DOI QR코드

DOI QR Code

Temperature dependence of the effective anisotropy in Ni nanowire arrays

  • Meneses, Fernando (Facultad de Matematica, Astronomia, Fisica y Computacion, Universidad Nacional de Cordoba. Instituto de F?sica Enrique Gaviola, CONICET. Ciudad Universitaria) ;
  • Urreta, Silvia E. (Facultad de Matematica, Astronomia, Fisica y Computacion, Universidad Nacional de Cordoba. Instituto de F?sica Enrique Gaviola, CONICET. Ciudad Universitaria) ;
  • Escrig, Juan (Departamento de Fisica, Universidad de Santiago de Chile, USACH. Center for the Development of Nanoscience and Nanotechnology) ;
  • Bercoff, Paula G. (Facultad de Matematica, Astronomia, Fisica y Computacion, Universidad Nacional de Cordoba. Instituto de F?sica Enrique Gaviola, CONICET. Ciudad Universitaria)
  • 투고 : 2018.03.22
  • 심사 : 2018.06.26
  • 발행 : 2018.11.30

초록

Magnetic hysteresis in Ni nanowire arrays grown by electrodeposition inside the pores of anodic alumina templates is studied as a function of temperature in the range between 5 K and 300 K. Nanowires with different diameters, aspect ratios, inter-wire distance in the array and surface condition (smooth and rough) are synthesized. These microstructure parameters are linked to the different free magnetic energy contributions determining coercivity and the controlling magnetization reversal mechanisms. Coercivity increases with temperature in arrays of nanowires with rough surfaces and small diameters -33 nm and 65 nm- when measured without removing the alumina template and/or the Al substrate. For thicker wires -200 nm in diameter and relatively smooth surfaces- measured without the Al substrate, coercivity decreases as temperature rises. These temperature dependences of magnetic hysteresis are described in terms of an effective magnetic anisotropy $K_a$, resulting from the interplay of magnetocrystalline, magnetoelastic and shape anisotropies, together with the magnetostatic interaction energy density between nanowires in the array. The experimentally determined coercive fields are compared with results of micromagnetic calculations, performed considering the magnetization reversal mode acting in each studied array and microstructure parameters. A method is proposed to roughly estimate the value of $K_a$ experimentally, from the hysteresis loops measured at different temperatures. These measured values are in agreement with theoretical calculations. The observed temperature dependence of coercivity does not arise from an intrinsic property of pure Ni but from the nanowires surface roughness and the way the array is measured, with or without the alumina template and/or the aluminum support.

