercive force and initial permeability of nickel single crystals, Trans. JIM 5 (1964) 127-131. https://doi.org/10.2320/matertrans1960.5.127
- H. Zeng, R. Skomski, L. Menon, Y. Liu, S. Bandyopadhyay, D.J. Sellmyer, Structure and magnetic properties of ferromagnetic nanowires in self-assembled arrays, Phys. Rev. B 65 (2002) 134426. https://doi.org/10.1103/PhysRevB.65.134426
- F.C. Fonseca, G.F. Goya, R.F. Jardim, R. Muccillo, N.L.V. Carrefio, E. Longo, E.R. Leite, Magnetic properties of Ni nanoparticles embedded in amorphous SiO2, Mater. Res. Soc. Symp. Proc. 746 (2003) 213-218.
- M. Hanson, C. Johansson, Temperature dependence of hysteresis loops of Ni filmscharacteristics of fine-grained structure, in: G.C. Hadjipanayis (Ed.), Magnetic Hysteresis in Novel Magnetic Materials. NATO ASI Series (Series E: Applied Sciences), vol. 338, Springer, Dordrecht, 1997.
- N. Adeela, K. Maaz, U. Khan, S. Karim, M. Ahmad, M. Iqbal, S. Riaz, X.F. Han, M. Maqbool, Fabrication and temperature dependent magnetic properties of nickel nanowires embedded in alumina templates, Ceram. Int. 41 (2015) 12081-12086. https://doi.org/10.1016/j.ceramint.2015.06.025
- H. Zeng, S.A. Michalski, R.D. Kirby, D.J. Sellmyer, L. Menon, S. Bandyopadhyay, Effects of surface morphology on magnetic properties of Ni nanowire arrays in selfordered porous alumina, J. Phys. Condens. Matter 14 (2002) 715-721. https://doi.org/10.1088/0953-8984/14/4/306
- A. Kumar, S. Fahler, H. Schlorb, K. Leistner, L. Schultz, Competition between shape anisotropy and magnetoelastic anisotropy in Ni nanowires electrodeposited within alumina templates, Phys. Rev. B 73 (2006) 064421. https://doi.org/10.1103/PhysRevB.73.064421
- D. Navas, K.R. Pirota, P. Mendoza Zelis, D. Velazquez, C.A. Ross, M. Vazquez, Effects of the magnetoelastic anisotropy in Ni nanowire arrays, J. Appl. Phys. 103 (2008) 07D523. https://doi.org/10.1063/1.2834719
- A. Michel, A.C. Niemann, T. Boehnert, S. Martens, J.M. Montero Moreno, D. Goerlitz, R. Zierold, H. Reith, V. Vega, V.M. Prida, A. Thomas, J. Gooth, K. Nielsch, Temperature gradient-induced magnetization reversal of single ferromagnetic nanowires, J. Phys. D Appl. Phys. 50 (2017) 494007. https://doi.org/10.1088/1361-6463/aa9444
- C.R.J. Cadsden, H. Heath, The first three anisotropy constants of Nickel, Solid State Commun. 20 (1976) 951-952. https://doi.org/10.1016/0038-1098(76)90480-4
- H. Masuda, K.S. Fukuda, Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina, Science 268 (1995) 1466-1468. https://doi.org/10.1126/science.268.5216.1466
- M.S. Viqueira, S.E. Garcia, S.E. Urreta, G.P. Lopez, L.M. Fabietti, Hysteresis properties of hexagonal arrays of FePd nanowires, IEEE Trans. Magn. 49 (2013) 4498-4501. https://doi.org/10.1109/TMAG.2013.2258461
- E. Vilanova Vidal, Y.P. Ivanov, H. Mohammed, J. Kosel, A detailed study of magnetization reversal in individual Ni nanowires, Appl. Phys. Lett. 106 (2015) 32403. https://doi.org/10.1063/1.4906108
- F. Tian, Z.P. Huang, L. Whitmore, Fabrication and magnetic properties of Ni nanowire arrays with ultrahigh axial squareness, Phys. Chem. Chem. Phys. 14 (2012) 8537-8541. https://doi.org/10.1039/c2cp40892a
- S. Chu, K. Wada, S. Inoue, S. Todoroki, Fabrication and characteristics of ordered Ni nanostructures on glass by anodization and direct current electrodeposition, Chem. Mater. 14 (2002) 4595-4602. https://doi.org/10.1021/cm020272w
-
R.R. Birss, E.W. Lee, The saturation magnetostriction constants of nickel within the temperature range -
$196^{\circ}$ to$365^{\circ}C$ , Proc. Phys. Soc. 76 (1960) 502-506. https://doi.org/10.1088/0370-1328/76/4/307 - J. De La Torre Medina, M. Darques, L. Piraux, Strong low temperature magnetoelastic effects in template grown Ni nanowires, J. Phys. D Appl. Phys. 41 (2008) 032008. https://doi.org/10.1088/0022-3727/41/3/032008
- R.M. Bozorth, Ferromagnetism, D. Van Nostrand Company Inc., New York, 1951.
- L.G. Vivas, M. Vazquez, V. Vega, J. Garcia, W.O. Rosa, R.P. del Real, V.M. Prida, Temperature dependent magnetization in Co-base nanowire arrays: role of crystalline anisotropy, J. Appl. Phys. 111 (2012) 07A325. https://doi.org/10.1063/1.3676431
-
C. Bran, E.M. Palmero, Zi-An Li, R.P. del Real, M. Spasova, M. Farle, M. Vazquez, Correlation between structure and magnetic properties in
$Co_xFe_{100−x}$ nanowires: the roles of composition and wire diameter, J. Phys. D Appl. Phys. 48 (2015) 145304. https://doi.org/10.1088/0022-3727/48/14/145304 - F. Zighem, T. Maurer, F. Ott, G. Chaboussant, Dipolar interactions in arrays of ferromagnetic nanowires: a micromagnetic study, J. Appl. Phys. 109 (2011) 013910. https://doi.org/10.1063/1.3518498
- R.C. O'Handley, Modern Magnetic Materials: Principles and Applications, John Wiley & Sons, Inc, New York, 2000 (pg. 40).
- M. Knobel, L.M. Socolovsky, J.M. Vargas, Propiedades magneticas y de transporte de sistemas nanocristalinos: conceptos basicos y aplicaciones a sistemas reales, Rev. Mexic. Fisica E 50 (2004) 8-28.
- R. Skomski, H. Zeng, D.J. Sellmyer, Incoherent magnetization reversal in nanowires, J. Magn. Magn. Mater. 249 (2002) 175-180. https://doi.org/10.1016/S0304-8853(02)00527-9
- R. Skomski, H. Zeng, M. Zheng, D.J. Sellmyer, Magnetic localization in transitionmetal nanowires, Phys. Rev. B 62 (2000) 3900-3904.
- G. Bertotti, Hysteresis in Magnetism, Academic Press, New York, 1998.
- A. Michels, J. Weissmuller, A. Wiedenmann, J.G. Barker, Exchange-stiffness constant in cold-worked and nanocrystalline Ni measured by elastic small-angle neutron scattering, J. Appl. Phys. 87 (2000) 5953-5955. https://doi.org/10.1063/1.372577
- J. Escrig, R. Lavin, J.L. Palma, J.C. Denardin, D. Altbir, A. Cortes, H. Gomez, Geometry dependence of coercivity in Ni nanowire arrays, Nanotechnology 19 (2008) 75713. https://doi.org/10.1088/0957-4484/19/7/075713
- J. Escrig, J. Bachmann, J. Jing, M. Daub, D. Altbir, K. Nielsch, Crossover between two different magnetization reversal modes in arrays of iron oxide nanotubes, Phys. Rev. B 77 (2008) 214421. https://doi.org/10.1103/PhysRevB.77.214421
- J. Escrig, M. Daub, P. Landeros, K. Nielsch, D. Altbir, Angular dependence of coercivity in magnetic nanotubes, Nanotechnology 18 (2007) 445706. https://doi.org/10.1088/0957-4484/18/44/445706
- P. Landeros, S. Allende, J. Escrig, E. Salcedo, D. Altbir, Reversal modes in magnetic nanotubes, Appl. Phys. Lett. 90 (2007) 102501. https://doi.org/10.1063/1.2437655
- A. Aharoni, Angular dependence of nucleation by curling in a prolate spheroid, J. Appl. Phys. 82 (1997) 1281-1287. https://doi.org/10.1063/1.365899
- S. Shtrikman, D. Treves, In Magnetism, G.T. Rado and H. Suhl. Academic: New York, 1963. Vol. 3.
- R. Hertel, Micromagnetic simulations of magnetostatically coupled Nickel nanowires, J. Appl. Phys. 90 (2001) 5752. https://doi.org/10.1063/1.1412275
- E. Vilanova Vidal, Y.P. Ivanov, H. Mohammed, J. Kosel, A detailed study of magnetization reversal in individual Ni nanowires, Appl. Phys. Lett. 106 (2015) 32403. https://doi.org/10.1063/1.4906108
- N. Ahmad, J.Y. Chen, W.P. Zhou, D.P. Liu, X.F. Han, Magnetoelastic anisotropy induced effects on field and temperature dependent magnetization reversal of Ni nanowires and nanotubes, J. Supercond. Nov. Magn. 24 (2011) 785-792. https://doi.org/10.1007/s10948-010-1016-1
Cited by
- Microwave devices based on template-assisted NiFe nanowires: fabrication and characterization vol.53, pp.6, 2020, https://doi.org/10.1088/1361-6463/ab55a4
- Perovskite Granular Wire Photodetectors with Ultrahigh Photodetectivity vol.32, pp.32, 2018, https://doi.org/10.1002/adma.202002357
- Possible Effects of Antiferromagnetic Crystalline Phases on the Temperature Dependence of Coercivity for Ni and Co Nanowires Obtained by Electrodeposition vol.217, pp.15, 2018, https://doi.org/10.1002/pssa.201901041
- Nickel Nanopillar Arrays Electrodeposited on Silicon Substrates Using Porous Alumina Templates vol.25, pp.22, 2018, https://doi.org/10.3390/molecules25225377
- Magnetic Properties of the Densely Packed Ultra-Long Ni Nanowires Encapsulated in Alumina Membrane vol.11, pp.7, 2018, https://doi.org/10.3390/nano11071775