키워드

과제정보

연구 과제 주관 기관 : FONDECYT, CONICYT

참고문헌

  1. T.M. Whitney, J.S. Jiang, P.C. Searson, C.L. Chien, Fabrication and magnetic properties of arrays of metallic nanowires, Science 261 (1993) 1316-1319. https://doi.org/10.1126/science.261.5126.1316
  2. D.J. Sellmyer, M. Zheng, R. Skomski, Magnetism of Fe, Co and Ni nanowires in selfassembled arrays, J. Phys. Condens. Matter 13 (2001) R433-R460. https://doi.org/10.1088/0953-8984/13/25/201
  3. A. Encinas-Oropesa, M. Demand, L. Piraux, I. Huynen, U. Ebels, Dipolar interactions in arrays of nickel nanowires studied by ferromagnetic resonance, Phys. Rev. B 63 (2001) 104415. https://doi.org/10.1103/PhysRevB.63.104415
  4. K. Nielsch, F. Muller, A.P. Li, U. Gosele, Uniform nickel deposition into ordered alumina pores by pulsed electrodeposition, Adv. Mater. (Weinheim, Ger.) 12 (2000) 582-586. https://doi.org/10.1002/(SICI)1521-4095(200004)12:8<582::AID-ADMA582>3.0.CO;2-3
  5. F. Meneses, P.G. Bercoff, Influence of the porosity on the magnetic properties of Ni nanowires arrays, Materia 20 (2015) 722-730.
  6. M. Vazquez, M. Hernandez-Velez, K. Pirota, A. Asenjo, D. Navas, J. Velazquez, P. Vargas, C. Ramos, Arrays of Ni nanowires in alumina membranes: magnetic properties and spatial ordering, Eur. Phys. J. B40 (2004) 489-497.
  7. X.W. Wang, G.T. Fei, X.J. Xu, Z. Jin, L.D. Zhang, Size-dependent orientation growth of large-area ordered Ni nanowire arrays, J. Phys. Chem. B 109 (2005) 24326-24330. https://doi.org/10.1021/jp053627i
  8. R. Lavin, J.C. Denardin, J. Escrig, D. Altbir, A. Cortes, H. Gomez, Angular dependence of magnetic properties in Ni nanowire arrays, J. Appl. Phys. 106 (2009) 103903. https://doi.org/10.1063/1.3257242
  9. X. Li, Y. Wang, G. Song, Z. Peng, Y. Yu, S. She, J. Li, Synthesis and growth mechanism of Ni nanotubes and nanowires, Nanoscale Res. Lett. 4 (2009) 1015-1020. https://doi.org/10.1007/s11671-009-9348-0
  10. K.M. Razeeb, F.M. Rhen, S. Roy, Magnetic properties of nickel nanowires: effect of deposition temperature, J. Appl. Phys. 105 (2009) 083922. https://doi.org/10.1063/1.3109080
  11. J. De La Torre Medina, G. Hamoir, Y. Velazquez-Galvan, S. Pouget, H. Okuno, L. Vila, A. Encinas, L. Piraux, Large magnetic anisotropy enhancement in size controlled Ni nanowires electrodeposited into nanoporous alumina templates, Nanotechnology 27 (2016) 145702. https://doi.org/10.1088/0957-4484/27/14/145702
  12. M.P. Proenca, C.T. Sousa, J. Ventura, M. Vazquez, J.P. Araujo, Ni growth inside ordered arrays of alumina nanopores: enhancing the deposition rate, Electrochim. Acta 72 (2012) 215-221. https://doi.org/10.1016/j.electacta.2012.04.036
  13. P. Wang, L. Gao, Z. Qiu, X. Song, L. Wang, S. Yang, R. Murakami, A multistep ac electrodeposition method to prepare Co nanowires with high coercivity, J. Appl. Phys. 104 (2008) 064304-064304-5.
  14. N.J. Gerein, J.A. Haber, Effect of ac electrodeposition conditions on the growth of high aspect ratio copper nanowires in porous aluminum oxide templates, J. Phys. Chem. B 109 (2005) 17372-17385. https://doi.org/10.1021/jp051320d
  15. S. Hayashi, T. Huzimura, The effect of plastic deformation on the coercive force and initial permeability of nickel single crystals, Trans. JIM 5 (1964) 127-131. https://doi.org/10.2320/matertrans1960.5.127
  16. H. Zeng, R. Skomski, L. Menon, Y. Liu, S. Bandyopadhyay, D.J. Sellmyer, Structure and magnetic properties of ferromagnetic nanowires in self-assembled arrays, Phys. Rev. B 65 (2002) 134426. https://doi.org/10.1103/PhysRevB.65.134426
  17. F.C. Fonseca, G.F. Goya, R.F. Jardim, R. Muccillo, N.L.V. Carrefio, E. Longo, E.R. Leite, Magnetic properties of Ni nanoparticles embedded in amorphous SiO2, Mater. Res. Soc. Symp. Proc. 746 (2003) 213-218.
  18. M. Hanson, C. Johansson, Temperature dependence of hysteresis loops of Ni filmscharacteristics of fine-grained structure, in: G.C. Hadjipanayis (Ed.), Magnetic Hysteresis in Novel Magnetic Materials. NATO ASI Series (Series E: Applied Sciences), vol. 338, Springer, Dordrecht, 1997.
  19. N. Adeela, K. Maaz, U. Khan, S. Karim, M. Ahmad, M. Iqbal, S. Riaz, X.F. Han, M. Maqbool, Fabrication and temperature dependent magnetic properties of nickel nanowires embedded in alumina templates, Ceram. Int. 41 (2015) 12081-12086. https://doi.org/10.1016/j.ceramint.2015.06.025
  20. H. Zeng, S.A. Michalski, R.D. Kirby, D.J. Sellmyer, L. Menon, S. Bandyopadhyay, Effects of surface morphology on magnetic properties of Ni nanowire arrays in selfordered porous alumina, J. Phys. Condens. Matter 14 (2002) 715-721. https://doi.org/10.1088/0953-8984/14/4/306
  21. A. Kumar, S. Fahler, H. Schlorb, K. Leistner, L. Schultz, Competition between shape anisotropy and magnetoelastic anisotropy in Ni nanowires electrodeposited within alumina templates, Phys. Rev. B 73 (2006) 064421. https://doi.org/10.1103/PhysRevB.73.064421
  22. D. Navas, K.R. Pirota, P. Mendoza Zelis, D. Velazquez, C.A. Ross, M. Vazquez, Effects of the magnetoelastic anisotropy in Ni nanowire arrays, J. Appl. Phys. 103 (2008) 07D523. https://doi.org/10.1063/1.2834719
  23. A. Michel, A.C. Niemann, T. Boehnert, S. Martens, J.M. Montero Moreno, D. Goerlitz, R. Zierold, H. Reith, V. Vega, V.M. Prida, A. Thomas, J. Gooth, K. Nielsch, Temperature gradient-induced magnetization reversal of single ferromagnetic nanowires, J. Phys. D Appl. Phys. 50 (2017) 494007. https://doi.org/10.1088/1361-6463/aa9444
  24. C.R.J. Cadsden, H. Heath, The first three anisotropy constants of Nickel, Solid State Commun. 20 (1976) 951-952. https://doi.org/10.1016/0038-1098(76)90480-4
  25. H. Masuda, K.S. Fukuda, Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina, Science 268 (1995) 1466-1468. https://doi.org/10.1126/science.268.5216.1466
  26. M.S. Viqueira, S.E. Garcia, S.E. Urreta, G.P. Lopez, L.M. Fabietti, Hysteresis properties of hexagonal arrays of FePd nanowires, IEEE Trans. Magn. 49 (2013) 4498-4501. https://doi.org/10.1109/TMAG.2013.2258461
  27. E. Vilanova Vidal, Y.P. Ivanov, H. Mohammed, J. Kosel, A detailed study of magnetization reversal in individual Ni nanowires, Appl. Phys. Lett. 106 (2015) 32403. https://doi.org/10.1063/1.4906108
  28. F. Tian, Z.P. Huang, L. Whitmore, Fabrication and magnetic properties of Ni nanowire arrays with ultrahigh axial squareness, Phys. Chem. Chem. Phys. 14 (2012) 8537-8541. https://doi.org/10.1039/c2cp40892a
  29. S. Chu, K. Wada, S. Inoue, S. Todoroki, Fabrication and characteristics of ordered Ni nanostructures on glass by anodization and direct current electrodeposition, Chem. Mater. 14 (2002) 4595-4602. https://doi.org/10.1021/cm020272w
  30. R.R. Birss, E.W. Lee, The saturation magnetostriction constants of nickel within the temperature range - $196^{\circ}$ to $365^{\circ}C$, Proc. Phys. Soc. 76 (1960) 502-506. https://doi.org/10.1088/0370-1328/76/4/307
  31. J. De La Torre Medina, M. Darques, L. Piraux, Strong low temperature magnetoelastic effects in template grown Ni nanowires, J. Phys. D Appl. Phys. 41 (2008) 032008. https://doi.org/10.1088/0022-3727/41/3/032008
  32. R.M. Bozorth, Ferromagnetism, D. Van Nostrand Company Inc., New York, 1951.
  33. L.G. Vivas, M. Vazquez, V. Vega, J. Garcia, W.O. Rosa, R.P. del Real, V.M. Prida, Temperature dependent magnetization in Co-base nanowire arrays: role of crystalline anisotropy, J. Appl. Phys. 111 (2012) 07A325. https://doi.org/10.1063/1.3676431
  34. C. Bran, E.M. Palmero, Zi-An Li, R.P. del Real, M. Spasova, M. Farle, M. Vazquez, Correlation between structure and magnetic properties in $Co_xFe_{100−x}$ nanowires: the roles of composition and wire diameter, J. Phys. D Appl. Phys. 48 (2015) 145304. https://doi.org/10.1088/0022-3727/48/14/145304
  35. F. Zighem, T. Maurer, F. Ott, G. Chaboussant, Dipolar interactions in arrays of ferromagnetic nanowires: a micromagnetic study, J. Appl. Phys. 109 (2011) 013910. https://doi.org/10.1063/1.3518498
  36. R.C. O'Handley, Modern Magnetic Materials: Principles and Applications, John Wiley & Sons, Inc, New York, 2000 (pg. 40).
  37. M. Knobel, L.M. Socolovsky, J.M. Vargas, Propiedades magneticas y de transporte de sistemas nanocristalinos: conceptos basicos y aplicaciones a sistemas reales, Rev. Mexic. Fisica E 50 (2004) 8-28.
  38. R. Skomski, H. Zeng, D.J. Sellmyer, Incoherent magnetization reversal in nanowires, J. Magn. Magn. Mater. 249 (2002) 175-180. https://doi.org/10.1016/S0304-8853(02)00527-9
  39. R. Skomski, H. Zeng, M. Zheng, D.J. Sellmyer, Magnetic localization in transitionmetal nanowires, Phys. Rev. B 62 (2000) 3900-3904.
  40. G. Bertotti, Hysteresis in Magnetism, Academic Press, New York, 1998.
  41. A. Michels, J. Weissmuller, A. Wiedenmann, J.G. Barker, Exchange-stiffness constant in cold-worked and nanocrystalline Ni measured by elastic small-angle neutron scattering, J. Appl. Phys. 87 (2000) 5953-5955. https://doi.org/10.1063/1.372577
  42. J. Escrig, R. Lavin, J.L. Palma, J.C. Denardin, D. Altbir, A. Cortes, H. Gomez, Geometry dependence of coercivity in Ni nanowire arrays, Nanotechnology 19 (2008) 75713. https://doi.org/10.1088/0957-4484/19/7/075713
  43. J. Escrig, J. Bachmann, J. Jing, M. Daub, D. Altbir, K. Nielsch, Crossover between two different magnetization reversal modes in arrays of iron oxide nanotubes, Phys. Rev. B 77 (2008) 214421. https://doi.org/10.1103/PhysRevB.77.214421
  44. J. Escrig, M. Daub, P. Landeros, K. Nielsch, D. Altbir, Angular dependence of coercivity in magnetic nanotubes, Nanotechnology 18 (2007) 445706. https://doi.org/10.1088/0957-4484/18/44/445706
  45. P. Landeros, S. Allende, J. Escrig, E. Salcedo, D. Altbir, Reversal modes in magnetic nanotubes, Appl. Phys. Lett. 90 (2007) 102501. https://doi.org/10.1063/1.2437655
  46. A. Aharoni, Angular dependence of nucleation by curling in a prolate spheroid, J. Appl. Phys. 82 (1997) 1281-1287. https://doi.org/10.1063/1.365899
  47. S. Shtrikman, D. Treves, In Magnetism, G.T. Rado and H. Suhl. Academic: New York, 1963. Vol. 3.
  48. R. Hertel, Micromagnetic simulations of magnetostatically coupled Nickel nanowires, J. Appl. Phys. 90 (2001) 5752. https://doi.org/10.1063/1.1412275
  49. E. Vilanova Vidal, Y.P. Ivanov, H. Mohammed, J. Kosel, A detailed study of magnetization reversal in individual Ni nanowires, Appl. Phys. Lett. 106 (2015) 32403. https://doi.org/10.1063/1.4906108
  50. N. Ahmad, J.Y. Chen, W.P. Zhou, D.P. Liu, X.F. Han, Magnetoelastic anisotropy induced effects on field and temperature dependent magnetization reversal of Ni nanowires and nanotubes, J. Supercond. Nov. Magn. 24 (2011) 785-792. https://doi.org/10.1007/s10948-010-1016-1

피인용 문헌

  1. Microwave devices based on template-assisted NiFe nanowires: fabrication and characterization vol.53, pp.6, 2020, https://doi.org/10.1088/1361-6463/ab55a4
  2. Perovskite Granular Wire Photodetectors with Ultrahigh Photodetectivity vol.32, pp.32, 2018, https://doi.org/10.1002/adma.202002357
  3. Possible Effects of Antiferromagnetic Crystalline Phases on the Temperature Dependence of Coercivity for Ni and Co Nanowires Obtained by Electrodeposition vol.217, pp.15, 2018, https://doi.org/10.1002/pssa.201901041
  4. Nickel Nanopillar Arrays Electrodeposited on Silicon Substrates Using Porous Alumina Templates vol.25, pp.22, 2018, https://doi.org/10.3390/molecules25225377
  5. Magnetic Properties of the Densely Packed Ultra-Long Ni Nanowires Encapsulated in Alumina Membrane vol.11, pp.7, 2018, https://doi.org/10.3390/nano11071775